Если нервная система посылает свои импульсы по нервам, точно к определённым органам, и быстро изменяет их работу, то поступившие в кровь гормоны достигают цели медленнее, но зато они охватывают сразу больше органов и тканей.
Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных
Рефлексы делятся на условные и безусловные имеются с рождения в течение жизни не изменяются и не исчезают одинаковые у всех организмов одного вида приспосабливают организм к постоянным условиям пример: выделение слюны при попадании лимона в рот. Тесты 34-01. Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге?
Тело нейрона содержит ядро с большим количеством ядерных пор и органеллы. Органеллы в нервной клетке те же, что и в других клетках. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет состоит из микрофиламентов и микротрубочек.
Его функция: поддержание формы клетки, транспорт органелл и упакованных в мембранные пузырьки веществ например, нейромедиаторов — молекул — передатчиков нервных импульсов. Из специфических органелл присутствует тигроид тельца Ниссля и нейрофибриллы. Тигроид состоит из сильно развитой шероховатой ЭПС с активными рибосомами и аппарата Гольджи; его функция — синтез специфических белков. Выглядит эта структура как «мелкая зернистость и полосатость» в теле и дендритах нейрона отсюда и название. Длительное голодание или стресс приводит к разрушению тигроида и прекращению синтеза специфических белков. Связь нейрона с другими клетками Нейрофибриллы нейрофиламенты состоят из микротрубочек и являются основным структурным компонентом цитоскелета.
Их функция — аксональный транспорт перемещение веществ по аксону. Аксональный транспорт Помимо своей специфической функции в качестве проводника нервных импульсов аксон является каналом для транспорта веществ. Аксональный аксонный транспорт — это перемещение веществ по аксону. Белки, синтезированные в теле клетки, нейромедиаторы и низкомолекулярные соединения перемещаются по аксону вместе с клеточными органеллами, в частности митохондриями. Для большинства веществ и органелл обнаружен также транспорт в обратном направлении. Вирусы и токсины могут проникать в аксон на его периферии и перемещаться по нему.
Аксональный транспорт — активный процесс — зависит от энергии АТФ.
Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? А двигательный нейрон.
Прохождение нервных импульсов Нервы передают друг другу кодированную информацию. Это называется возбуждением. Мембрана нервной клетки покрыта двойным липидным слоем, содержит ионы калия и натрия, фермент АТФ-азу.
Этот комплекс называется ионный насос. Он обеспечивает неравенство концентрации ионов. Процесс сопровождается затратой энергии. Одной молекулы АТФ хватает на транспорт 2 молекул калия и трех молекул натрия. Калий преобладает в клетках нейрона над натрием и свободно выходит из наружу. Когда на клетку действует раздражитель, возбуждение вызывает возрастание проницаемости мембраны клеток нервов. Ионы получают возможность перемещаться по градиенту концентрации.
После чего, поток ионов натрия становится выше, чем калия. Это действие обуславливает потенциал действия. Нервы проводят через себя электрический ток.
Остались вопросы?
Нервные импульсы поступают непосредственно к мышцам и железам по1)аксонам вставочных. Найди верный ответ на вопрос«Нервные импульсы поступают к мышцам, железам и другим рабочим органам по 1) белому веществу спинного мозга 2) вставочным нейронам 3) » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся. Нервные импульсы поступают непосредственно к железам по. проведение нервного импульса в ЦНС.
Нервные импульсы поступают непосредственно к железам по 1) аксонам…
Они собирают, анализируют информацию, полученную от чувствительных нейронов, и принимают решение о том, каким образом отреагировать на изменившиеся условия. Классификация нервной системы по месторасположению Нервную систему по месту расположения подразделяют на центральную и периферическую. К центральной нервной системе относят спинной и головной мозг, к периферической — нервы, нервные узлы и нервные окончания. Нервы — пучки длинных отростков, покрытые общей оболочкой, выходящие за пределы головного и спинного мозга. Если информация по нерву идет от рецепторов в головной или спинной мозг, то такие нервы называют чувствительными, центростремительными или афферентными. Эти нервы состоят из дендритов чувствительных нейронов. Если информация по нерву идет из центральной нервной системы к исполнительным органам мышцам или железам , то нерв называется двигательным или эфферентным.
Двигательные нервы образованы аксонами двигательных нейронов. В смешанных нервах проходят как чувствительные, так и двигательные волокна. Нервные узлы — это скопления тел нейронов вне ЦНС. Нервные окончания — разветвления отростков нейронов, служат для приема или передачи сигналов. Классификация нервной системы по функциям По функциям нервная система подразделяется на соматическую и вегетативную автономную. Соматическая нервная система от греческого «сома» — «тело» регулирует работу скелетных мышц.
Благодаря ей организм через органы чувств поддерживает связь с внешней средой. С ее помощью мы можем произвольно по собственному желанию управлять деятельностью скелетной мускулатуры. Деятельностью внутренних органов, реакциями обмена веществ, поддержанием постоянства внутренней среды организма человека управляет автономная или вегетативная нервная система. Ее название происходит от греческого слова «автономия» — самоуправление. Работа этой системы не подчиняется воле человека. Нельзя, например, по желанию ускорить процесс пищеварения или сузить кровеносные сосуды.
Автономная нервная система Автономная система представлена двумя отделами — симпатическим и парасимпатическим.
Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами. Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее. Моторная функция тонкого кишечника стимулируется рефлекторно при возбуждении рецепторов различных отделов желудочно-кишечного тракта.
Рефлекторно стимулирует моторную функцию тонкого кишечника акт еды. Гуморальная регуляция моторной функции тонкого кишечника. Стимулирующее влияние на моторную функцию кишечника оказывают биологически активные вещества серотонин, гистамин, брадикинин и др. Тормозят двигательную активность кишечника гормоны мозгового слоя надпочечников — адреналин и норадреналин.
Вследствие этого такие эмоциональные состояния организма, как страх, испуг, гнев, злость, ярость и т. Существенное значение в регуляции моторной функции кишечника имеют физико-химические свойства пищи. Грубая пища, содержащая большое количество клетчатки, овощи стимулируют двигательную активность кишечника. Составные части пищеварительных соков — хлористоводородная кислота, желчные кислоты — также усиливают моторную функцию кишечника.
При отсутствии пищеварения илеоцекальный сфинктер закрыт. В результате пищевая кашица небольшими порциями поступает в слепую кишку. Основной функцией проксимальной части толстых кишок является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма.
Всасывание питательных веществ в толстом кишечнике незначительно. Существенная роль в процессе пищеварения принадлежит микрофлоре — кишечной палочке и бактериям молочнокислого брожения. Бактерии в процессе своей жизнедеятельности выполняют полезные для организма функции. Бактерии молочнокислого брожения образуют молочную кислоту, которая обладает антисептическим свойством.
Бактерии синтезируют витамины группы В, витамин К, пантотеновую и амидникотиновую кислоты, лактофлавин. Микроорганизмы подавляют размножение патогенных микробов. Отрицательная роль микроорганизмов кишечника состоит в том, что они образуют эндотоксины, вызывают брожение и гнилостные процессы с образованием ядовитых веществ индол, скатол, фенол и в определенных случаях могут стать причиной заболеваний. Моторная функция толстого кишечника.
Моторная функция толстого кишечника обеспечивает накапливание каловых масс и периодическое их удаление из организма. Кроме того, моторная активность кишечника способствует всасыванию воды. В толстом кишечнике наблюдаются перистальтические, антиперистальтические и маятникообразные движения. Все они осуществляются медленно.
Обеспечивают перемешивание, разминание содержимого, способствуют его сгущению и всасыванию воды. Толстому кишечнику присущ особый вид сокращения, который получил название масс-сокращение. Возникает масс-перистальтика редко, до 3—4 раз в сутки. Сокращения захватывают большую часть толстой кишки и обеспечивают быстрое опорожнение значительных ее участков.
Регуляция моторной функции толстого кишечника. Толстый кишечник имеет интрамуральную и экстрамуральную иннервацию. Последняя представлена симпатическими нервами, которые выходят из верхнего и нижнего брыжеечных сплетений, и парасимпатическими, входящими в состав блуждающих и тазового нервов. Рефлекторные воздействия на двигательную активность толстого кишечника осуществляются во время еды, в результате возбуждения хемо- и механорецепторов желудка, двенадцатиперстной кишки и тонкого кишечника.
Моторная функция толстого кишечника определяется и характером принимаемой пищи. Чем больше в пище клетчатки, тем выраженнее моторная активность толстого кишечника. Формированию кала способствуют комочки слизи кишечного сока, которые склеивают непереваренные частицы пищи Дефекация — сложнорефлекторный акт опорожнения дистального отдела толстой кишки через задний проход. Дефекация наступает при растягивании прямой кишки каловыми массами.
Осуществлению дефекации способствуют сокращения мышц диафрагмы и передней брюшной стенки, мышцы, поднимающей задний проход. Все это ведет к уменьшению объема брюшной полости и повышению внутрибрюшного давления. Центр рефлекса дефекации находится в пояснично-крестцовом отделе спинного мозга. Он обеспечивает непроизвольный акт дефекации.
На этот центр оказывают влияние продолговатый мозг, гипоталамус, кора большого мозга. Нервные импульсы, поступающие от этих отделов центральной нервной системы к центру рефлекса дефекации, могут ускорить или замедлить акт дефекации. Всасывание — универсальный физиологический процесс, который связан с переходом разного рода веществ через слой каких-либо клеток во внутреннюю среду организма. Благодаря всасыванию в желудочно-кишечном тракте организм получает всё необходимое для жизнедеятельности.
Всасывание происходит на всем протяжении пищеварительного канала, но основным местом является тонкий кишечник. В ротовой полости всасываются некоторые лекарственные вещества. В желудке всасываются вода, минеральные соли, моносахара, алкоголь, лекарственные вещества, гормоны, альбумозы, пептоны. В двенадцатиперстной кишке также осуществляется всасывание воды, минеральных веществ, гормонов и продуктов расщепления белка.
Основной процесс всасывания происходит в тонком кишечнике. Углеводы всасываются в кровь в виде глюкозы и отчасти в виде других моносахаров галактоза, фруктоза. Белки всасываются в кровь в виде аминокислот и простых пептидов. Нейтральные жиры расщепляются ферментами до глицерина и жирных кислот.
Вода, минеральные соли, витамины всасываются в кровь на всем протяжении тонкого кишечника. В толстом кишечнике также происходит всасывание воды и минеральных солей. Структурные и функциональные особенности тонкого кишечника, обеспечивающие его всасывательную активность. В слизистой оболочке тонкого кишечника обнаруживаются многочисленные круговые складки складки Керкринга , огромное количество ворсинок и микроворсинок.
В центре каждой ворсинки имеется лимфатический сосуд млечное пространство или синус ворсинки.
Химическая передача нервного импульса Относится к «Сборник статей по исследованиям психических явлений» ВВЕДЕНИЕ Проблема передачи информации в организме, в частности в нервной системе, является одним из ключевых вопросов нейробиологии и медицины. Эта тема актуальна на рубеже двух тысячелетий, поэтому не случайно Нобелевская Премия в области медицины за 2000 год досталась ученым, которые внесли большой вклад в исследование данной области. Передача импульса в нервной системе происходит в несколько этапов: проведение по нервному волокну электрического импульса; процесс химической передачи в синапсе с помощью нейромедиатора либо процесс в электрическом синапсе ; проведение электрического импульса по следующему нервному волокну, либо реакция мышечной сокращение миоцита или железистой ткани экзоцитоз секрета. С физиологической и биохимической точки зрения второй этап является наиболее сложным. Он представляет собой цепь процессов, суть которых сводится к преобразованию электрического сигнала в химический, а затем — химического в электрический. Данные о периферической нервной системе получить было достаточно легко. Любой орган можно изолировать, стимулировать его нервный аппарат, собирать и анализировать венозную кровь или перфузат. В ЦНС совсем другое положение: масса волокон и нейронов, "упакованных" глиальными клетками, кровоснабжение которых точно установить невозможно, а также "центры", имеющие много различных входов и локализуемые различно разными физиологами и анатомами.
Обычными методами, ставшими почти классическими, было показано, что в ЦНС имеются ацетилхолин, катехоламины и холинэстеразы. Эта трудоёмкая работа дала возможность нарисовать своего рода химическую карту головного мозга. Ацетилхолин обнаруживается почти везде, но в особенно значительных количествах он содержится в коре головного мозга; с помощью высокоспецифичных и чувствительных тестов обнаружили присутствие ацетилхолинэстеразы в некоторых синапсах, но показали также, что её очень мало в других. Во многих центрах был обнаружен норадреналин, но его непосредственный предшественник — дофамин был найден в значительных количествах только в определённых областях. В различных центрах был идентифицирован также серотонин. Нейронная теория, разработанная Рамон-и-Кахалом, знаменитым испанским гистологом, подтверждена биохимически. Нейрон, его аксон и окончания синтезируют медиатор, который хранится в особых пузырьках, видимых с помощью электронного микроскопа. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Пузырьки образуются в теле нейрона, заполняются молекулами медиатора и транспортируются вдоль аксона к нервному окончанию.
Химическими посредниками в процессе передачи нервного импульса являются биологически активные вещества, выделяемые нервными окончаниями. Эти вещества называются нейромедиаторы синоним — нейротрансмиттер. Для краткости можно употреблять термин медиаторы. Медиаторы были открыты австрийским ученым Лёви в результате достаточно простого опыта. В физиологический раствор он поместил два изолированных сердца лягушек и соединил их между собой тонкой трубочкой. Раствор Рингера, перфузируемый в одно сердце, переходил во второе. При раздражении симпатического нерва первого сердца, второе также начинало сокращаться. Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва. Сначала были открыты адреналин и ацетилхолин.
В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P.
Возникла гипотеза о том, что раздражение нервов влечёт появление в перфузате некоторых веществ, которые оказывают действие на другое сердце, подобное эффекту раздражения симпатического нерва. Сначала были открыты адреналин и ацетилхолин. В настоящее время открыто более 30 медиаторов, среди которых норадреналин, серотонин, мелатонин, гистамин, дофамин, октопамин, АТФ, ГАМК, глицин, глутамат, аспартат, эндорфины, энкефалины, вазопрессин, окситоцин, вещество P.
По химическому составу и механизму действия медиаторы сходны с гормонами. Подробнее медиаторы будут рассмотрены ниже. Нейроны имеют биохимический аппарат, общий со всеми остальными живыми клетками, в том числе способность генерировать химическую энергию путём окисления пищеварительных веществ, а также восстанавливать и сохранять свою целостность. Нейроны обладают кроме того специфическими свойствами, которых лишены другие клетки и которые связаны с особой функцией нейронов как передатчиков нервных импульсов: необходимость в поддержании ионных градиентов, что требует большой затраты энергии, и свойства, связанные со способностью нейронов производить и выделять набор химических передатчиков — нейромедиаторов.
В синапсах — микроскопических участках где тесно соприкасаются окончание одного нейрона и воспринимающая поверхность другого, приход импульса вызывает внезапное выделение молекул медиатора из окончания. Затем эти молекулы диффундируют через заполненную жидкостью щель между двумя клетками и воздействуют на специфические рецепторы постсинаптической мембраны, изменяя при этом электрическую активность воспринимающего нейрона. За последние годы достигнуты значительные успехи в познании различных медиаторных веществ, в составлении карт, их распределении по мозгу и в выяснении молекулярных процессов синаптической передачи. Такими исследованиями установлено, что действие многих лекарственных веществ и нейротоксинов на поведение основано на их способности прерывать или модифицировать химическую передачу от нейрона к нейрону.
В них есть также указания на то, что причинами психических болезней, возможно, окажутся в конечном счёте нарушения функции специфических медиаторных систем мозга. Методика исследования функционального химизма мозга очень сложна, так как медиаторы содержатся в ничтожно малых количествах, ткань мозга структурно и химически очень сложна и выделить для исследования определённую медиаторную структуру нелегко. Одну из методик разработали В. Уиттейкер V.
Whittaker и Э. При осторожном разрушении ткани мозга путём гомогенизации в растворе сахарозы многие нервные окончания отрываются от своих аксонов и образуют особые замкнутые частицы, названные "синаптосомами". Синаптосомы содержат механизмы синтеза, хранения, высвобождения и инактивации медиатора, связанные с нервным окончанием; центрифугированием можно очистить от других компонентов нейрона. Эта методика дала нейрохимикам возможность изучать механизмы синаптической передачи в пробирке.
Эти методики показали, что медиаторы, расположены не диффузно по всей ткани мозга, а в высшей степени локально в ограниченных центрах и путях — составлены карты для многих медиаторов. Например, многие клетки мозга, содержащие норадреналин сосредоточены в стволе и образуют скопление, известное как locus coeruleus. Аксоны этих нейронов сильно ветвятся и проецируются в различные области — гипоталамус, мозжечок и передний мозг. Норадреналиновые нейроны причастны к поддержанию бодрствования, к системе поощрения центр удовольствия , к сновидениям и к регуляции настроения.
Нейроны, содержащие моноамин дофамин сосредоточены в substantia nigra и в вентральной покрышку. Нейроны, содержащие дофамин посылают свои аксоны в передний мозг эмоции и в область полосатого тела регуляция сложных движений. Деградация дофаминовых волокон в данной части мозга приводит к ригидности мышц и тремору, симптомам, характерным для болезни Паркинсона. Избыток дофамина в лимбической системе переднего мозга, возможно причастен к шизофрении.
Нервные импульсы поступают непосредственно
Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Связь между нейронами. Нейронные механизмы. Схема рефлекторной дуги. Рефлекторная дуга структура двигательной нервной клетки.
Строение рефлекторной дуги спинного мозга. Схема Рецептор чувствительный Нейрон. Рецептор чувствительный Нейрон ЦНС схема. Схема спинного мозга чувствительный Нейрон. Тип нейрона 1 двигательный 2 вставочный. Чувствительный Нейрон ЦНС вставочный.
Схема передачи двигательных импульсов между нейронами. Нейромедиаторы стресса. Нейротрансмиттеры и нейромедиаторы. Нейромедиаторы нервная клетка. Строение нерва дендрит. Дендрит тело нейрона Аксон синапс.
Нервная ткань Аксон дендрит. Начальный сегмент аксона функции. Рефлекс отдергивания руки от горячего предмета рефлекторная дуга. Схема рефлекторной дуги отдергивания руки от горячего предмета. Схема рефлекторной дуги отдергивания руки. Схема рефлекторной дуги двигательного рефлекса.
Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Звенья рефлекторной дуги 5 звеньев. Рефлекс звенья рефлекторной дуги.
Рефлекторная дуга 5 звеньев рефлекторной дуги. Таблица звенья рефлекторной дуги функции звенья. Нейронные головного мозга. Нейронные связи в мозге. Нейропластичность мозга. Вставочный Нейрон строение.
Вставочные Нейроны передают нервные импульсы. Вставочный Нейрон схема. Чувствительный Нейрон Импульс вставочный Нейрон. Передача нервного импульса. Передача импульса в нервной системе. Движение нервного импульса по нейрону.
Рефлекторные механизмы регуляции дыхания. Рефлекторная саморегуляция вдоха и выдоха. Рефлекторная регуляция механизм регуляции. Рефлексы регуляции дыхания. Строение рефлекторной дуги мигательного рефлекса. Схема рефлекторной дуги мигательного рефлекса.
Дуга мигательного рефлекса физиология. Нервные импульсы от рецепторов. Синапс место контакта между двумя нейронами. Передача импульса между нервными клетками. Нейроны передача импульсов. Передача импульса между нейронами.
Рефлекторная дуга внутри ЦНС. Рефлекторная дуга и ее компоненты. Рефлекторная дуга путь рефлекса. Рефлекторная дуга начинается с рецепторов. Ответную реакцию организма на раздражение осуществляемую. Ответная реакция организма осуществляемая ЦНС.
Ответные реакции на раздражитель. Ответная реакция на раздражение. Продолговатый мозг центры регуляции. Регуляция нервной системы. Нервные центры продолговатого мозга. Продолговатый мозг нервная система.
Супрахиазменные ядра гипоталамуса. Супрахиазматическое ядро гипоталамуса строение. Супрахиазмальное ядро головного мозга.. Ретиногипоталамический тракт.
Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах. Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык. На вопросы могут отвечать также любые пользователи, в том числе и педагоги.
Эта функция способствует перемешиванию, размельчению и продвижению содержимого желудка в двенадцатиперстную кишку. Перистальтические движения осуществляются за счет сокращения циркулярных мышц желудка. Волна сокращения начинается в области кардиального отдела и распространяется до сфинктера привратника.
Перистальтические волны возникают у человека с частотой 3 раза в 1 мин. Систолические сокращения связаны с сокращением мышц антральной части пилорического отдела желудка. Эти движения обеспечивают переход значительной части содержимого желудка в двенадцатиперстную кишку. Тонические сокращения — неперистальтические движения желудка, обусловленные изменением тонуса мышц. Они способствуют перемещению содержимого желудка. При пустом желудке возникают периодические его сокращения голодная моторика , которые сменяются состоянием периодом покоя. Этот вид сокращения мыщц желудка связан с ощущением голода. У человека продолжительность периодов работы желудка составляет 20 - 50 мин, периоды покоя длятся 45—90 мин и более. Периодические сокращения желудка прекращаются с началом еды и пищеварения. Кроме указанных видов сокращения в желудке различают антиперистальтику, которая наблюдается при акте рвоты.
Регуляция моторной функции желудка. Осуществляется за счет нейрогуморальных механизмов. Блуждающие нервы возбуждают моторную активность желудка, симпатические в большинстве случаев угнетают. На моторику желудка оказывают влияние гуморальные факторы. Возбуждают сокращение гладкой мускулатуры желудка инсулин, гастрин, гистамин, ионы Физиология пищеварения 2 Лекция 13 Эвакуация пищевой кашицы в двенадцатиперстную кишку Содержимое желудка переходит в двенадцатиперстную кишку только тогда, когда его консистенция становится жидкой или полужидкой. Пища находится в желудке от 6 до 10 ч. Сокращения пилорического отдела желудка способствуют передвижению пищевой кашицы к сфинктеру привратника. Возбуждение его рецепторов через блуждающие нервы приводит к расслаблению и открытию сфинктера. Раздражение же содержимым желудка рецепторов слизистой оболочки двенадцатиперстной кишки обеспечивает возбуждение симпатических нервов. Рефлекторный механизм вызывает закрытие сфинктера привратника за счет сокращения его кольцевых мышц.
Сфинктер будет закрыт до тех пор, пока химус волной перистальтики не продвинется дальше по двенадцатиперстной кишке. Регуляция деятельности сфинктера привратника осуществляется также хлористоводородной кислотой. Открытие сфинктера привратника происходит вследствие раздражения слизистой оболочки пилорической части желудка хлористоводородной кислотой желудочного сока. Часть пищи в это время переходит в двенадцатиперстную кишку и реакция ее содержимого становится кислой вместо щелочной. Здесь начинается второй этап пищеварения, который имеет ряд особенностей. В процессе пищеварения в двенадцатиперстной кишке участвуют панкреатический поджелудочный сок, желчь и кишечный сок, которые имеют выраженную щелочную реакцию. В состав поджелудочного и кишечного соков входят ферменты, расщепляющие белки, жиры, углеводы. Состав, свойства и значение панкреатического сока. У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока. В состав поджелудочного сока входят органические протеолитические, амилолитические, липолитические ферменты и неорганические вещества.
К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид эластаза и карбоксипептидазы. Под их влиянием нативные белки и продукты их распада высокомолекулярные полипептиды расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания аутолиз. К амилолитическим ферментам поджелудочного сока относятся амилаза, расщепляющая углеводы до мальтозы, мальтаза, превращающая солодовый сахар мальто зу в глюкозу, лактаза, расщепляющая молочный сахар лактозу до моносахаридов. В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот. Фосфолипаза А действует на продукты расщепления жиров. Регуляция секреции поджелудочной железы Секреция поджелудочного сока протекает в три фазы: сложнорефлекторную мозговую , желудочную и кишечную. Сложнорефлекторная фаза осуществляется на основе условных и безусловных рефлексов.
Вид пищи, ее запах, звуковые раздражения, связанные с приготовлением пищи, разговор о вкусной пище или воспоминания о ней при наличии аппетита приводят к отделению поджелудочного сока. В этом случае выделение сока происходит под влиянием нервных импульсов, идущих от коры большого мозга к поджелудочной железе, то есть условнорефлекторно. Безусловнорефлекторная секреция поджелудочного сока происходит при раздражении пищей рецепторов ротовой полости и глотки. Первая фаза секреции поджелудочного сока непродолжительная, сока выделяется мало, но он содержит значительное количество органических веществ, в том числе ферментов. Желудочная фаза секреции панкреатического сока связана с раздражением рецепторов желудка поступившей пищей. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов. Под влиянием нервных импульсов нейроны ядер блуждающих нервов возбуждаются. Это возбуждение по эфферентным секреторным волокнам блуждающего нерва передается к поджелудочной железе и вызывает отделение панкреатического сока. Желудочная фаза секреции панкреатического сока обеспечивается также гормоном гастрином, который действует непосредственно на секреторные клетки поджелудочной железы. Сок, выделяющийся во вторую фазу, как и в первую, богат органическими веществами, но содержит меньше воды и солей.
Кишечная фаза секреции поджелудочного сока осуществляется при участии нервного и гуморального механизмов. Под влиянием кислого содержимого желудка, поступившего в двенадцатиперстную кишку, и продуктов частичного гидролиза питательных веществ происходит возбуждение рецепторов, которое передается в центральную нервную систему. По блуждающим нервам нервные импульсы от центральной нервной системы поступают к поджелудочной железе и обеспечивают образование и выделение панкреатического сока. Гуморальная регуляция секреторной активности поджелудочной железы. В слизистой оболочке двенадцатиперстной кишки и верхнем отделе тонкого кишечника находится особое вещество секретин , которое активируется хлористоводородной кислотой и гуморально стимулирует секрецию поджелудочной железы. В настоящее время установлено участие и других биологически активных веществ, образующихся в слизистой оболочке желудочно-кишечного тракта, в регуляции секреторной активности поджелудочной железы. К ним относятся холецистокинин панкреозимин и уропанкреозимин.
В гипофизе вырабатывается не менее десяти различных гормонов белковой и полипептидной природы. Из коркового вещества надпочечных желез выделено около пятидесяти стероидных соединений, многие из которых обладают гормональной активностью. Одни эндокринные заболевания обязаны возникновением усилению или ослаблению продукции гормонов, вырабатываемых данной железой. Например, некроз аденогипофиза передней доли гипофиза , возникающий вследствие воспалительного процесса или кровоизлияния, ведет к прекращению выработки всех его гормонов тотальная аденогипофизарная недостаточность. Для других эндокринных расстройств характерным является изолированное нарушение секреции гормона, которое обозначают как гипер- или гипофункцию. Все звенья эндокринной системы функционируют в тесном взаимодействии. Нарушение функции одной эндокринной железы приводит к цепной реакции гормональных сдвигов. Так возникают сопряженные эндокринные расстройства — недостаточность половых желез при сахарном диабете, функциональное перенапряжение, а затем истощение 3-клеток панкреатических островков при гиперфункции коркового или мозгового вещества надпочечных желез. Удаление щитовидной железы влечет за собой угнетение функциональной активности половых и коркового вещества надпочечных желез. После кастрации развивается гипертрофия коркового вещества надпочечных желез. Ответная реакция эндокринной железы на первичное повреждение звена эндокринной системы является компенсаторной и направлена на сохранение гомеостаза. Действие гормонов на эффекторные органы-мишени реализуется по трем направлениям: влияние на биологические мембраны; стимуляция или угнетение активности ферментов; влияние на генетический аппарат клетки. Нарушение гормональной рецепции в клетках органов-мишеней изменяет биологические эффекты гормонов. Например, при врожденном отсутствии циторецепторов андрогенов развивается синдром тестикулярной феминизации. Он характеризуется появлением женских вторичных половых признаков у лиц с мужским генотипом и наличием яичек, продуцирующих достаточное количество тестостерона. Идиопатический гирсутизм Гирсутизм — избыточный рост волос по мужскому типу у женщин женщин связывают с повышенной чувствительностью волосяных фолликулов к эндогенным андрогенам. Основные свойства гормонов: биологическая активность несмотря на невысокую концентрацию; удалённость действия. Если гормон образуется в одних клетках, то это не означает, что он регулирует именно эти клетки; ограниченность действия. Каждый гормон играет свою строго отведённую ему роль. Механизм действия гормонов Действие гормонов направлено на деятельность ферментов или на процессы проницаемости клеточных мембран. Так, инсулин влияет на проницаемость мембран клеток для глюкозы. Механизм действия гормонов на активность ферментов - гормон взаимодействует с определенным участком клеточной мембраны - рецептором. Сигнал об этом передается внутрь клетки и приводит к образованию органического соединения, производного АТФ, выполняющего роль вторичного посредника, который вызывает активацию ферментов. У каждого гормона есть свои клетки, находящиеся в органах и тканях, к которым они стремятся. Другие гормоны могут растворяться в воде, поэтому для них нет надобности присоединяться к белкам-носителям. Эти вещества оказывают воздействие на клетки и тела в момент соединения с нейронами, находящимся внутри клеточного ядра, а также в цитоплазме и на плоскости мембраны. Для их работы необходимо посредническое звено, которое обеспечивает ответную реакцию от клетки. Они представлены ионами кальция. Поэтому недостаток кальция в организме оказывает неблагоприятное воздействие на гормоны в организме человека. После того, как гормон передал сигнал, он расщепляется. Расщепляться он может в клетке, к которой перемещался; в крови; в печени. Либо может выводиться из организма вместе с мочой. Химический состав гормонов 1. Половые классифицируются на: эстроген — женский и андрогенов — мужской. Разновидность андрогенов представлена их видами: тестостерон, андростендион и другие. В состав стероидов входят гормоны: кортизол, кортикостерон и альдостерон. Соматотропин - разновидность белкового гормона. В их состав можно отнести: тироксин, адреналин и норадреналин. Пептидные гормоны сложнее остальных по своему составу. Вазопрессин — это гормон, сформировавшийся в гипофизе. Глюкагон, находящийся в поджелудочной железе. Гормоны вырабатываются не только клетками желез внутренней секреции, но и специализированными клетками, расположенными в органах, формально не относящихся к гормонам и эндокринной системе. Тканевые гормоны — имеют «местное» значение, оказывая влияние не на весь организм в целом, а на процессы регуляции деятельности органа или клетки где они образуются, рассеяны по органам, располагаются поодиночке или группами. Обладают действием на собственные клетки паракринное , из которых эти вещества секретируются и оказывают действие на соседние клетки дистанционное в данном органе. Эндокринные клетки встречаются в дыхательной, мочеполовой, ССС, слюнных железах, органах чувств и тд. Эти клетки имеют широкое основание и более узкую верхушечную часть, которая в одних случаях доходит до просвета органа, а в других - с ним не контактирует. Общее количество эндокринных клеток превышает в несколько раз число клеток эндокринных органов. Тканевые гормоны пищеварительного тракта. Эндокринных клеток особенно много в стенках желудка и кишечника — энтероэндокринные клетки. Энтероэндокринная система регулирует множество функций пищеварительной системы: гастрин — стимулирует секрецию соляной кислоты, секретин - стимулирует выделение бикарбоната и воды из секреторных клеток 12пёрстной кишки и поджелудочной железы, холецистокинин — панкреозимин — стимулирует сокращения желчного пузыря и усиливает желчеотделение в печени и выделение пищеварительных ферментов поджелудочной железой. Эндокриноциты стенки пищеварительного тракта образуют гастро-энтеропанкреатическую систему эндокринных клеток, оказывающую регулирующее влияние на секрецию пищеварительных желёз, моторику стенок тонкой и толстой кишок. Они синтезируют и выделяют ряд пептидов и биоаминов, играющих роль нейромедиаторов и гормонов, влияющих на моторику гладкомышечных органов, секрецию экзо- и эндокринных желёз. Тканевые гормоны, влияющие на сосудистую систему. Кроме адреналина, норадреналина, вазопрессина, АД может измениться при действии ряда биоактивных веществ. К ним относится ренин, вырабатываемый юкстагломерулярным аппаратом почки, который стимулирует сокращение гладких мышц артериол. Из подчелюстной слюнной железы, легких и поджелудочной железы выделено активное вещество — калликреин, который вызывает расщепление одной из фракций глобулина плазмы крови, вследствие чего образуется гормон каллидин - вызывает расслабление гладкой мускулатуры артериол, понижает АД. Сосудорасширяющим действием обладает полипептид брадикинин. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при согревании. Кроме расширения сосудов, вызывает ощущение боли, являясь раздражителем болевых рецепторов. Сходным действием обладает и гистамин, возникающий в коже при различных, в том числе и болевых, ее раздражениях, в желудке во время пищеварения, в мышцах при их работе. Появление гистамина является одной из причин расширения артериол и капилляров в работающих мышцах, которое обеспечивает усиленное их кровоснабжение. Гистамин при действии на болевые рецепторы, так же, как и брадикинин, участвует в возникновении чувства боли и зуда. Гистамин увеличивает проницаемость капиллярной стенки и способствует выходу транссудации воды и белков плазмы в ткани. К числу веществ, суживающих артериолы и повышающих артериальное давление, принадлежит серотонин. Он образуется в нервной ткани, в кишечнике, эпифизе, в клетках ретикуло-эндотелия, в кровяных пластинках. Серотонин обладает широким спектром действия, принимает участие в передаче нервных импульсов в центральной нервной системе. Другие биологически активные вещества. Имеется еще ряд тканевых гормонов, принимающих участие в регуляции различных физиологических процессов. В экстрактах подчелюстных желез -паротин — вещество, стимулирующее трофику питание хрящевой ткани, развитие дентина зубов и костной ткани. До наступления половой зрелости зобная железа выделяет вещество, тормозящее деятельность щитовидной и половых желез. Эндокринные железы и их гормоны тесно связаны с нервной системой, образуя общий механизм регуляции. Регулирующее влияние ЦНС на физиологическую активность желёз внутренней секреции осуществляется через гипоталамус. Часть промежуточного мозга — гипоталамус — и отходящий от его основания гипофиз анатомически и функционально составляют единое целое — гипоталамо-гипофизарную эндокринную систему. Клетки гипоталамуса обладают двойной функцией. Во-первых, они выполняют те же функции, что и любая другая нервная клетка, а во-вторых, обладают способностью секретировать и выделять биологически активные вещества — нейрогормоны. Гипоталамус и передняя доля гипофиза связаны общей сосудистой системой, имеющей двойную капиллярную сеть. Первая располагается в районе срединного возвышения гипоталамуса, а вторая — в передней доле гипофиза. Ее называют воротной системой гипофиза. Гипоталамус связан через афферентные пути с другими отделами ЦНС: со спинным, продолговатым и средним мозгом, таламусом, базальными ганглиям, полями коры больших полушарий и др. Благодаря этим связям в гипоталамус поступает информация со всех отделов организма: сигналы от экстеро- и интерорецепторов идут в ЦНС через гипоталамус и передаются эндокринным органам. Так, нейросекреторные клетки гипоталамуса превращают афферентные стимулы в гуморальные факторы с физиологической активностью рилизинг-гормоны, или либерины , стимулирующие синтез и высвобождение гормонов гипофиза. А гормоны, тормозящие эти процессы, называются ингибирующими гормонами, или сатинами. Гипоталамические рилизинг-гормоны влияют на функцию клеток гипофиза, которые вырабатывают ряд гормонов, влияющих на синтез и секрецию гормонов периферических эндокринных желёз. А те уже — на органы или ткани-мишени. Все уровни этой системы тесно связаны между собой системой обратной связи. Разные гормоны оказывают воздействие и на функции отделов ЦНС. Важную роль в регуляции функции эндокринных желёз играют медиаторы симпатических и парасимпатических нервных волокон. Однако, имеются железы внутренней секреции паращитовидная, поджелудочная железы , которые регулируются за счёт влияния уровня гормонов-антагонистов, а также в результате изменения концентрации тех метаболитов веществ , уровень которых регулируется этими гормонами. Часть гормонов, вырабатываемых в гипоталамусе антидиуретический гормон, окситоцин , гормоны гипофиза, непосредственно влияют на органы и ткани-мишени. Железы внутренней секреции — это железы, не имеющие выводных протоков и выделяющие вырабатываемые ими гормоны непосредственно в кровь, лимфу и межтканевую жидкость. Имеют общие анатомо-физиологические особенности: - основная ткань почти всех эндокринных желез - железистый эпителий; - железы окружены густой сетью лимфатических и кровеносных капилляров; - гормоны, вырабатываемые в клетках желез, образуются в малых количествах и обладают повышенной биологической активностью; - иннервируются большим количеством нервных волокон, преимущественно вегетативной нервной системы. К железам внутренней секреции относятся: гипофиз, гипоталамус, эпифиз, щитовидная железа, паращитовидные железы, зобная железа, поджелудочная железа, надпочечники и половые железы. Гипоталамус и отходящий от его основания гипофиз анатомически и функционально составляют единое целое — гипоталамо-гипофизарную эндокринную систему. Гипоталамус образует нижние отделы промежуточного мозга и участвует в образовании дна III желудочка. К гипоталамусу относятся зрительный перекрест, зрительный тракт, серый бугор с воронкой, а также сосцевидные тела. Кзади от зрительного перекреста находится серый бугор, позади которого лежат сосцевидные тела, а по бокам - зрительные тракты. Книзу серый бугор переходит в воронку, которая соединяется с гипофизом. Стенки серого бугра образованы тонкой пластинкой серого вещества, содержащего серобугорные ядра. Co стороны полости III желудочка в область серого бугра и далее в воронку вдается суживающееся углубление воронки. В гипоталамусе различают три основные гипоталамические области - скопления различных по форме и размерам групп нервных клеток: переднюю, промежуточную и заднюю. Скопления нервных клеток в этих областях образуют более 30 пар ядер гипоталамуса. Нервные клетки ядер гипоталамуса обладают способностью вырабатывать секрет нейросекрет , который по отросткам этих же клеток может транспортироваться в гипофиз. Такие ядра получили название нейросекреторных ядер гипоталамуса. В передней области гипоталамуса находятся супраоптическое надзрительное ядро и паравентрикулярные ядра. Отростки клеток этих ядер образуют гипоталамо-гипофизарный пучок, заканчивающийся в задней доле гипофиза, где изакнчиваются на стенках капилляров. Ядра гипоталамуса связаны сложно устроенной системой афферентных и эфферентных путей. Гипоталамус оказывает регулирующее воздействие на многочисленные вегетативные функции организма. Нейросекрет ядер гипоталамуса способен влиять на функции железистых клеток гипофиза, усиливая или тормозя секрецию ряда гормонов, которые в свою очередь регулируют деятельность других желез внутренней секреции. Секреция ядер гипоталамуса регулируется ЦНС и осуществляется лимбической системой миндалевидные ядра и гиппокамп и ретикулярной формацией среднего мозга. Также на его деятельность оказывают влияние импульсы, поступающие от шейных узлов симпатических стволов, и гормоны шишковидной железы. Наличие нервных и гуморальных связей гипоталамических ядер и гипофиза позволило объединить их в гипоталамо-гипофизарную систему. Гипоталамус - важная часть лимбической и ретикулярной систем мозга, однако, он сохраняет свои специфические «входы» в виде особой чувствительности к сдвигам внутренней среды. Гормоны, секретируемые гипоталамусом 1. Кортикотропин-рилизинг-гормон: CRH отвечает за регулирование метаболических и иммунных реакций организма. Стимулирует высвобождение адренокортикотропного гормона АКТГ из гипофиза, который стимулирует надпочечники к высвобождению кортизола, гормона стресса. Участвует в реакции организма на стресс и играет роль в воспалении и иммунной функции. ТТГ стимулирует щитовидную железу вырабатывать и высвобождать гормоны щитовидной железы, которые необходимы для регуляции обмена веществ и правильного функционирования органов: сердце, мышцы и мозг. Гонадотропин-рилизинг-гормон: стимулирует гипофиз к высвобождению гонадотропинов, в том числе лютеинизирующего гормона ЛГ и фолликулостимулирующего гормона ФСГ. ЛГ и ФСГ имеют решающее значение для регуляции репродуктивных функций, включая созревание яйцеклеток у женщин и выработку тестостерона у мужчин. Окситоцин - играет ключевую роль в облегчении родов, стимулируя сокращения матки. Важен для лактации - стимулирует сокращение клеток, окружающих молочные железы в груди, способствуя притоку молока. Участвует в социальных связях, материнском поведении, регулировании циклов сна и температуры тела. Соматостатин - гормон, ингибирующий гормон роста, регулирует эндокринную систему. Ингибирует высвобождение гормона роста из гипофиза, модулируя рост и развитие организма. Средняя область гипоталамуса стимулирует высвобождение гормона роста. Гормон играет важную роль в стимулировании секреции гормона роста гипофизом. Гормон роста необходим для роста, развития и поддержания различных тканей и органов в организме. Гипоталамические расстройства Гипоталамические расстройства могут возникать при наличии нарушений или дисфункций в гипоталамусе, приводящих к дисбалансу секреции гормонов и различных физиологических процессов. Вот некоторые распространенные причины и симптомы нарушений гипоталамуса: Причины гипоталамических расстройств: Травмы головы: черепно-мозговые травмы, поражающие гипоталамус, могут нарушить его нормальное функционирование. Генетические нарушения: определенные генетические состояния могут привести к аномалиям развития или функции гипоталамуса. Опухоли в гипоталамусе. Доброкачественные или злокачественные опухоли, развивающиеся в гипоталамусе, могут нарушать выработку и регуляцию гормонов. Расстройства пищевого поведения. Расстройства пищевого поведения, такие как нервная анорексия или булимия, могут воздействовать на гипоталамус из-за резких изменений в рационе питания. Операции на головном мозге.
Задание №9 ОГЭ по Биологии
Добавить в избранное 0. Вопрос пользователя. Нервные импульсы поступают непосредственно к железам по. Ответ эксперта. аксонам двигательных нейронов. Слайд 6 Нервные импульсы поступают непосредственно к железам по. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь. Нервные импульсы передаются в мозг по нейронам. Импульсация в симпатической нервной системе уменьшается и меньше импульсов поступает к сердцу, сосудам и надпочечникам, что приводит к падению АД. Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов 2. аксонам вставочных мозга 4. белому в-ву спинного мозга.
Тест «Нервная система»
В нейроне нервные импульсы по дендритам проходят к соме клетки. ответ: 7. чем питается кит? 1) планктоном 2) придонными организмами 3) крупными рыбами 4)морскими млекопитающими 8. нервные импульсы, 919107520220418, Відповідь:Тіршіліктің пайда болуының алғышарттарыҒылыми деректер бойынша Күн жүйесіне жататын Жер. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга. Эти пузырьки, под воздействием нервного импульса, приходящего в нервное окончание, разрываются и изливают своё содержимое в синаптическую щель. Железы внутренней секреции не имеют протоков, поэтому гормоны поступают непосредственно в кровь. По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу?
Ответы на вопрос
- Регуляция желудочной секреции.
- Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных ...
- Нервные импульсы поступают непосредственно к железам по... -
- Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон
- Нейрогуморальная регуляция процессов жизнедеятельности
- Нервные импульсы поступают непосредственно к железам по
Информация
Б. По аксону нервные импульсы поступают к телу другой нервной клетки. Импульсы, исходящие от коры, затормозили нервные центры продолговатого мозга. К железам нервные импульсы поступают по нервным нитям.
Физиология мышечного сокращения
Нервные импульсы в головной мозг передаются. Отросток нервной клетки передающий сигнал. Отросток нейрона, передающий нервный Импульс. Длинные нервные отростки называются. Нервный Импульс по аксону :.
Проведение нервного импульса в нейроне. Поступление нервных импульсов в мозг. К мышце нервный Импульс поступает. К мышце нервный Импульс поступает по 1 дендритам вставочного нейрона.
Нервный Импульс поступает к мышце по нейрону. К мышце или внутреннему органу нервный Импульс поступает. Эфферентные проводящие пути ЦНС. Афферентные проводящие пути схема.
Афферентные нервные пути. Схема передачи нервного импульса к мозгу. Различают два вида отростков нервной клетки. Нервный Импульс от аксона к дендриту.
Нервный Импульс по аксону проводится. По аксону Импульс проводится к телу нервной клетки. Передача импульса по аксону нейрона. Строение двигательного нейрона.
Аксон нейрона. Природа нервного импульса. Механизм образования нервного импульса. Длина аксона.
Аксон нейрит. Направление нервного импульса от аксона к телу клетки. Направлении проведения нервного импульса аксоном и дендритами. Нейрон проводящий нервный Импульс.
Нервные импульсы от тела. Нервный Импульс генерируют Нейроны. Схема передачи нервных импульсов по нейронам. Скорость передачи нервных импульсов в теле человека.
Скорость передачи импульса в нейронах. Нейроны афферентных путей. Нейрон структурно-функциональная единица нервной системы. Функциональное строение нервной системы.
Структурно-функциональная характеристика нейронов. Нейрон строение и функции. Нейрон направление нервного импульса. Нейромедиатор это гормон.
Нейромедиаторы представители. Нейромедиаторы мозга. Медиаторы и нейромедиаторы. Распространение нервного импульса по аксону.
Нервные импульсы к телу нейрона идут по. Медиаторы нервных клеток. Медиаторы нервного импульса. Роль медиаторов в передаче импульсов..
Передача нервного импульса биохимия. Нервная клетка. Нейроны головного мозга. Двигательный Нейрон.
Проводниковая функция спинного мозга. Проводниковая функция спинного мозга схема. Проводниковой функции спинного мозга. Схема проводниковой функции спинного мозга.
Функции вставочного нейрона рефлекторной дуги. Рефлекс вставочные Нейроны. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Путь рефлекторной дуги.
Рефлекторная и проводниковая функции спинного мозга. Рефлекторная и проводниковая функции. Рефлекторная функция спинного мозга. Строение нейрона.
Строение тела нейрона. Отросток нервной клетки. Строение отростков нейрона. Передача импульса с нейрона на Нейрон.
Передача нервного импульса в клетке. Этапы и механизмы синаптической передачи.
Аксон чувствительного нейрона. К мышце нервный Импульс поступает по. К мышце нервный Импульс поступает по 1 дендритам вставочного нейрона. К мышце или внутреннему органу нервный Импульс поступает по. Нервный Импульс поступает к мышце по нейрону.
Части зрительного нерва. Зрительный нерв образован аксонами. Волокна зрительного нерва части. Аксон зрительного нерва. К телу нейрона Импульс поступает по дендритам. Нервный Импульс. Аксоны двигательных нейронов нейронов.
Нервный Импульс в нейронах. Чувствительные Нейроны передают. Вставочные Нейроны передают нервные импульсы от. Вставочный Нейрон Аксон чувствительного нейрона. Выставочные Нейроны передают импульсы. Нервный Импульс по аксону :. Поступление нервных импульсов в мозг.
Нервные импульсы в головной мозг передаются. Длинный Центральный отросток нервной клетки. Отросток нервной клетки передающий сигнал. Нервные импульсы от тела нейрона передаются по. Зрительный нерв иннервирует. Импульс по зрительному нерву. Нервные импульсы поступают.
Глазной нерв ход импульса. Основное свойство нервной ткани. Основные свойства нервной ткани это возбудимость и проводимость. Верны ли следующие суждения о нервной ткани человека. Основные свойства нервной ткани это возбудимость и. Корковый обонятельный центр. Корковый анализатор обоняния.
Корковый центр обоняния мозга. Нервный центр обонятельного анализатора. Как происходит возбуждение нейрона. Строение нервного импульса. Передача импульса по нервной клетке. Нервные импульсы от рецепторов поступают в. Возникают нервные импульсы в глазу.
Импульсы зрительного нерва. Сетчатка нервный Импульс. Болевая сенсорная система схема. Болевая сенсорная система физиология. Болевая сенсорная система Ноцицептивная система схема. Строение рецепторов болевой сенсорной системы. Нейромедиатор это гормон.
Синапс нейромедиатор. Нейромедиаторы представители. Нейромедиаторы мозга. Длина аксона. Направлении проведения нервного импульса аксоном и дендритами. Аксон , проводящий нервный Импульс. Телодендрии аксона.
Продолговатый мозг центры регуляции. Рефлекторная функция продолговатого мозга. Нервные центры продолговатого мозга. Продолговатый мозг нервная система. Нейрон структурно-функциональная единица нервной системы. Структурно-функциональная характеристика нейронов. Функциональное строение нервной системы.
Структурная организация нейрона. Передача нервного импульса в ЦНС. Путь передачи нервного импульса в центральную нервную систему. Сигналы нейронов.
На вопросы могут отвечать также любые пользователи, в том числе и педагоги. Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных Сердитые импульсы поступают конкретно к железам по 1.
Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов. Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы. В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию. Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты. Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов. В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы. Нервные волокна. Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы. Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг. Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота. Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов. К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы. По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические. Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит. Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой. Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром. Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка. Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных. Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна. Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами. Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками. Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными. Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне. Миелин отсутствует. Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой. Строение нерва А и нервного волокна Б. Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается. Он проходит по безмякотным нервным волокнам в 10 раз медленнее, по сравнению с мякотными. Мякотные нервные волокна составляют белое вещество головного и спинного мозга и входят в периферические нервы. Мякотное нервное волокно состоит из одного осевого цилиндра, вокруг которого шванновские клетки образуют миелиновую оболочку. Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым. Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку. Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом. Она выполняет роль изолятора. Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки. Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой. По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками. Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации. Функция насечек неясна. В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты. Скорость проведения нервного импульса зависит от диаметра аксона, а сам диаметр определяется количеством содержащихся в нем нейрофиламентов. В нормальных и патологических условиях количество нейрофиламентов и диаметр аксона тесно коррелируют. Аксонный транспорт обеспечивает кинезии микротрубочек. Основной материал антероградного транспорта — белки, синтезированные в перикарионе например, белки ионных каналов, ферменты синтеза нейромедиаторов. Внешняя плазмалемма шванновских клеток окружена базальной мембраной. Выше изложено особенности строения мякотного периферического нервного волокна. Мякотные нервные волокна ЦНС построены сходным образом. Однако оболочка их образована не леммоцитами, а олигодендроцитами. Насечки и перехваты в них отсутствуют, нет и базальных мембран. Нервные стволы нервы образованы пучками мякотных и безмякотных нервных волокон, которые объединяются соединительной тканью, образующей соединительнотканные оболочки. В нерве может быть множество волокон только мякотных только или безмякотных. Есть нервы, в которых встречаются и те и другие. Наружная оболочка нерва — эпиневрий - состоит из волокнистой соединительной ткани, объединяющей все пучки в составе нерва. Периневрий — соединительнотканная оболочка, окружающая каждый отдельный пучок нервных волокон. Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами. Эта ткань связывает отдельные нервные волокна в пучки, соединяясь с их базальной мембраной. Нервы образованы пучками нервных волокон, которые объединены соединительнотканными оболочками. Большинство нервов - смешанные, то есть включают афферентные и эфферентные нервные волокна. Периневриальный барьер необходим для поддержания гомеостаза в эндоневрии. Барьер контролирует транспорт молекул через Периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов. Периферический нерв содержит разветвленную сеть кровеносных сосудов. В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна. Тема 5. Нервные сети. Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно. Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис. Специализированные контакты нейронов между собой, а также нейронов с клетками исполнительных органов, называются синапсами. Несмотря на разнообразие синапсов, в их строении имеются общие черты. В синапсе выделяют пресинаптическую и постсинаптическую мембраны и пространство между ними - синаптическую щель шириной от 2 до 30 нм. Толщина каждой мембраны не превышает 5-6 нм. Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания. Она не сплошная, в ней имеются отверстия, через которые цитоплазма аксонального окончания сообщается с синаптическим пространством. Постсинаптическая мембрана менее плотная, в ней отсутствуют отверстия. Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле соме - постсинаптического нейрона. Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе. Конечные участки аксонов и дендритов в области синапса не имеют мякотной оболочки и расширены в пресинаптический мешочек. Мешочек характерен для синаптических пузырьков, имеющих диаметр 40-59 нм. В них содержится медиатор.
КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по
Нервные импульсы поступают непосредственно к железам по. Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. длинный отросток нервных клеток, по которым и выполняется эта работа. Нервные импульсы поступают непосредственно к мышцам и железам по 1)аксонам вставочных нейронов 2)аксонам двигательных нейронов 3)белому веществу спинного мозга 4)серому веществу спинного мозга.
Смотрите также
- Нервные импульсы поступают непосредственно к мышцам и железам по
- Как устроена периферическая нервная система человека?
- Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных ...
- ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
- Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон