В уране, с которым экспериментировал Резерфорд, все ядра с одинаковым числом нуклонов, но одно ядро распадается сейчас, это фиксирует счетчик, другое распадется завтра, а какое-то может распадется через тысячу или миллион лет. В статье рассматриваются такие аспекты, как период полураспада урана, радиоактивный распад, изотопы урана и их свойства, применение урана в атомной промышленности и энергетике. Уран-235 образуется в результате следующих распадов.
Как устроены и чем опасны снаряды с обедненным ураном
Уран: последние новости. Телескоп JWST запечатлел кольца и спутники Урана. Образующееся в результате альфа-распада урана-238 ядро тория также нестабильно и испытывает бета-распад. Как происходит распад урана? Уран – радиоактивный элемент, который распадается медленно в соответствии с его полувременем. Помимо самого урана, в состав этого минерала входят радий, актиний, полоний и другие элементы — продукты радиоактивного распада его изотопов. Новости Новости.
Физики создают новый изотоп урана
Продукты уранового распада: ученый объяснил механизм воздействия на организм | такие жуткие последствия ждут население после применения снарядов с обедненным ураном, которые Британия собирается поставить украинской армии. |
Продукты распада урана. Поражающее действие продуктов деления урана | Компания стала вывозить уран из Казахстана (там она совладелец и оператор рудника Инкай) через Транскаспйский транспортный маршрут. |
США испугались из-за поставок российского урана в Китай — 02.03.2023 — В мире на РЕН ТВ | продукты распада урана. Через год после взрыва атомной бомбы из продуктов радиоактивного распада остались лишь следующие долгоживущие элементы: 89Sr, 90Sr, 144Ce, 90Y, 91Y, l06Ru, 137Cs, 95Zr, 140Ba, 95N. |
Чем опасны боеприпасы с обедненным ураном? Генерал Игорь Кириллов ответил на шесть главных вопросов | Новости энгельса-покровска, губернии. |
:: Распад Урана :: Уран,как и др. трансурановые элементы,куски взорвавшейся черной дыры :: | Инвесторы начали вкладываться в уран на фоне конфликта в Нигере Цены на уран достигли 16-месячного максимума. |
Период полураспада урана-235 составляет 700 000 000 лет. Так почему Хиросима заселена?
Боеприпасы с обедненным ураном не имеют отношения к ядерному оружию. Дело тут в следующем. Обедненным ураном называют отходы, полученные при обогащении урановой руды. А гексафторид урана, составляющий основную массу руды, отделяют. Он содержит уран-238, имеющий низкую радиоактивность: период полураспада у него 4,5 миллиарда лет. С точки зрения физики уран-238 достаточно безвреден, чтобы хранить его в цистернах на открытом воздухе. Так и поступают на урановых обогатительных фабриках.
Лучевой болезни, как в случае с советскими атомными батарейками , обедненный уран не вызывает. Его используют даже для утяжеления килей яхт и изготовления грузиков в гироскопах.
Но в научном смысле правильнее всех или смешнее всех, мы еще не решили отреагировал Лукашенко. Он сообщил, что «Россия поставит нам боеприпасы с настоящим ураном» а не с какой-то там обедненной фигней. Французский военнослужащий любуется подкалиберным снарядом из обедненного урана. Склад французской армии в Бриенн-ле-Шато, 2001 Что такое обедненный уран?
Идея принципиально верная. Боеприпасы с обедненным ураном не имеют отношения к ядерному оружию. Дело тут в следующем. Обедненным ураном называют отходы, полученные при обогащении урановой руды. А гексафторид урана, составляющий основную массу руды, отделяют.
Суть цепной ядерной реакции деления заключается в том, что ядро радиоактивного элемента, например урана-235, захватывая нейтрон, становится неустойчивым и распадается преимущественно с образованием двух крупных осколков и — самое важное! Эти нейтроны могут инициировать деление уже нескольких ядер — возникает цепная реакция. Если потери нейтронов в такой разветвленной цепи реакций будут меньше, чем число вновь образовавшихся, то выделение энергии будет нарастать лавинообразно. В одном акте деления урана высвобождается энергии в 4 раза больше, чем при естественном распаде, причем скорость энерговыделения очень велика. Самые известные примеры процессов такого типа — реакции в атомной бомбе и реакторах АЭС Сама идея атомного реактора в земных недрах возникла примерно в это же время — и почти за двадцать лет до открытия феномена Окло! В 1953 г. Везерилл и М. Ингрэм выдвинули смелую гипотезу, что в древнейшие времена в скоплениях радиоактивных элементов, главным образом урана и тория, могли протекать цепные ядерные реакции. Поиски геореакторов, подобных оклоскому, предпринимались впоследствии и в других древних месторождениях, но они успехом не увенчались. Может быть, африканский реактор — это шутка Бога, результат случайного стечения обстоятельств и он действительно уникален? Даже если это так, идея, что в Земле могут идти — причем и в далеком прошлом, и в настоящее время! Красноречивый гелий Признаки работы природных реакторов ищут не только в земной коре, но и в недрах планеты. Одна из причин упорства исследователей заключается в том, что Земля излучает тепла примерно в 2,5 раза больше, чем должна отдавать в результате естественного распада радиоактивных элементов в коре радиогенное тепло и первичного нагрева. Тепловая энергия, получаемая от Солнца, в этом балансе не учитывается. Если такую большую разницу пытаться объяснить только радиогенным теплом из внутренних областей планеты, то Земля в целом должна иметь нереально большие запасы радиоактивных элементов. Но вот в цепных ядерных реакциях как раз выделяется тепла в несколько раз больше, чем при естественном радиоактивном распаде. Цепной механизм выделения энергии мог бы объяснить и упомянутый тепловой дисбаланс, и многие другие необычные явления. И если гипотетические реакторы расположены глубоко в недрах, то понятно, почему следы их активности не удалось найти в урановых месторождениях за исключением Окло. Искали где ближе, но, может, стоит «копнуть вглубь»? Итак, предположим, что где-то в теле Земли действует такой реактор. По каким признакам его можно обнаружить? Один из методов поиска — анализ продуктов деления, мигрирующих из зоны реакции и достигающих земной поверхности. В частности, очень интересен изотопный состав «солнечного элемента» — гелия. Природный гелий состоит из двух стабильных изотопов: 4He и 3He. Гелий-4 попадает в атмосферу в результате естественного распада урана и тория. В воздухе на миллион атомов гелия-4 приходится всего полтора атома гелия-3. Но в базальтах срединно-океанических хребтов изотопа 3He больше уже в 8 раз, а в некоторых изверженных магматических горных породах — в 40! Как объяснить происхождение гелия с высоким содержанием изотопа 3He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления. Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов. В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка. Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков! Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора. Уран выпал в осадок? Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд. Обычная радиоактивность — это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей нейтроном. По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения. Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов актиноидов. Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли. Эта концепция во многом базируется на работах по растворимости диоксида урана UO2 , проведенных в конце 1990-х гг. В экспериментах на аппарате высокого давления типа «разрезная сфера» А. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается. Исследуемый диапазон давлений составлял 5—10 ГПа для сравнения: в центре Земли давление около 360 ГПа.
Этот город до сих пор называют вторым Чернобылем", - подчеркнул Кириллов. Чем опасен уран-238 для людей? Он пояснил, что в результате удара боеприпаса с обедненным ураном происходит образование подвижного горячего облака мелкодисперсного аэрозоля урана-238 и его оксидов, которые при воздействии на организм в дальнейшем могут спровоцировать развитие серьезных патологий. Основная радиационная опасность от обедненного урана возникает в случае его попадания в организм в виде пыли. Потоки альфа-излучения от мелких частиц урана, осевших в верхних и нижних дыхательных путях, легких и пищеводе, вызывают развитие злокачественных опухолей. А, накапливаясь в почках, костной ткани и печени, урановая пыль приводит к изменению внутренних органов. Все это наблюдается у населения подвергнутых бомбардировкам стран. Так, по данным иракского правительства, в 2005 году заболеваемость раком в стране в результате применения боеприпасов с обедненным ураном возросла с 40 до 1 600 случаев на 100 тысяч населения. В связи с этим Багдад 26 декабря 2020 года подал официальный иск против Вашингтона в Международный арбитражный суд в Стокгольме и потребовал компенсации за нанесенный ущерб. В странах бывшей Югославии также отмечается увеличение количества онкологических заболеваний на 25 процентов. Более того, жертвами безответственной политики собственного руководства стали участвовавшие в военных кампаниях в Ираке и Югославии солдаты и офицеры НАТО. Так, в 2016 году в докладе главного военно-медицинского инспектора Италии сообщалось, что у 4095 военнослужащих национальных вооруженных сил, задействованных на Балканах 1994-1999 гг. При этом в 8 процентов случаев 330 человек заболевания завершились летальным исходом.
Откройте свой Мир!
Вам стало понятно — почему ядро распалось? Мне — нет. Если оно перегружено, то почему в одном случае оно распадается через доли секунды, в другом через часы, а в третьем через годы. Почему ядерные, которые удерживали нуклоны вместе, вдруг так ослабли, что ядро распалось? Точнее силы не ослабли, а превратились в противоположные и растолкнули фрагменты ядра. В уране, с которым экспериментировал Резерфорд, все ядра с одинаковым числом нуклонов, но одно ядро распадается сейчас, это фиксирует счетчик, другое распадется завтра, а какое-то может распадется через тысячу или миллион лет. А потом распадаются не только слишком тяжелые ядра, но и легкие ядра. Как видите половина ядер водорода распалось за 12,3 года, а когда остальные распадутся известно одному Богу. Получается, что устойчивость ядра не зависит прямо от его перегруженности.
От чего же тогда зависит устойчивость атомного ядра? Естественно, что ответить на этот вопрос можно только в том случае, если нам известно устройство ядра. Для этого надо знать не только состав ядра, элементы, из которых оно состоит, но и физическую сущность сил, которые удерживают эти элементы в совокупности, как целый объект ядро. Наука же знает только название силы — ядерная, но какая физическая сущность этой силы — это науке неизвестно. Не зная физической сущности этой силы невозможно даже сказать: ослабевают эти силы, превращаются в противоположные или исчезают вовсе. Не понимая этого нельзя ответить на вопрос: почему ядро распадается? Существует несколько теорий ядерных сил, но в них ядерные силы сводятся к другим каким-нибудь силам например, силы поверхностного натяжения и считается, что удовлетворительной теории ядерных сил пока нет. Но мне видится это не справедливым.
В 1935 году Х. Юкава опубликовал статью о « мезонной теории ядерных сил ». Юкава выдвинул гипотезу, что притяжение, удерживающее нуклоны внутри ядра, возникает благодаря наличию «квантов» некоего поля, аналогичных фотонам световым квантам электромагнитного поля и обеспечивающих взаимодействие электрических зарядов. Эта гипотеза не была принята за приоритетную, потому что никто не понимал, как это фотон может притягивать один нуклон к другому. Это такое же состояние, как и в гравитации. В гравитации трудно представить, что фотон может тянуть электрон на себя, хотя есть примеры и в макромире, как один объект тянет на себя другой объект. Всегда считалось, что если один объект ударяет во второй объект, то второй объект всегда будет двигаться в ту же сторону, что и ударяющий объект. Сейчас диалектический материализм не в моде, а он утверждает, что такие взаимодействия равноправные и они существует.
Так что наблюдать в оптике, как оно распадается, не получится. Но результаты процесса можно видеть невооруженным глазом в конденсационной камере. Это прозрачная герметичная емкость, заполненная насыщенными парами спирта.
Исследователи создали уран-241, обстреляв образец урана-238 ядрами платины-198 на японском ускорителе RIKEN. В результате этого процесса два изотопа подверглись многонуклонному переносу, в ходе которого они обменялись нейтронами и протонами. Команда измерила массу созданных изотопов, наблюдая за временем, которое потребовалось полученным ядрам, чтобы пройти определенное расстояние через среду.
Кривая периода полураспада.
Фото: Nandalal Sarkar По словам эксперта, команда еще не измерила период полураспада урана-241, но по теоретическим оценкам он составляет около 40 минут. Это немного. Для справки: период полураспада углерода-14 составляет 5730 лет, период полураспада очень нестабильного изотопа технеция-99m — шесть часов, а период полураспада франция-223 — 22 минуты.
Деление ядер урана. Цепная ядерная реакция
Полученный раствор выкачивается на поверхность и уже из него извлекается, после чего обрабатывается, уран. Достоинства данного метода заключаются в значительном упрощении организации процесса. Соответственно, снижается и цена. Хомячки с лопатами уже не нужны. А значит метод можно применять и в тяжелых климатических условиях. Радон и пыль нас перестают беспокоить. Выкачиваемый раствор также содержит по минимуму лишних компонентов, что значительно упрощает вопрос радиоактивного загрязнения. Влияние на окружающую среду Печальный пример.
Суть в том, что в отходах добычи встречается много сульфидов, которые при наличии воды и кислорода дают нам серную кислоту. В случае заброшенных подземных шахт, изменение водных потоков делает этот процесс неизбежным. Более того, среди сульфидов встречаются и токсичные металлы медь, алюминий, мышьяк, ртуть. При попадании всей этой радости в речку, пить и жить в ней уже не рекомендуется. Грусть вторая. После выделения из руды урана у нас остается куча ненужного мусора в твердой и жидкой форме. Он включает в себя как не добываемые нами радиоактивные элементы торий, радий , так и недособранный уран.
Если все это просто свалить в кучу, то, как мы уже знаем, гамма-излучение и постоянно выделяющийся радон который, вообще говоря, образуется из радия могут нанести серьезный вред окружающей среде. Грусть третья, касается метода подземного выщелачивания.
Оба они претерпевают альфа-распад и становятся соответствующими изотопами тория. Из- за его огромного периода полураспада радиоактивность этого элемента мала, а кроме того, альфа-частицы не способны преодолеть ороговевший слой кожи на поверхности человеческого тела. Рассказывают, что И. Курчатов после работы с ураном просто вытирал руки носовым платком и никакими болезнями, связанными с радиоактивностью, не страдал.
Исследователи не раз обращались к статистике заболеваний рабочих урановых приисков и обрабатывающих комбинатов. Вот, например, недавняя статья канадских и американских специалистов, которые проанализировали данные о здоровье более 17 тысяч рабочих прииска Эльдорадо в канадской провинции Саскачеван за 1950—1999 годы «Environmental Research», 2014, 130, 43—50, doi:10. Они исходили из того, что сильнее всего радиация действует на быстро размножающиеся клетки крови, приводя к соответствующим видам рака. Статистика же показала, что у рабочих прииска заболеваемость различными видами рака крови меньше, чем в среднем у канадцев. При этом основным источником радиации считается не сам по себе уран, а порождаемый им газообразный радон и продукты его распада, которые могут попасть в организм через легкие. Чем же вреден уран?
Он, подобно другим тяжелым металлам, весьма ядовит, может вызывать почечную и печеночную недостаточность. С другой стороны, уран, будучи рассеянным элементом, неизбежно присутствует в воде, почве и, концентрируясь в пищевой цепочке, попадает в организм человека. Разумно предположить, что в процессе эволюции живые существа научились обезвреживать уран в природных концентрациях. Но бывают и сильные отклонения. Исследователи же пытаются понять, не слишком ли строг норматив ВОЗ, изучая действие урана на животных. К удивлению авторов — статья так и называется: «Неожиданное отсутствие заметного влияния урана на физиологические системы...
Животные прекрасно питались, прибавляли в весе как следует, на болезни не жаловались и от рака не умирали. Уран, как ему и положено, откладывался прежде всего в почках и костях и в стократно меньшем количестве — в печени, причем его накопление ожидаемо зависело от содержания в воде. Однако ни к почечной недостаточности, ни даже к заметному появлению каких-либо молекулярных маркеров воспаления это не приводило. Авторы предложили начать пересмотр строгих нормативов ВОЗ. Однако есть один нюанс: воздействие на мозг. В мозгах крыс урана было меньше, чем в печени, но его содержание не зависело от количества в воде.
Это означает, что уран явно вызывал окислительный стресс в мозгу и организм на него реагировал. Такой эффект — сильное действие урана на мозг при отсутствии его накопления в нем, кстати, равно как и в половых органах, — замечали и раньше. Есть данные, что уран приводит и к нарушениям памяти у животных. Изменение поведения коррелировало с уровнем окисления липидов в мозгу. Получается, что крысы от урановой водички делались здоровыми, но глуповатыми. Эти данные нам еще пригодятся при анализе так называемого синдрома Персидского залива Gulf War Syndrome.
Загрязняет ли уран места разработки сланцевого газа? Это зависит от того, сколько урана в содержащих газ породах и как он с ними связан. Оказалось, что уран химически связан именно с источником углеводородов вспомним, что в родственных углистых сланцах самое высокое содержание урана. Опыты же показали, что используемый при разрыве пласта раствор прекрасно растворяет в себе уран. Радиационного риска это не несет, но уран — ядовитый элемент», — отмечает Трейси Бэнк в пресс-релизе университета от 25 октября 2010 года. Подробных статей о риске загрязнения окружающей среды ураном или торием при добыче сланцевого газа пока не подготовлено.
Зачем нужен уран? Раньше его применяли в качестве пигмента для изготовления керамики и цветного стекла. Теперь же уран — основа атомной энергетики и атомного оружия. При этом используется его уникальное свойство — способность ядра делиться. Что такое деление ядра? Распад ядра на два неравных больших куска.
Именно из-за этого свойства при нуклеосинтезе за счет нейтронного облучения ядра тяжелее урана образуются с большим трудом. Суть явления состоит в следующем. Если соотношение числа нейтронов и протонов в ядре не оптимально, оно становится нестабильным. Обычно такое ядро выбрасывает из себя либо альфа-частицу — два протона и два нейтрона, либо бета-частицу — позитрон, что сопровождается превращением одного из нейтронов в протон. В первом случае получается элемент таблицы Менделеева, отстоящий на две клетки назад, во втором — на одну клетку вперед. Однако ядро урана помимо излучения альфа- и бета-частиц способно делиться — распадаться на ядра двух элементов середины таблицы Менделеева, например бария и криптона, что и делает, получив новый нейтрон.
Это явление обнаружили вскоре после открытия радиоактивности, когда физики подвергали новооткрытому излучению все, что придется. Вот как пишет об этом участник событий Отто Фриш «Успехи физических наук», 1968, 96, 4. После открытия бериллиевых лучей — нейтронов — Энрико Ферми облучал ими, в частности, уран, чтобы вызвать бета-распад, — он надеялся за его счет получить следующий, 93-й элемент, ныне названный нептунием. Он-то и обнаружил у облученного урана новый тип радиоактивности, который связал с появлением трансурановых элементов. При этом замедление нейтронов, для чего бериллиевый источник покрывали слоем парафина, увеличивало такую наведенную радиоактивность. Американский радиохимик Аристид фон Гроссе предположил, что одним из этих элементов был протактиний, но ошибся.
Зато Отто Ган, работавший тогда в Венском университете и считавший открытый в 1917 году протактиний своим детищем, решил, что обязан узнать, какие элементы при этом получаются. Вместе с Лизой Мейтнер в начале 1938 года Ган предположил на основании результатов опытов, что образуются целые цепочки из радиоактивных элементов, возникающих из-за многократных бета-распадов поглотивших нейтрон ядер урана-238 и его дочерних элементов. Вскоре Лиза Мейтнер была вынуждена бежать в Швецию, опасаясь возможных репрессий со стороны фашистов после аншлюса Австрии. Ган же, продолжив опыты с Фрицем Штрассманом, обнаружил, что среди продуктов был еще и барий, элемент с номером 56, который никоим образом из урана получиться не мог: все цепочки альфа-распадов урана заканчиваются гораздо более тяжелым свинцом. Исследователи были настолько удивлены полученным результатом, что публиковать его не стали, только писали письма друзьям, в частности Лизе Мейтнер в Гётеборг.
В следующей таблице приведены примеры активности на один грамм вещества йод 131, цезий 137, плутоний 239, уран 238. Радиоактивный элемент.
После аварии это помещение оказалось недоступным. И радиационные те, что связаны с опасностью облучения , и ядерные те, что связаны с риском возникновения самоподдерживающийся цепной реакции измерения по нему косвенные. В итоге получается, что нейтронный «шум» от других ЛТСМ забивает самый важный источник, поэтому точность данных по росту не очень велика в плане привязки замеченного роста потока к конкретному скоплению материалов. Что там происходит Атомный реактор, прежде всего, представляет из себя устройство для размножения нейтронов, с помощью которых идет извлечение ядерной энергии деления. Размножение достигается организацией такой геометрии из делящегося материала и замедлителя, при котором количество нейтронов возрастает после каждого акта деления, образуя самоподдерживающуюся цепную реакцию. Если же часть из нейтронов из нового поколения поглощать или давать им утекать из активной зоны таким образом, что количество их будет постоянным, то и мощность будет поддерживаться на одном и том же уровне. Организовать такое непросто, и для ЛТСМ в «Укрытии» расчеты показывают , что для запуска ускоряющейся цепной реакции необходимо было бы уменьшить поглощение нейтронов «нейтральными» материалами и их утечку за пределы застывшего расплава как минимум в 2,5 раза. Самостоятельно такие изменения в самой керамике происходить не могут, но в ней есть поры и трещины, так что кое-что меняться может. Основную роль в изменениях тут играет вода, которой в руинах четвертого энергоблока еще со времен аварии скопилось немало. После сооружения «Укрытия» оказалось, что дождевая и талая вода продолжает поступать внутрь, но к началу 1990 года установился некоторый баланс водного режима. Изменения нейтронной активности в помещениях под саркофагом, как пишут ученые в той же самой статье, были сезонными: сухие периоды сопровождались ростом плотности потока нейтронов, влажные наоборот. Эта ситуация изменилась, когда поверх «Укрытия» возвели в середине 2010-х Новый безопасный конфайнмент — поступление воды в остатки энергоблока резко сократилось. Из вышеупомянутой публикации по нейтронной физике ЛТСМ также следует, что существует точка «оптимального увлажнения», при которой нарастание количества нейтронов в каждом поколении достигает максимума.
Вторая жизнь урана: что делают в современном мире с отработанным ядерным топливом
Например, уран-238, распадаясь, сначала превращается в торий-234, который, в свою очередь, также распадается. Конечными (стабильными) нуклидами для естественных цепочек распада урана являются изотопы свинца. В рамках этих определений "обеднённый уран" мог являться только "хвостом" процесса разделения изотопов урана на обогатительном производстве. Оригинал взят у ibigdan в Распад урана в реальном времени, очень захватывающе! Да, уран-235 и 238, конечно, распадаются, но период полураспада у них огромен, а значит количество распадов в секунду будет минимальным. Да, уран-235 и 238, конечно, распадаются, но период полураспада у них огромен, а значит количество распадов в секунду будет минимальным. Как и все другие актиниды, уран радиоактивен — он постепенно распадается, выделяя при этом энергию.
Распад урана и тория генерирует половину тепла Земли
Как объяснить происхождение гелия с высоким содержанием изотопа 3He? Какие физические процессы могут быть ответственны за это? Обычный радиоактивный распад явно не годится, так как он продуцирует исключительно гелий-4. Попробуем привлечь на помощь ядерные реакции деления.
Известно, что при работе реактора тяжелые ядра, поглощая нейтрон, становятся неустойчивыми и могут делиться на два крупных осколка с испусканием легких заряженных частиц и 2—3 нейтронов. В конечном продукте совокупности таких реакций доли обоих изотопов гелия хотя и отличаются, но представляют собой величины одного порядка. Напомним, что в «стандартном» атмосферном гелии их концентрации различаются на шесть порядков!
Таким образом, относительно высокое содержание гелия-3, наблюдаемое в магматических породах, поднявшихся на поверхность из земных недр, может служить косвенным свидетельством работы глубинного геореактора. Уран выпал в осадок? Прежде чем продолжить разговор, хочется еще раз подчеркнуть принципиальное различие между естественным радиоактивным распадом и ядерной реакцией деления, ибо разница эта не всегда очевидна на неискушенный взгляд.
Обычная радиоактивность — это самопроизвольный распад атомных ядер; для реакции деления обязательно требуется взаимодействие с внешней частицей нейтроном. По этой причине для осуществления ядерной реакции нужна достаточная концентрация активного вещества; для спонтанного распада концентрация не имеет никакого значения. Если в недрах Земли действительно идут цепные реакции, значит, там должны присутствовать скопления радиоактивных элементов актиноидов.
Как и где именно они образовались? На этот счет существует множество разных точек зрения: от мантии до геометрического центра Земли. Анисичкин с соавторами предложили обоснованную гипотезу, согласно которой местом критической концентрации урана и тория могла быть поверхность твердого внутреннего ядра Земли.
Эта концепция во многом базируется на работах по растворимости диоксида урана UO2 , проведенных в конце 1990-х гг. В экспериментах на аппарате высокого давления типа «разрезная сфера» А. Туркиным было показано, что растворимость UO2 в расплавах на основе железа с ростом давления уменьшается.
Исследуемый диапазон давлений составлял 5—10 ГПа для сравнения: в центре Земли давление около 360 ГПа. Поскольку в природе уран встречается преимущественно в виде оксидов, то логично сделать вывод: чем глубже, тем хуже будет растворяться уран! Этот важный экспериментальный факт наводит на мысль, что миграция актиноидов в теле Земли могла быть следующей.
После образования планеты в океане магмы, состоящей, в основном, из расплавов железа и силикатов, присутствовали и соединения урана. Со временем магма остывала, и происходило гравитационное разделение вещества по плотности. Силикаты, кристаллизуясь, всплывали в магме, плотность которой за счет железа была выше.
Соединения же тяжелых актиноидов, выделяясь из расплава по мере роста давления и кристаллизуясь, оседали на внутреннее твердое железоникелевое ядро планеты. Из сейсмологических исследований известно, что переходная зона между внешним жидким и внутренним твердым ядром Земли толщиной 2—3 км имеет мозаичную структуру. При этом основными структурными элементами являются относительно тонкие взвешенные слои протяженностью до нескольких десятков километров.
Возможно, именно они и являются областями концентрации тяжелых радиоактивных элементов. Не можешь найти — моделируй! Когда речь идет о процессах на глубинах в тысячи километров, следует иметь в виду, что, с одной стороны, они недоступны непосредственному экспериментальному исследованию, с другой — их не всегда возможно изучать и в лабораторных установках, где трудно создать аналогичные физические условия.
Но в современной науке существует еще один универсальный инструмент познания — компьютерное моделирование. В 2005 г. Задача была не из легких, поскольку методы теории реакторов традиционно применяются для расчета процессов длительностью максимум в годы, а здесь потребовалось просчитывать интервалы в миллиарды лет!
Согласно их идее при кристаллизации магматического океана происходило «гравитационное разделение вещества по плотности», в результате которого силикаты, кристаллизуясь, всплывали, а соединения тяжелых актиноидов оседали на внутреннее ядро планеты. В дальнейшем сконцентрировавшаяся таким образом масса актиноидов, и в первую очередь соединения урана, играла роль ядерного реактора, генерирующего энергию, обусловленную цепными реакциями деления. К сожалению, в самой основе этой занимательной гипотезы лежит недоразумение.
Кристаллизация каких-либо соединений актиноидов в виде самостоятельных минеральных фаз, которые могли бы погружаться в недра планеты, в магматическом океане невозможна. Прежде всего, это обусловлено исключительно низкими концентрациями урана и других актиноидов в протопланетном веществе. При кристаллизации расплава, который возникает на основе такого вещества, весь уран распределяется в кристаллической решетке породообразующих минералов или на их границах в виде примеси, как и многие другие редкие и рассеянные элементы.
Конечно, образование скоплений редких элементов в природе возможно вспомним, например, самородное золото , только это происходит в коре и не в результате кристаллизации магматических расплавов, а за счет разгрузки гидротермальных растворов, транспортирующих эти элементы и сбрасывающих их при изменении физических условий. В ходе геологических процессов зарождающиеся в недрах планеты магматические расплавы вследствие более низкой плотности по сравнению с твердым веществом перемещаются к поверхности. В тех случаях, когда они прорываются на поверхность, возникает вулкан.
Когда такой расплав застревает на глубине и кристаллизуется в магматической камере, образуется твердое магматическое тело, называемое интрузивом. Дифференциация вещества по плотности при формировании магматических тел принципиально ничем не отличается от такой дифференциации при затвердевании расплава в магматическом океане. Однако кристаллизующиеся силикаты магния и железа в этих расплавах вопреки предположению авторов обсуждаемой гипотезы не всплывают, а тонут, потому что их плотность всегда выше плотности жидкой фазы.
Утверждая, что плотность магмы увеличится за счет железа, авторы упускают из виду, что в магматическом океане металл сразу образует самостоятельную жидкую фазу, не смешивающуюся с силикатной, которая опустится на дно задолго до начала кристаллизации силикатов.
Это прозрачная герметичная емкость, заполненная насыщенными парами спирта. Быстрые заряженные частицы, вылетающие при распаде ядер, ионизируют молекулы пара вдоль своего пути. А ионы становятся центрами конденсации капель, которые хорошо видны при правильном освещении на фото.
Поражающее действие продуктов деления урана В процессе деления 235U возникает смесь 200 радиоактивных изотопов 34 элементов, значительная часть из которых является короткоживущими веществами. Поэтому суммарная активность продуктов деления 1 г урана в течение 1 ч уменьшается с 820 млн. Ки и продолжает снижаться в течение последующих дней. Например, активность осадков, выпавших на японский рыбачий бот, находившийся в 100 милях от атолла Бикини в момент экспериментального взрыва американской водородной бомбы, в течение месяца уменьшилась примерно в 3 раза, а за 8 мес почти в 10 раз [Козлова А.
Очень стойкие соединения, со временем не разрушаются, циркулируют не только по пищевым цепям, но и с грунтовыми водами. Напомню - Украинские чернозёмы кормят треть мира экологически чистой продукцией.
Оксиды Урана-238 являются не столько канцерогенами, сколько токсичными для внутренних органов соединениями клеточными ядами и вызывают мутации половых клеток рождения уродов и дефективных.
Распад урана и свет во тьме: за кулисами ядерного реактора
Это позволяет измерить примерную скорость радиоактивного распада и, как следствие, выделяемую тепловую энергию. Расчеты показали, что тепловой поток от распада урана и тория составляет около 20 ТВт с погрешностью около 8 ТВт. Хотя эксперимент не может определить тепловой поток по имеющим меньшую энергию антинейтрино от распада калия-40, исследователи считают, что модель BSE верно оценивает его в 4 ТВт. Пока достоверно неизвестно, что производит оставшуюся половину земного тепла.
Одна из гипотез говорит, что глубоко в недрах Земли существует природный " ядерный реактор ", производящий тепло как продукт цепной реакции.
В 2009 году Казахстан вышел на первое место в мире по добыче урана добыто 13 500 тонн. Добыча на Украине Добыча и переработка — основное предприятие — Восточный горно-обогатительный комбинат в городе Жёлтые Воды. Стоимость и аффинаж Горнодобывающие компании поставляют уран в виде закиси-окиси урана U3O8. В 1990-е годы стоимость урана природного изотопного состава колебалась вокруг отметки 20 USD за килограмм. По мнению вице-председателя урановой группы Александра Бойцова, в мире месторождения I категории с себестоимостью добычи до 40 долл.
К 2030 году будут исчерпаны известные крупные месторождения II категории, с себестоимостью до 80 долл. На всех этапах переработки урановых руд происходит очистка урана от сопутствующих ему примесей — элементов, обладающих большим сечением захвата нейтронов гафний, бор, кадмий и т.
Примерно так выглядел стол для исследования деления ядер Опыты показывали, что радиоактивные элементы почему-то со временем распадаются, будто бы протухают. Резерфорд и его ученик Фредерик Содди осознали, что при распаде одни химические элементы превращаются в другие, причем всегда по одному и тому же закону: при альфа-распаде вещество смещается на две позиции назад в таблице Менделеева, и атомная масса уменьшается на 4; при бета-распаде вещество смещается вперед на одну позицию, но атомная масса остается неизменной. Так, «выстреливая» альфа-частицей, уран превращается в торий, торий — в радий, радий — в радон, радон — в полоний, полоний — в свинец. Испуская бета-частицу, торий превращался проактиний, актиний в торий, а висмут — в полоний. Также оказалось, что химически идентичные атомы радиоактивных материалов могут распадаться с разной скоростью и иметь разную массу ядра — такие модификации химических элементов назвали изотопами.
Периодическая система химических элементов С такими данными на руках нетрудно было понять, что все химические вещества в действительности имеют одну природу, а ядра их атомов состоят из одинаковых компонентов. Физики 1930-х годов пришли к выводу, что ядро любого атома напоминает жидкую каплю, состоящую из определенного количества протонов и нейтронов. Подобно жидкости, эта капля может дробиться и сливаться, отчего химические элементы и переходят один в другой. Так, если отщепить от радия два протона, получится радон, а два протона — это ядро атома гелия. Химические свойства атома зависят от числа протонов в ядре, а существование изотопов объясняется разным количеством нейтронов. В 1920—1930-х годах физики открыли множество трансмутаций, причем не только с металлами. Например, азот в ходе эксперимента удалось превратить в кислород.
Но если ядро похоже на жидкую каплю и может дробиться и сливаться, то с чем был связан шок от новости о делении урана? Новый источник энергии Все опыты указывали на один и тот же факт — ядро атома чрезвычайно прочное, и силы, которые удерживают его компоненты вместе, невероятно велики их так и назвали — сильным взаимодействием. Считалось, что отколоть от ядра что-то большее, чем альфа-частицу, невозможно, и потому химические элементы могут преобразовываться лишь в соседние по таблице Менделеева. Именно поэтому, когда немецкие ученые Отто Хан, Фриц Штрассман, Лиза Мейтнер и Отто Фриш в 1938 году облучали уран потоком нейтронов, они были уверены, что получают в результате радий. Он смещен относительно урана на четыре позиции в таблице Менделеева и может быть получен путем двух альфа-распадов.
Кривая радиоактивного распада: через два периода радиоактивность вещества снижается в четверо, через три — в восемь раз и т.
Несколько примеров радиоактивности Период полураспада вещества обратно пропорционален радиоактивности радионуклида: чем длиннее период полураспада, тем меньше радиоактивность. В следующей таблице приведены примеры активности на один грамм вещества йод 131, цезий 137, плутоний 239, уран 238.
Опасная работа: как добывают уран
Все перечисленные выше запасы урана укладываются в экономически обоснованную стоимость добычи около $130 за килограмм. Другие продукты распада урана высокорадиоактивны, но как раз поэтому ценны. Но он «живет» всего 40 минут, прежде чем распадается на другие элементы. Новый изотоп, уран-241, имеет 92 протона (как и все изотопы урана) и 149 нейтронов, что делает его первым новым богатым нейтронами изотопом урана, открытым с 1979 года.