Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т. е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. новости Украины, Мир - Черной дыры Гаргантюа обои скачать - обои для рабочего стола. Изучаем свойства чёрных дыр: откуда они берутся, каких размеров бывают и что в реальности сделали бы с планетой Миллер из «Интерстеллара». черная дыра. Черные дыры могут быть дружелюбнее, чем принято считать. На рисунке 8.1 показана быстро вращающаяся черная дыра (назовем ее Гаргантюа) на фоне звездного поля, какой она предстала бы перед вами, находись вы в экваториальной плоскости Гаргантюа.
Путешествие сквозь черную дыру
- Новости черных дыр
- Загробная жизнь звезд
- Линзирование быстровращающейся черной дыры – Гаргантюа
- Вращающиеся черные дыры могут служить удобными порталами для гиперпространственных путешествий
- Око Саурона или пончик? В интернете обсуждают фото чёрной дыры — Wylsacom
- Гаргантюа и червоточина
Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе
Каждый из них движется по самой прямой траектории, по какой только может в искривленном пространстве дыры, однако из-за искривления каждый луч изгибается. Один изогнутый луч движется к камере вокруг левого края тени, другой - вокруг ее правого края. Каждый луч несет камере собственное изображение звезды. Эти два изображения, как их видит камера, показаны на вставке на рисунке 8. Я обвел их красными кружками, чтобы отличить их от всех остальных звезд, видимых камерой. Заметьте, что правое изображение намного ближе к тени дыры, чем левое. Это потому, что его изогнутый луч прошел ближе к горизонту событий дыры. Сверху: Искривленное пространство невращающейся черной дыры на виде из балка и два луча света, движущиеся в искривленном пространстве от звезды к камере. Снизу: Преломленный гравитационной линзой звездный рисунок, видимый камерой. Можете распознать какие-нибудь пары?
Тень черной дыры на картинке состоит из направлений, из которых ни один луч не может прийти в камеру; посмотрите на треугольную зону, подписанную "тень" англ. Все лучи, которые "хотят быть" в тени, ловит и глотает черная дыра. По мере движения камеры вправо по орбите рисунок 8. На этом рисунке выделены две отдельные звезды. Одна обведена красным та же звезда обведена на рисунке 8. Другая - внутри желтого маркера. Мы видим два изображения каждой звезды: одно снаружи розовой окружности, другое внутри. Розовая окружность называется "кольцо Эйнштейна". По мере движения камеры вправо изображения движутся вдоль красной и желтой кривых.
Изображения звезд снаружи кольца Эйнштейна давайте назовем их первичными изображениями движутся так, как и можно было бы ожидать: плавно слева направо, но отклоняясь от черной дыры по мере движения. Можете объяснить, почему отклонение происходит от дыры, а не к ней? Изменение звездного узора, видимого камерой по мере ее движения вправо по орбите на рисунке 8. Это можно понять, вернувшись к верхней картинке на рисунке 8. Правый луч проходит рядом с черной дырой, так что правое изображение звезды находится рядом с ее тенью. В более ранний момент времени, когда камера находилась левее, правому лучу приходилось проходить еще ближе к черной дыре, чтобы изогнуться сильнее и добраться до камеры, так что правое изображение было совсем близко к краю тени. В противоположность этому, в более ранний момент времени левый луч проходил довольно далеко от дыры, так что был почти прямым и создавал изображение довольно далеко от тени. Теперь, если вы готовы, вдумайтесь в последующее движение изображений, запечатленное на рисунке 8. Линза Быстро Вращающейся Черной Дыры: Гаргантюа Пространственный вихрь, создаваемый быстрым вращением Гаргантюа, меняет гравитационную линзу.
Звездные узоры на рисунке 8. В случае Гаргантюа струение рисунок 8. Снаружи от внешнего кольца звезды струятся вправо например, вдоль двух красных кривых , как и в случае невращающейся черной дыры на рисунке 8. Однако пространственный вихрь сосредоточил струящийся поток в узкие высокоскоростные полосы вдоль заднего края тени дыры, резковато изгибающиеся у экватора. Вихрь также создал турбуленции в струении замкнутые красные кривые. Вторичное изображение каждой звезды видно между двумя кольцами Эйнштейна. Каждое вторичное изображение обращается по замкнутой кривой например, по двум желтым кривым , и обращается оно в направлении, противоположном красному струящемуся движению снаружи от внешнего кольца. Рисунок звездного струения, каким его видит камера рядом с быстро вращающейся черной дырой вроде Гаргантюа. В этой модели команды по визуальным эффектам Double Negative дыра вращается со скоростью 99,9 процентов от максимально возможной, а камера находится на круговой экваториальной орбите с окружностью вшестеро больше окружности горизонта.
Гиганты нашей Вселенной Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности. Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет. Опасное соседство Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями — расстояние между ними составляет примерно 3,5 миллиарда световых лет. Астрономы не исключают и той версии, что в ближайшем будущем эти два космических тела столкнутся, образовав сложную звездную структуру. По одной из версий, именно из-за сближения с подобным гравитационным гигантом движение планетарных систем в нашей галактике постоянно ускоряется, а звезды становятся горячее и активнее. Сверхмассивные черные дыры на самом деле белые В самом начале статьи был затронут весьма щекотливый вопрос: цвет, в котором перед нами постают самый мощные квазары, сложно назвать черным.
Невооруженным глазом даже на самой простенькой фотографии любой галактики видно, что ее центр — это огромная белая точка. Почему же тогда мы считаем, что это сверхмассивная черная дыра? Фото, сделанные через телескопы, демонстрируют нам огромное скопление звезд, которые притягивает к себе ядро. Планеты и астероиды, которые вращаются рядом, из-за непосредственной близости отражают, тем самым преумножая весь присутствующий рядом свет. Так как квазары не затягивают с молниеносной скоростью все соседние объекты, а лишь удерживают их в своем гравитационном радиусе, они не пропадают, а начинают еще больше пылать, ведь их температура стремительно растет. Что же касается обычных черных дыр, которые существуют в открытом космосе, то их название полностью оправдано. Размеры относительно невелики, но при этом сила гравитации колоссальна. Они попросту «съедают» свет, не выпуская из своих берегов ни единого кванта. Кинематограф и сверхмассивная черная дыра Гаргантюа — этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь.
Вы переводите звездолет на тщательно выбранную круговую орбиту над горизонтом черной дыры. Измеряя длину и период своей орбиты и подставляя результаты в формулы Ньютона — Кеплера, вы определяете массу черной дыры. Mслн в точном соответствии с характеристиками, приведенными в атласе черных дыр Уиткомба. Основываясь на безвихревом характере падения газа и пыли, вы заключаете, что у дыры отсутствует заметный момент количества движения. Это подсказывает вам, что ее горизонт имеет форму сферы с длиной большой окружности 1 млн 850 тыс.
Детально изучив с помощью приборов падение газа в дыру, вы готовитесь к спуску в окрестности ее горизонта: организуете лазерную связь между спускаемыми аппаратами и компьютером звездолета, после чего выводите спускаемый аппарат из отсека звездолета и постепенно замедляете его, переводя на спиральную орбиту, приближающуюся к горизонту. Все происходит в соответствии с вашими ожиданиями, до тех пор пока вы не достигли орбиты длиной 5 млн 500 тыс. Здесь возникают пугающие перемены! Плавное управление двигателями вместо плавного изменения вашей орбиты приводит к губительному падению по направлению к горизонту. В панике вы разворачиваете аппарат и, резко форсируя двигатели, вновь поднимаетесь на орбиту длиной больше 5 млн 500 тыс.
Но этот закон нарушается вблизи горизонта черной дыры и должен быть заменен законами ОТО Эйнштейна. А законы Эйнштейна предсказывают внезапное изменение круговых орбит там, где вы это испытали,— на орбите, длина которой втрое больше длины горизонта. Ниже все орбиты неустойчивы, как карандаш, поставленный на острие. Ничтожный импульс, переданный падающим газом или вызванный неправильным направлением тяги ракетных двигателей, приведет к падению спускаемого аппарата к горизонту; аналогично, такой же импульс, направленный не к дыре, а от нее, приведет к временному нырку назад, к орбите длиной, втрое превышающей длину горизонта, а затем — снова к стремительному падению к горизонту. Любой другой путь невозможен, пока вы не добьетесь тщательнейшей коррекции на случай таких нырков, детально проработав программу управления ракетными двигателями спускаемого аппарата.
Вам, человеку, вручную немыслимо столь аккуратно управлять двигателями, но это могу проделать я. Если хотите, я сохраню устойчивость орбиты спускаемого аппарата с помощью коррекции тяги, в то время как вы будете управлять спуском, меняя режим двигателей более грубо». Тем не менее вы принимаете предложение бортового компьютера, который затем объясняет, что неустойчивость — вовсе не единственная особенность вашей орбиты, появляющаяся при длине, втрое превышающей длину горизонта. Возникает также необходимость изменить направление тяги ваших ракетных двигателей. До сих пор, желая приблизиться по спирали к горизонту, вы были вынуждены, включая двигатели, разворачивать аппарат носом назад.
Теперь, внутри сферы с длиной большой окружности, втрое превышающей длину горизонта, вы сможете приближаться к горизонту, лишь если при включении двигателей развернете аппарат носом вперед. Последовательно уменьшающиеся орбиты будут требовать все больших моментов количества движения и больших значений орбитальной скорости. Итак, с помощью компьютера вы по спирали приближаетесь к горизонту, переходя от орбиты с длиной, превышающей длину горизонта в 3 раза, к орбите, длиннее горизонта в 2,5 раза, затем вv2; 1,6; 1,55; 1,51; 1,505; 1,501 раза... О, разочарование! По мере того как ваша скорость приближается к скорости света, длина вашей орбиты приближается к величине, в 1,5 раза превышающей длину горизонта.
Добраться до самого горизонта этим методом нет никаких надежд. Снова вы обращаетесь за помощью к компьютеру и снова он утешает вас, объясняя, что внутри сферы с длиной большой окружности, превышающей длину горизонта в 1,5 раза, вообще не может быть круговой орбиты. Силы притяжения там настолько сильны, что не могут компенсироваться центростремительными силами, даже если скорость движения по орбите равна скорости света. Если вы хотите еще приблизиться к горизонту, вы вынуждены компенсировать силу притяжения силой тяги ваших ракетных двигателей. Получив это предостережении вы советуетесь с компьютером, как реализовать подобную компенсацию.
Объясняете, что хотели бы приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта, где рассчитываете исследовать большинство эффектов, связанных с его влиянием, и откуда вы еще в состоянии выбраться. Но если вы удержите свой аппарат с помощью ракетных двигателей на такой орбите, какие ускоряющие силы вы будете ощущать? Глубоко обескураженный, вы включаете тягу и по спирали возвращаетесь обратно в чрево звездолета. После продолжительного отдыха, пятичасовых расчетов с использованием формул ОТО для черных дыр и трехчасового изучения атласа черных дыр Уиткомба вы, наконец, составляете план следующего этапа путешествия. Затем передаете во Всемирное географическое общество оптимистически полагая, что оно все еще существует отчет о своем исследовании черной дыры с массой 100 тыс.
Mслн, а в конце излагаете ваш план. Расчеты показывают, что чем больше черная дыра, тем меньшая сила тяги ракетных двигателей необходима, чтобы удержать вас на орбите длиной 1,0001 длины горизонта. Ближайшая такая дыра под названием Гаргантюа находится далеко за пределами области размерами в 100 тыс. Черная дыра находится возле квазара 8C 2975, отстоящего на 1,2 млрд св. Вы решаете отправиться к ней.
Используя укоренив 1 g на первой половине пути и такое же замедление на второй половине, вы затратите на путешествие 1,2 млрд лет по земным часам, но всего лишь 39 лет и 11 месяцев — по вашим. Если члены Всемирного географического общества не желают рисковать и на 2,4 млрд лет погрузиться в анабиоз, они будут вынуждены отказаться от приема вашего следующего сообщения. Гаргантюа И вот через 39 лет и 11 месяцев ваш звездолет тормозит в окрестностях Гаргантюа. Над головой вы видите квазар 8C 2975 с двумя ослепительными голубыми струями, выбрасываемыми из его центра, а под вами простирается черная бездна Гаргантюа. Из этих данных вы определяете длину ее горизонта — около 16 св.
Вот, наконец, та черная дыра, чью окрестность вы можете исследовать без невыносимых приливных сил или немыслимого ускорения ракетных двигателей! Перед тем, как начать свой спуск к горизонту, вы тщательно фотографируете гигантский квазар над вами и триллионы звезд, вращающихся вокруг Гаргантюа, а также миллиарды галактик, разбросанных по небу. Особенно тщательно вы фотографируете черный диск Гаргантюа под вами, размеры которого близки к размерам Солнца, наблюдаемого с Земли. На первый взгляд кажется, что этот диск полностью закрывает собой свет звезд и галактик, расположенных за ним. Однако, присмотревшись, вы замечаете, что гравитационное поле черной дыры действует подобно линзе, отклоняя световые лучи вдоль края горизонта и фокусируя их в тонкое яркое кольцо на окружности темного диска.
Там, в этом кольце вы видите несколько изображений каждой из загороженных диском звезд: одно, образованное лучами, отклоненными к левому краю диска; другое — лучами, отклоненными к правому краю; третье — лучами, совершившими полный оборот вокруг дыры и затем вышедшими в направлении на вас; четвертое — лучами, совершившими два оборота вокруг дыры... В результате возникает весьма сложная кольцевая структура, которую вы фотографируете во всех деталях для подробного изучения в будущем. Завершив фотосъемку, вы начинаете спускаться к горизонту. Но нужно запастись терпением: дыра настолько огромна, что, ускоряясь и замедляясь с ускорением 1 g, вы будете вынуждены потратить 10 лет по вашим часам, чтобы достичь цели — приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта. Спустившись, вы фотографируете изменения, видимые на небе вокруг вас.
Сильнее всего меняется диск под вами: постепенно он вырастает все больше и больше. Вы ожидаете, что он прекратит увеличиваться, когда закроет все небо под вами, оставив верхнюю часть неба чистой, как на Земле. Ничего подобного! Черный диск продолжает расти, поднимаясь по краям вашего звездолета и оставляя лишь непрерывно уменьшающееся отверстие над вами, через которое вы можете наблюдать внешнюю Вселенную. Это выглядит так, словно вы вошли в пещеру и продвигаетесь все глубже и глубже, так что вход представляется светлым пятнышком все меньших размеров.
В панике вы снова обращаетесь к компьютеру за помощью: «Неужели я неверно рассчитал траекторию? Не провалились ли мы сквозь горизонт? Неужто мы обречены?! Темнота охватывает почти все небо лишь из-за сильной фокусировки световых лучей, вызванной гравитационным полем черной дыры. Посмотрите на этот «указатель» почти над головой — это галактика 3C 295.
Но здесь, у горизонта Гаргантюа, гравитационное поле черной дыры действует на световые лучи, испущенные 3C 295, столь сильно, что они изгибаются, делая кажущееся положение этой галактики вместо горизонтального почти вертикальным, так что 3C 295 оказывается почти над головой». Успокоенный объяснениями компьютера, вы продолжаете свой спуск. На панели перед вами скачут цифры, указывая, сколько всего вы пролетели и длину каждого витка. Но вблизи горизонта с каждым пройденным километром сокращение длины орбиты становится все меньше и меньше: 6,2517... Такие отклонения от формулы Евклида возможны лишь в кривом пространстве — вы воочию наблюдаете кривизну, которая, в соответствии с предсказаниями ОТО Эйнштейна, должна появляться в сильном гравитационном поле черной дыры.
На заключительном этапе спуска вы вынуждены все больше увеличивать тягу двигателей, чтобы замедлить падение. Наконец, вы останавливаетесь, оставаясь на орбите, длина которой составляет 1,0001 длины горизонта. Последний километр пройденного пути уменьшил длину вашей орбиты всего лишь на 0,0628 км. С трудом двигая руками из-за причиняющего мучительную боль притяжения, превосходящего земное в 10 раз, вы готовите телескопы и камеры для длительных и детальных съемок. За исключением слабых вспышек вокруг от нагретого при столкновениях падающего газа, единственный доступный съемке источник излучения — это светлое пятно над вами.
Но в этом пятне сконцентрированы изображения всех звезд, обращающихся вокруг Гаргантюа, и всех галактик во Вселенной. В самом центре пятна расположены галактики, которые находятся над вами точно в зените. Одинаково необычные, цвета всех звезд и галактик сильно искажены. Галактика, которая, как вам известно, излучает в зеленом диапазоне спектра, кажется испускающей мягкое рентгеновское излучение; длина волны ее электромагнитного излучения уменьшилась с 500 до 5 нм за счет гигантского гравитационного притяжения черной дыры, находящейся под вами. После тщательной регистрации всех деталей светлого пятна над вами вы обращаете внимание на то, что происходит внутри звездолета.
Вы почти уверены, что здесь, столь близко от горизонта черной дыры, законы физики тоже изменяются и изменения повлияют на вашу собственную физиологию. Вы смотрите на своих спутников и спутниц — они выглядят обычно. Вы ощупываете друг друга — все нормально. Вы выпиваете стакан воды — за исключением влияния ускорения в 10 g, которое вы можете устранить, если решитесь нырнуть под горизонт, — вода льется нормально. Вы запускаете аргоновый лазер — он испускает такой же яркий пучок зеленого цвета, как и всегда.
Вы берете импульсный рубиновый лазер, зеркало, детектор излучения и высокоточные часы; включая и выключая лазер, вы измеряете время прохождения импульса от лазера до зеркала и обратно к детектору, вычисляя из результатов экспериментов скорость света. Все в звездолете выглядит нормально: так, словно вы стоите на поверхности планеты Гиперион, где сила притяжения вдесятеро больше земной. Если не смотреть через иллюминаторы звездолета наружу и не видеть странного пятна над головой и все поглощающей темноты вокруг, нельзя понять, где вы находитесь: возле горизонта черной дыры или на поверхности Гипериона. Кривизна пространства, обусловленная черной дырой, естественно, сохраняется и внутри корабля, так что, располагая достаточно точными инструментами, вы сможете обнаружить ее здесь. Вы ищете добровольцев для самоубийственного спуска в дыру.
Робот R4D5 с его пристрастием к приключениям и опасности вызывается с готовностью. В спускаемом аппарате вместе с ним находится импульсный лазер, зеркало, фотодетектор и часы: робот будет измерять скорость света по мере своего падения и передавать результаты измерений на корабль с помощью лазерных импульсов. R4D5 покидает звездолет и начинает измерения.
На самом деле это не настоящие изображения с телескопов, а модели или художественные концепты. С помощью специальных телескопов фиксировали рентгеновское излучение, которое создавало падающее в черные дыры вещество, и получали не такие красивые изображения , но зато находили места, где черные дыры есть. Еще один метод — долгое время наблюдать за поведением звезд в определенном регионе и сделать вывод, что там находится еще один объект, который не видно. И по движению этих звезд получалось, что в центре галактики есть черная дыра массой 3 миллиона масс Солнца».
Чтобы сделать этот снимок черной дыры, астрономы вели наблюдение в течение 10 дней в апреле 2017 года, потом еще два года обрабатывали полученные данные, которые хранились на специальных жестких дисках. Поскольку телескопы создавали огромное количество данных — примерно по 350 терабайт в день, — информацию нельзя было передать по интернету, поэтому ученые хранили их на десятках жестких дисков. И это снимок с невероятным масштабом Галактика M87.
Почему первое изображение черной дыры не похоже на то, что было в "Интерстеллар"
Они — результат гравитационного коллапса сверхмассивных звезд, приводящего к созданию настоящей сингулярности — объекта бесконечной плотности, появившегося вследствие сжатия целой звезды до крошечной точки. Эти горячие точки бесконечной плотности обладают настолько мощной гравитацией, что способны в буквальном смысле разрывать пространство-время. Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий. Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы. Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей.
Попробуйте сами и увидите, что огонь вас не будет обжигать.
Они заменили лучи света звуковыми волнами, ведь такой эксперимент намного проще провести в лабораторных условиях. Ученые создали систему с кольцом динамиков, которая скручивает звуковые волны, которые затем направляются к вращающемуся звукопоглотителю, сделанному из пены. Микрофоны спрятанные за этим диском, фиксируют сигналы, прошедшие через диск, который медленно увеличивает скорость вращения. Микрофоны экспериментальной установки Ученые смогли расслышать изменение частоты и амплитуды звуковых волн, прошедших через диск, что подтверждает теорию Пенроуза и Зельдовича верна. Ученые активно ищут и другие механизмы по добыче энергии.
Стивен Хокинг выдвинул гипотезу , что черные дыры могут высвобождать энергию за счет теплового излучения. Для подтверждения необходимы наблюдения, но температуры известных астрономам черных дыр слишком малы, чтобы излучение от них можно было зафиксировать — массы дыр слишком велики. Еще одним механизмом извлечения энергии из вращающейся черной дыры, основанным на электромагнитном взаимодействии, является процесс Блэнфорда-Знаека. Черные дыры окружены горячей плазмой, частицы которой обладают магнитным полем. Поскольку магнитные соединения и разъединения полей происходят за пределами горизонта событий, частицы плазмы разгоняются до скоростей, приближающихся к скорости света в двух разных направлениях: один поток плазмы может упасть в горизонт событий, а другой «ускользнуть». Падающая частица будет наделена отрицательной энергией, а выходящая за пределы черной дыры будет иметь положительную энергию, которую можно заставить работать.
Теоретически такие частицы могут служить безграничным источником свободной мощности до тех пор, пока черная дыра продолжает поглощать плазму с отрицательной энергией. Отличие от «процесса Пенроуза» заключается в том, что для образования частиц с отрицательной энергией требуется диссипация энергии магнитного поля, а у Пенроуза роль играла только инерция частиц.
Но весь фильм построен на научных исследованиях астрофизика Кипа Торна — крупнейшего в мире специалиста в области Черных дыр, Кротовых нор, гравитации и квантовой физики, и снят под его руководством. Несмотря на то, что для придания фильму зрелищности и преподнесения зрителю сложнейших теорий в приятной и понятной форме, приходилось прибегать к некоторым условностям и допущениям, оспаривать научную составляющую Интерстеллара — все равно, что спорить с самим Кипом Торном. Многие моменты фильма подробно объяснены в его книге «Наука Интерстеллара», которую он выпустил вскоре после съемок фильма. Рассмотрим ключевые спорные моменты и постараемся их описать простыми словами: Замедление времени Из теории общей относительности Эйнштейна следует, что гравитация деформирует пространство и время. Поэтому вблизи горизонта событий сверхмассивной Черной дыры Гаргантюа, время замедляется настолько сильно, что когда экипаж Рейнджера высаживается на планету Миллер, один час, проведенный там равен 7 годам, проведенным на Земле.
А так как космическая станция Эндюранс в это время оставалась на значительном расстоянии от горизонта событий, то на ней время текло почти так же медленно, как на Земле. Поэтому при возвращении с планеты, спустя 3 часа, оказалось, что Ромилли, оставшийся на станции, постарел на 23 года. Гигантские волны планеты Миллер На планете Миллер, наверно, было бы возможно зарождение жизни, если бы не гигантские волны, с которыми столкнулись Купер и его команда. Возникают они, опять же, из-за близости к горизонту событий Черной дыры. На планету действует огромная приливная сила, которая вытягивает планету вдоль силовых линий, а также создает мощный прилив со стороны Гаргантюа. Таким образом, на дальней стороне планеты, куда высадился экипаж, получается настолько низкий уровень воды, что по нему герои фильма могут ходить пешком. Но из-за того, что планета быстро вращается, а ее ось не совпадает с силовыми линиями Черной дыры, возникают волны, которые и настигают команду.
Также волны могут быть вызваны цунами вследствие тектонических сдвигов. Преодоление гравитации В Интерстелларе несколько раз приходится преодолевать гравитацию планет и Черной дыры, и очень остро стоит вопрос экономии топлива. События происходят в недалеком будущем, и, не смотря на то, что космические программы были свернуты, некоторые технологии получили развитие. Тем самым, у челноков Рейнджер и Лендер были достаточно мощные двигатели, но возможно, что на топливе, загрязняющем окружающую среду. Поэтому, в начале фильма Рейнджер с грузом долетел до орбиты Земли на обычных разгонных блоках, тем самым, не тратя свое топливо на преодоление гравитации Земли и не загрязняя атмосферу.
А все потому, что и вас, и ваши сигналы будет непреодолимо затягивать вниз. Как происходит искривление пространства? Представьте муравья человечество , живущего на детском батуте Вселенная , в середине которого лежит очень тяжелый камень.
Точно так же, как и поверхность батута, искривляется пространство нашей Вселенной. Наука за кадром» Черная дыра искривляет не только время, но и пространство: получается что-то вроде батута пространство Вселенной , которое прогнулось под лежащим на нем тяжелым камнем черная дыра с ее низшей точкой — сингулярностью. Ученые смогли выяснить это благодаря теории относительности Эйнштейна, которая однозначно предсказывает многие космические явления 5. Куда пропадает звезда, из которой образовалась черная дыра? Так черная дыра разрывает приблизившуюся к ней звезду. Когда звезда здесь — красный гигант приближается к дыре, гравитация дыры начинает растягивать и сжимать звезду. Спустя 12 часов звезда уже сильно деформирована. А через 24 часа она распадается на части, так как ее собственная гравитация не может противостоять гравитации черной дыры.
Наука за кадром» Известно, что черная дыра — результат коллапса другими словами, сжатия к центру массивной звезды. Это своего рода смерть звезды: ядерное топливо, благодаря которому поддерживается высокая температура, заканчивается, и звезда «схлопывается». А еще молодая черная дыра бесконечно искривляет время и пространство вокруг себя и постепенно поглощает звезду-родителя. Похожа ли черная дыра на вихрь?
Тайны черных дыр: 6 занимательных вопросов астрофизикам
Гаргантюа черная дыра - 85 фото | Узнайте о влиянии черной дыры Гаргантюа на время и пространство и как это можно соотнести с нашим миром. |
Почему первое изображение черной дыры не похоже на то, что было в "Интерстеллар" - Shazoo | Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса". |
Горизонт событий | Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра. |
ЧЕРНЫЕ ДЫРЫ
Иногда звезда обращается вокруг чёрной дыры на таком расстоянии, где приливные силы не так сильны, чтобы полностью разорвать звезду, но они всё равно стягивают с неё газ и материал. Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше. Черная дыра Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий. Фото: Ton 618 черная дыра. Астрофизики Event Horizon смогли зафиксировать тень черной дыры в галактике М87 — кольцо излучения и материи на краю горизонта событий. Черная дыра Гаргантюа – Самые лучшие и интересные посты на развлекательном портале
FAQ по Гаргантюа: реальна ли черная дыра в Интерстеллар?
Гаргантюа интерстеллар - 82 фото ★ | Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса". |
Гаргантюа черная дыра обои - 65 фото | Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше. |
Астрофизики впервые показали изображение черной дыры | Изучаем свойства чёрных дыр: откуда они берутся, каких размеров бывают и что в реальности сделали бы с планетой Миллер из «Интерстеллара». |
Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно
ЧЕРНАЯ ДЫРА НЕ СФЕРА! #shorts #новости #наука #космос #факты #физика #звезды #вселеннаяПодробнее. Может ли черная дыра стать машиной времени и отправить нас в прошлое?#чёрнаядыра #физика #космос. Обои 3840x2160 черная дыра, Гаргантюа, темный. Скачать. Согласно Научным Данным Она Образовалась Из Тёмной Звезды в Тёмные Века Во Времена Когда Не Было Времени и Если Залетит в Нашу Солнечную Систему Нас Ждут Бо. это, пожалуй, самые загадочные объекты во Вселенной. Черная дыра Интерстеллар 4k. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т.е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути.
Астрофизики впервые показали изображение черной дыры
Черная дыра Гаргантюа — это огромный астрономический объект, который находится в центре галактики M87 в созвездии Девы. Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли. При этом ученые выяснили, что аппетит дыры стабильно выше так называемого предела Эддингтона – количества материи, которую может поглотить черная дыра. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Фото: Ton 618 черная дыра. Гаргантюа — это сверхмассивная черная дыра, ставшая популярной в массовой культуре после фильма Интерстеллар, именно в неё затянуло Купера к концу фильма. Я постарался графически обыграть маршруты, будто это лучи света вокруг горизонта событий черной дыры.
Победит ли кордицепс человечество? Правда и вымысел в фантастических фильмах и сериалах
Измерения позволили протестировать общую теорию относительности и получить очередное доказательство существования черных дыр. Черные дыры прежде оставались гипотетическими объектами, хотя у астрономов и не оставалось сомнений в том, что они существуют. Ранее было получено большое количество косвенных свидетельств их существования, начиная от наблюдений тесных двойных систем и до гравитационных волн. Первое научно обоснованное изображение черной дыры получил французский астрофизик Жан-Пьер Люмине в 1979 году. Однако непосредственных наблюдений черных дыр до сих пор не существовало - черные дыры невелики, но при этом сильно удалены. Кроме этого, детальные наблюдения помогут проверить экзотические гипотезы, например гипотезу о кротовых норах - гипотетическую особенность пространства-времени, представляющую собой как бы тоннель в пространстве.
Есть версии, что с помощью таких порталов можно перемещаться в "другие миры". Тема подобных путешествий обыгрывается в научно-фантастическом фильме "Интерстеллар". Там кротовая нора помогла героям преодолеть огромные межзвездные расстояния.
На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей. Попробуйте сами и увидите, что огонь вас не будет обжигать.
Гаурав Ханн и его коллега Лиор Бурко занимаются вопросами физики черных дыр более двадцати лет. В 2016 году Кэролайн Маллари, одна из аспиранток Ханна, вдохновленная блокбастером режиссера Кристофера Нолана «Интерстеллар» решила научным методом проверить, действительно ли главный герой фильма смог бы выжить при падении в гигантскую вращающуюся черную дыру Гаргантюа, обладающую массой в 100 миллионов раз превосходящую солнечную. Сам фильм, напомним, был поставлен по книге нобелевского лауреата по астрофизике Кипа Торна. Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. Выдуманная черная дыра Гаргантюа из фильма «Интерстеллар» Даже прическу не помнет?
Компьютерная модель показала, что при любых условиях объект падающий во вращающуюся черную дыру не будет испытывать бесконечно больших эффектов деформации при прохождении сквозь так называемый внутренний горизонт сингулярности — область черной дыры, избежать которой не удастся в любом случае. Более того, при определенных обстоятельствах воздействие этих эффектов будет настолько мало, что объект сможет без проблем пройти сквозь эту сингулярность, а в некоторых случаях и вовсе не заметить никакого воздействия со стороны. Маллари также обнаружила особенность, которая в полной мере не привлекала к себе внимания раньше: эффекты сингулярности в контексте вращающейся черной дыры приведут к стремительному увеличению циклов растягивания и сжатия объекта, падающего в ее центр.
А как насчет самой большой солнечной системы во Вселенной? Что ж, ученые недавно обнаружили систему, которая действительно затмевает нашу собственную. Они назвали его «Гаргантюа» в честь вымышленной черной дыры в фильме «Интерстеллар». Система состоит из массивной звезды, которая примерно в 100 раз больше нашего Солнца, и меньшей звезды-компаньона, которая примерно в 10 раз больше нашего Солнца. И это еще не все — вокруг массивной звезды вращаются еще две планеты-гиганты.
Попав в неё, наш звездолёт не только не сможет вырваться назад, но и неизбежно попадёт в её центр.
В данном случае интересная особенность горизонта событий заключается в том, что с точки зрения наблюдателя никакой сингулярности не существует. Всё то, что попало в чёрную дыру для нашего внешнего мира навсегда останется у края горизонта событий. То есть, с нашей точки зрения, вся масса чёрной дыры сосредоточена не в центре, а по периферии. Звездолёт не только не достигнет центра, но и не пересечёт границы чёрной дыры. Для тех же, кто попал в чёрную дыру, пересечение горизонта событий пролетит со скоростью света. Путешествие до сингулярности будет проходить при ещё больших нарастающих скоростях, что также нарушает законы нашей физики. В конечном итоге любое тело, угодившее в чёрную дыру, неизбежно станет частью сингулярности. По её меркам пройдёт сравнительно небольшое время, тогда как за пределами дыры, известная для нас, Вселенная может исчезнуть. Ведь, согласно модели Хоккинга, испарения чёрной дыры происходит за невообразимо короткий срок.
Масштабы горизонта событий Горизонт событий, наряду с сингулярностью, является основным «атрибутом» чёрной дыры. Его радиус, называемый также гравитационным радиусом, или радиусом Шварцшильда, линейно зависит от её массы. Можно практически в уме оценить радиус любой чёрной дыры, умножив три километра на отношение её массы к массе солнца. Так чёрная дыра с земной массой будет размером с вишню. В тоже время размер сверхмассивных чёрных дыр будет исчисляться миллионами и даже миллиардами километров. Очевидно, что при таких колоссальных размерах, такие объекты не будут обладать столь губительными приливными силами. Поэтому мысль о том, что любое тело разорвёт ещё до подхода к чёрной дыре, является заблуждением. Получается, теоретически можно допустить путешествие человека вглубь чёрной дыры, о чём было рассказано выше. Самым интересным является то, что размер чёрной дыры с массой наблюдаемой Вселенной в разы меньше размера самой Вселенной.
Собственно, тут стоит вспомнить, оговоренную ранее разновидность горизонта событий, как завесу, окутывающую нашу наблюдаемую Вселенную. То есть, то, что, находится за горизонтом событий Вселенной, скрыто от наблюдателя подобно звездолёту, находящемуся в чёрной дыре. Вселенский горизонт событий Горизонт Вселенной и сфера Хаббла Горизонт событий наблюдаемой Вселенной является одним из трёх параметров, характеризующих её границы. Кроме него также существует сфера Хаббла и горизонт частиц. Радиус сферы Хаббла равен расстоянию, который прошёл свет за время жизни Вселенной — то есть около 14 млрд. Однако, в силу того, что наша Вселенная не статична, сфера Хаббла не является её границей.
Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет
А в ее центре находится относительно небольшая сверхмассивная черная дыра. Астрономов удивила необычайно высокая яркость галактики, характерная для активной фазы поглощения материи черной дырой. Дело в том, что когда звезды и другие объекты приближаются к черной дыре, она сначала разрывает их на части, а затем медленно поглощает. Яркость гибнущей звезды резко вырастает, и данный процесс можно наблюдать на протяжении продолжительного времени.
Ничтожный импульс, переданный падающим газом или вызванный неправильным направлением тяги ракетных двигателей, приведет к падению спускаемого аппарата к горизонту; аналогично, такой же импульс, направленный не к дыре, а от нее, приведет к временному нырку назад, к орбите длиной, втрое превышающей длину горизонта, а затем — снова к стремительному падению к горизонту. Любой другой путь невозможен, пока вы не добьетесь тщательнейшей коррекции на случай таких нырков, детально проработав программу управления ракетными двигателями спускаемого аппарата. Вам, человеку, вручную немыслимо столь аккуратно управлять двигателями, но это могу проделать я. Если хотите, я сохраню устойчивость орбиты спускаемого аппарата с помощью коррекции тяги, в то время как вы будете управлять спуском, меняя режим двигателей более грубо». Тем не менее вы принимаете предложение бортового компьютера, который затем объясняет, что неустойчивость — вовсе не единственная особенность вашей орбиты, появляющаяся при длине, втрое превышающей длину горизонта. Возникает также необходимость изменить направление тяги ваших ракетных двигателей. До сих пор, желая приблизиться по спирали к горизонту, вы были вынуждены, включая двигатели, разворачивать аппарат носом назад. Теперь, внутри сферы с длиной большой окружности, втрое превышающей длину горизонта, вы сможете приближаться к горизонту, лишь если при включении двигателей развернете аппарат носом вперед. Последовательно уменьшающиеся орбиты будут требовать все больших моментов количества движения и больших значений орбитальной скорости. Итак, с помощью компьютера вы по спирали приближаетесь к горизонту, переходя от орбиты с длиной, превышающей длину горизонта в 3 раза, к орбите, длиннее горизонта в 2,5 раза, затем вv2; 1,6; 1,55; 1,51; 1,505; 1,501 раза...
О, разочарование! По мере того как ваша скорость приближается к скорости света, длина вашей орбиты приближается к величине, в 1,5 раза превышающей длину горизонта. Добраться до самого горизонта этим методом нет никаких надежд. Снова вы обращаетесь за помощью к компьютеру и снова он утешает вас, объясняя, что внутри сферы с длиной большой окружности, превышающей длину горизонта в 1,5 раза, вообще не может быть круговой орбиты. Силы притяжения там настолько сильны, что не могут компенсироваться центростремительными силами, даже если скорость движения по орбите равна скорости света. Если вы хотите еще приблизиться к горизонту, вы вынуждены компенсировать силу притяжения силой тяги ваших ракетных двигателей. Получив это предостережении вы советуетесь с компьютером, как реализовать подобную компенсацию. Объясняете, что хотели бы приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта, где рассчитываете исследовать большинство эффектов, связанных с его влиянием, и откуда вы еще в состоянии выбраться. Но если вы удержите свой аппарат с помощью ракетных двигателей на такой орбите, какие ускоряющие силы вы будете ощущать? Глубоко обескураженный, вы включаете тягу и по спирали возвращаетесь обратно в чрево звездолета.
После продолжительного отдыха, пятичасовых расчетов с использованием формул ОТО для черных дыр и трехчасового изучения атласа черных дыр Уиткомба вы, наконец, составляете план следующего этапа путешествия. Затем передаете во Всемирное географическое общество оптимистически полагая, что оно все еще существует отчет о своем исследовании черной дыры с массой 100 тыс. Mслн, а в конце излагаете ваш план. Расчеты показывают, что чем больше черная дыра, тем меньшая сила тяги ракетных двигателей необходима, чтобы удержать вас на орбите длиной 1,0001 длины горизонта. Ближайшая такая дыра под названием Гаргантюа находится далеко за пределами области размерами в 100 тыс. Черная дыра находится возле квазара 8C 2975, отстоящего на 1,2 млрд св. Вы решаете отправиться к ней. Используя укоренив 1 g на первой половине пути и такое же замедление на второй половине, вы затратите на путешествие 1,2 млрд лет по земным часам, но всего лишь 39 лет и 11 месяцев — по вашим. Если члены Всемирного географического общества не желают рисковать и на 2,4 млрд лет погрузиться в анабиоз, они будут вынуждены отказаться от приема вашего следующего сообщения. Гаргантюа И вот через 39 лет и 11 месяцев ваш звездолет тормозит в окрестностях Гаргантюа.
Над головой вы видите квазар 8C 2975 с двумя ослепительными голубыми струями, выбрасываемыми из его центра, а под вами простирается черная бездна Гаргантюа. Из этих данных вы определяете длину ее горизонта — около 16 св. Вот, наконец, та черная дыра, чью окрестность вы можете исследовать без невыносимых приливных сил или немыслимого ускорения ракетных двигателей! Перед тем, как начать свой спуск к горизонту, вы тщательно фотографируете гигантский квазар над вами и триллионы звезд, вращающихся вокруг Гаргантюа, а также миллиарды галактик, разбросанных по небу. Особенно тщательно вы фотографируете черный диск Гаргантюа под вами, размеры которого близки к размерам Солнца, наблюдаемого с Земли. На первый взгляд кажется, что этот диск полностью закрывает собой свет звезд и галактик, расположенных за ним. Однако, присмотревшись, вы замечаете, что гравитационное поле черной дыры действует подобно линзе, отклоняя световые лучи вдоль края горизонта и фокусируя их в тонкое яркое кольцо на окружности темного диска. Там, в этом кольце вы видите несколько изображений каждой из загороженных диском звезд: одно, образованное лучами, отклоненными к левому краю диска; другое — лучами, отклоненными к правому краю; третье — лучами, совершившими полный оборот вокруг дыры и затем вышедшими в направлении на вас; четвертое — лучами, совершившими два оборота вокруг дыры... В результате возникает весьма сложная кольцевая структура, которую вы фотографируете во всех деталях для подробного изучения в будущем. Завершив фотосъемку, вы начинаете спускаться к горизонту.
Но нужно запастись терпением: дыра настолько огромна, что, ускоряясь и замедляясь с ускорением 1 g, вы будете вынуждены потратить 10 лет по вашим часам, чтобы достичь цели — приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта. Спустившись, вы фотографируете изменения, видимые на небе вокруг вас. Сильнее всего меняется диск под вами: постепенно он вырастает все больше и больше. Вы ожидаете, что он прекратит увеличиваться, когда закроет все небо под вами, оставив верхнюю часть неба чистой, как на Земле. Ничего подобного! Черный диск продолжает расти, поднимаясь по краям вашего звездолета и оставляя лишь непрерывно уменьшающееся отверстие над вами, через которое вы можете наблюдать внешнюю Вселенную. Это выглядит так, словно вы вошли в пещеру и продвигаетесь все глубже и глубже, так что вход представляется светлым пятнышком все меньших размеров. В панике вы снова обращаетесь к компьютеру за помощью: «Неужели я неверно рассчитал траекторию? Не провалились ли мы сквозь горизонт? Неужто мы обречены?!
Темнота охватывает почти все небо лишь из-за сильной фокусировки световых лучей, вызванной гравитационным полем черной дыры. Посмотрите на этот «указатель» почти над головой — это галактика 3C 295. Но здесь, у горизонта Гаргантюа, гравитационное поле черной дыры действует на световые лучи, испущенные 3C 295, столь сильно, что они изгибаются, делая кажущееся положение этой галактики вместо горизонтального почти вертикальным, так что 3C 295 оказывается почти над головой». Успокоенный объяснениями компьютера, вы продолжаете свой спуск. На панели перед вами скачут цифры, указывая, сколько всего вы пролетели и длину каждого витка. Но вблизи горизонта с каждым пройденным километром сокращение длины орбиты становится все меньше и меньше: 6,2517... Такие отклонения от формулы Евклида возможны лишь в кривом пространстве — вы воочию наблюдаете кривизну, которая, в соответствии с предсказаниями ОТО Эйнштейна, должна появляться в сильном гравитационном поле черной дыры. На заключительном этапе спуска вы вынуждены все больше увеличивать тягу двигателей, чтобы замедлить падение. Наконец, вы останавливаетесь, оставаясь на орбите, длина которой составляет 1,0001 длины горизонта. Последний километр пройденного пути уменьшил длину вашей орбиты всего лишь на 0,0628 км.
С трудом двигая руками из-за причиняющего мучительную боль притяжения, превосходящего земное в 10 раз, вы готовите телескопы и камеры для длительных и детальных съемок. За исключением слабых вспышек вокруг от нагретого при столкновениях падающего газа, единственный доступный съемке источник излучения — это светлое пятно над вами. Но в этом пятне сконцентрированы изображения всех звезд, обращающихся вокруг Гаргантюа, и всех галактик во Вселенной. В самом центре пятна расположены галактики, которые находятся над вами точно в зените. Одинаково необычные, цвета всех звезд и галактик сильно искажены. Галактика, которая, как вам известно, излучает в зеленом диапазоне спектра, кажется испускающей мягкое рентгеновское излучение; длина волны ее электромагнитного излучения уменьшилась с 500 до 5 нм за счет гигантского гравитационного притяжения черной дыры, находящейся под вами. После тщательной регистрации всех деталей светлого пятна над вами вы обращаете внимание на то, что происходит внутри звездолета. Вы почти уверены, что здесь, столь близко от горизонта черной дыры, законы физики тоже изменяются и изменения повлияют на вашу собственную физиологию. Вы смотрите на своих спутников и спутниц — они выглядят обычно. Вы ощупываете друг друга — все нормально.
Вы выпиваете стакан воды — за исключением влияния ускорения в 10 g, которое вы можете устранить, если решитесь нырнуть под горизонт, — вода льется нормально. Вы запускаете аргоновый лазер — он испускает такой же яркий пучок зеленого цвета, как и всегда. Вы берете импульсный рубиновый лазер, зеркало, детектор излучения и высокоточные часы; включая и выключая лазер, вы измеряете время прохождения импульса от лазера до зеркала и обратно к детектору, вычисляя из результатов экспериментов скорость света. Все в звездолете выглядит нормально: так, словно вы стоите на поверхности планеты Гиперион, где сила притяжения вдесятеро больше земной. Если не смотреть через иллюминаторы звездолета наружу и не видеть странного пятна над головой и все поглощающей темноты вокруг, нельзя понять, где вы находитесь: возле горизонта черной дыры или на поверхности Гипериона. Кривизна пространства, обусловленная черной дырой, естественно, сохраняется и внутри корабля, так что, располагая достаточно точными инструментами, вы сможете обнаружить ее здесь. Вы ищете добровольцев для самоубийственного спуска в дыру. Робот R4D5 с его пристрастием к приключениям и опасности вызывается с готовностью. В спускаемом аппарате вместе с ним находится импульсный лазер, зеркало, фотодетектор и часы: робот будет измерять скорость света по мере своего падения и передавать результаты измерений на корабль с помощью лазерных импульсов. R4D5 покидает звездолет и начинает измерения.
Модулируемый лазерный пучок сообщает вам: «299 800; 299 800; 299 800... Лазерное излучение превращается из зеленого в красное, инфракрасное, микроволновое, радиоволны, но сообщение остается неизменным: 299 800. А затем пучок пропадает: R4D5 ныряет под горизонт. Но ни разу в процессе своего падения он не регистрирует никаких изменений скорости света внутри спускаемого аппарата и не отмечает никаких отличий от физических законов, управляющих работой его электронных систем. Результаты этих экспериментов очень радуют вас. Еще в 1907 г. Эйнштейн выдвинул гипотезу базирующуюся в основном на философских соображениях , согласно которой законы физики должны быть одинаковы во Вселенной всюду и всегда, и это утверждение вскоре стало фундаментальным положением, получившим название «принципа эквивалентности Эйнштейна». В дальнейшем этот принцип не раз подвергался экспериментальной проверке, но никогда она не была столь наглядной и тщательной, как в вашем эксперименте в окрестностях горизонта Гаргантюа. Устав от десятикратных перегрузок, вы приступаете к подготовке следующего, завершающего этапа своего путешествия — к возвращению в свою Галактику — Млечный Путь. Вы передаете детальный отчет о своих исследованиях в окрестностях Гаргантюа, и поскольку вскоре намереваетесь двигаться со скоростью, близкой к скорости света, ваше сообщение поступит в Млечный Путь менее чем на год раньше вас по земным часам.
По мере удаления звездолета от Гаргантюа вы с помощью телескопа ведете тщательные наблюдения за квазаром 8C 2975. Его струи — длинные тонкие столбы горячего газа, выбрасываемые из ядра квазара,— имеют огромную длину 3 млн св. Направляя телескопы на ядро, вы видите источник энергии, обеспечивающей существование струй: толстый горячий «бублик» из газа размером около 1 св.
На первый взгляд кажется, что этот диск полностью закрывает собой свет звезд и галактик, расположенных за ним. Однако, присмотревшись, вы замечаете, что гравитационное поле черной дыры действует подобно линзе, отклоняя световые лучи вдоль края горизонта и фокусируя их в тонкое яркое кольцо на окружности темного диска. Там, в этом кольце вы видите несколько изображений каждой из загороженных диском звезд: одно, образованное лучами, отклоненными к левому краю диска; другое — лучами, отклоненными к правому краю; третье — лучами, совершившими полный оборот вокруг дыры и затем вышедшими в направлении на вас; четвертое — лучами, совершившими два оборота вокруг дыры... В результате возникает весьма сложная кольцевая структура, которую вы фотографируете во всех деталях для подробного изучения в будущем. Завершив фотосъемку, вы начинаете спускаться к горизонту. Но нужно запастись терпением: дыра настолько огромна, что, ускоряясь и замедляясь с ускорением 1 g, вы будете вынуждены потратить 10 лет по вашим часам, чтобы достичь цели — приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта. Спустившись, вы фотографируете изменения, видимые на небе вокруг вас.
Сильнее всего меняется диск под вами: постепенно он вырастает все больше и больше. Вы ожидаете, что он прекратит увеличиваться, когда закроет все небо под вами, оставив верхнюю часть неба чистой, как на Земле. Ничего подобного! Черный диск продолжает расти, поднимаясь по краям вашего звездолета и оставляя лишь непрерывно уменьшающееся отверстие над вами, через которое вы можете наблюдать внешнюю Вселенную. Это выглядит так, словно вы вошли в пещеру и продвигаетесь все глубже и глубже, так что вход представляется светлым пятнышком все меньших размеров. В панике вы снова обращаетесь к компьютеру за помощью: «Неужели я неверно рассчитал траекторию? Не провалились ли мы сквозь горизонт? Неужто мы обречены?! Темнота охватывает почти все небо лишь из-за сильной фокусировки световых лучей, вызванной гравитационным полем черной дыры. Посмотрите на этот «указатель» почти над головой — это галактика 3C 295.
Но здесь, у горизонта Гаргантюа, гравитационное поле черной дыры действует на световые лучи, испущенные 3C 295, столь сильно, что они изгибаются, делая кажущееся положение этой галактики вместо горизонтального почти вертикальным, так что 3C 295 оказывается почти над головой». Успокоенный объяснениями компьютера, вы продолжаете свой спуск. На панели перед вами скачут цифры, указывая, сколько всего вы пролетели и длину каждого витка. Но вблизи горизонта с каждым пройденным километром сокращение длины орбиты становится все меньше и меньше: 6,2517... Такие отклонения от формулы Евклида возможны лишь в кривом пространстве — вы воочию наблюдаете кривизну, которая, в соответствии с предсказаниями ОТО Эйнштейна, должна появляться в сильном гравитационном поле черной дыры. На заключительном этапе спуска вы вынуждены все больше увеличивать тягу двигателей, чтобы замедлить падение. Наконец, вы останавливаетесь, оставаясь на орбите, длина которой составляет 1,0001 длины горизонта. Последний километр пройденного пути уменьшил длину вашей орбиты всего лишь на 0,0628 км. С трудом двигая руками из-за причиняющего мучительную боль притяжения, превосходящего земное в 10 раз, вы готовите телескопы и камеры для длительных и детальных съемок. За исключением слабых вспышек вокруг от нагретого при столкновениях падающего газа, единственный доступный съемке источник излучения — это светлое пятно над вами.
Но в этом пятне сконцентрированы изображения всех звезд, обращающихся вокруг Гаргантюа, и всех галактик во Вселенной. В самом центре пятна расположены галактики, которые находятся над вами точно в зените. Одинаково необычные, цвета всех звезд и галактик сильно искажены. Галактика, которая, как вам известно, излучает в зеленом диапазоне спектра, кажется испускающей мягкое рентгеновское излучение; длина волны ее электромагнитного излучения уменьшилась с 500 до 5 нм за счет гигантского гравитационного притяжения черной дыры, находящейся под вами. После тщательной регистрации всех деталей светлого пятна над вами вы обращаете внимание на то, что происходит внутри звездолета. Вы почти уверены, что здесь, столь близко от горизонта черной дыры, законы физики тоже изменяются и изменения повлияют на вашу собственную физиологию. Вы смотрите на своих спутников и спутниц — они выглядят обычно. Вы ощупываете друг друга — все нормально. Вы выпиваете стакан воды — за исключением влияния ускорения в 10 g, которое вы можете устранить, если решитесь нырнуть под горизонт, — вода льется нормально. Вы запускаете аргоновый лазер — он испускает такой же яркий пучок зеленого цвета, как и всегда.
Вы берете импульсный рубиновый лазер, зеркало, детектор излучения и высокоточные часы; включая и выключая лазер, вы измеряете время прохождения импульса от лазера до зеркала и обратно к детектору, вычисляя из результатов экспериментов скорость света. Все в звездолете выглядит нормально: так, словно вы стоите на поверхности планеты Гиперион, где сила притяжения вдесятеро больше земной. Если не смотреть через иллюминаторы звездолета наружу и не видеть странного пятна над головой и все поглощающей темноты вокруг, нельзя понять, где вы находитесь: возле горизонта черной дыры или на поверхности Гипериона. Кривизна пространства, обусловленная черной дырой, естественно, сохраняется и внутри корабля, так что, располагая достаточно точными инструментами, вы сможете обнаружить ее здесь. Вы ищете добровольцев для самоубийственного спуска в дыру. Робот R4D5 с его пристрастием к приключениям и опасности вызывается с готовностью. В спускаемом аппарате вместе с ним находится импульсный лазер, зеркало, фотодетектор и часы: робот будет измерять скорость света по мере своего падения и передавать результаты измерений на корабль с помощью лазерных импульсов. R4D5 покидает звездолет и начинает измерения. Модулируемый лазерный пучок сообщает вам: «299 800; 299 800; 299 800... Лазерное излучение превращается из зеленого в красное, инфракрасное, микроволновое, радиоволны, но сообщение остается неизменным: 299 800.
А затем пучок пропадает: R4D5 ныряет под горизонт. Но ни разу в процессе своего падения он не регистрирует никаких изменений скорости света внутри спускаемого аппарата и не отмечает никаких отличий от физических законов, управляющих работой его электронных систем. Результаты этих экспериментов очень радуют вас. Еще в 1907 г. Эйнштейн выдвинул гипотезу базирующуюся в основном на философских соображениях , согласно которой законы физики должны быть одинаковы во Вселенной всюду и всегда, и это утверждение вскоре стало фундаментальным положением, получившим название «принципа эквивалентности Эйнштейна». В дальнейшем этот принцип не раз подвергался экспериментальной проверке, но никогда она не была столь наглядной и тщательной, как в вашем эксперименте в окрестностях горизонта Гаргантюа. Устав от десятикратных перегрузок, вы приступаете к подготовке следующего, завершающего этапа своего путешествия — к возвращению в свою Галактику — Млечный Путь. Вы передаете детальный отчет о своих исследованиях в окрестностях Гаргантюа, и поскольку вскоре намереваетесь двигаться со скоростью, близкой к скорости света, ваше сообщение поступит в Млечный Путь менее чем на год раньше вас по земным часам. По мере удаления звездолета от Гаргантюа вы с помощью телескопа ведете тщательные наблюдения за квазаром 8C 2975. Его струи — длинные тонкие столбы горячего газа, выбрасываемые из ядра квазара,— имеют огромную длину 3 млн св.
Направляя телескопы на ядро, вы видите источник энергии, обеспечивающей существование струй: толстый горячий «бублик» из газа размером около 1 св. Наблюдая вихревое движение газа вблизи дыры, вы приходите к заключению, что эта дыра, в отличие от тех, которые встречались вам прежде, вращается весьма быстро. Энергия, поддерживающая существование струй чудовищной длины, отчасти обусловлена вращением черной дыры, а отчасти — движением газового «бублика». Различие между Гаргантюа и 8C 2975 поразительно: почему Гаргантюа, масса и размеры которой в 1000 раз больше, чем у квазара, не захватывает вращающийся газовый «бублик» и гигантские струи? Дальнейшие исследования подсказывают ответ: один раз в несколько месяцев какая-либо звезда, обращающаяся вокруг черной дыры, входящей в состав квазара, подходит к дыре слишком близко и разрывается на части приливными силами черной дыры. Вещество из внутренней части звезды — газ массой около 1 Mслн — выбрасывается наружу и распределяется вокруг черной дыры, после чего постепенно опускается, группируясь в окружающий дыру «бублик». В результате он всегда заполнен газом, несмотря на постоянные потери — падение вещества на черную дыру и выброс в струях. Звезды подходят близко и к Гаргантюа. Но из-за ее больших размеров приливные силы снаружи от горизонта слишком слабы, чтобы разорвать звезду на части. Поэтому Гаргантюа «заглатывает» звезды целиком, без выбросов вещества из внутренней части звезды в окружающий ее газовый «бублик».
Не имея такого «бублика», Гаргантюа не может образовать струи или другие атрибуты квазаров. Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой. К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации. Аккуратные вычисления на бортовом компьютере предсказывают, что каждая из этих звезд должна была взорваться, пока вы путешествовали к Гаргантюа, образовав невращающуюся черную дыру массой около 24 Mслн общая масса выброшенного при взрыве газа составляет примерно 6 Mслн. Обе черные дыры должны теперь вращаться одна относительно другой, испуская в процессе вращения гравитационные волны. Эти волны будут передавать слабый импульс отдачи черным дырам, вызывая их чрезвычайно медленное, но неумолимое сближение по спирали. Небольшая коррекция ускорения звездолета позволит вам прибыть туда на последней стадии этого взаимного сближения: через несколько дней после прилета вы сможете наблюдать, как сливаются невращающиеся горизонты обеих черных дыр и как в результате образуется одна быстро вращающаяся дыра.
Две родительские дыры были непригодны для поселения, поскольку не обладали заметным моментом количества движения, но новорожденная, быстро вращающаяся дыра представляется идеальной для поселения. Итак, спустя 39 лет 11 мес. А вот и они, точно на месте! Измеряя траектории движения межзвездного водорода, падающего на дыры, вы убеждаетесь, что они не вращаются и масса каждой составляет около 24 Mслн в соответствии с предсказаниями компьютера. Длина горизонта дыры равна 440 км, дыры отстоят на 60 тыс. Подставляя эти значения в формулы Эйнштейна определяющие отдачу при испускании гравитационных волн , вы заключаете, что черные дыры должны слиться через три дня. Этого времени как раз достаточно для подготовки телескопов и съемочных камер к регистрации всех деталей события. Фотографируя искажения, вносимые гравитационной линзой в распределение звезд, расположенных за дырами, вы без труда проконтролируете их движение. Светлое кольцо сфокусированного излучения звезд, окружающее диск каждой черной дыры, обеспечит вам превосходный фотоснимок. Вам бы хотелось быть поблизости, чтобы видеть все отчетливо, но при этом достаточно далеко, чтобы не испытывать беспокойства из-за приливных сил.
Подходящим расстоянием, решаете вы, будет орбита, в 10 раз длиннее той, по которой обращаются черные дыры. В течение трех следующих дней дыры постепенно сближаются и ускоряют свое орбитальное движение. За день до слияния расстояние между ними уменьшается с 60 до 46 тыс. За час до слияния они находятся на расстоянии 21 тыс. За минуту до слияния расстояние между ними 7400 км, а период 0,61 с.
Из-за этого излучение от таких звезд исходит, как свет от маяка, и наблюдателями на Земле считывается как мерцание отдельных импульсов. Несмотря на то, что пульсаров нет в радиусе примерно 25 парсеков от ядра галактики, до недавнего времени это ученых не слишком смущало: многие просто считали, что пока нет техники, способной их обнаружить, ведь как и все нейтронные звезды, пульсары по размерам сравнимы с небольшим городом на Земле, хоть и обладают массой больше, чем у Солнца. По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться. Они, как считается, образуются в двойных звездных системах. Если одна, более массивная, звезда в процессе сверхновой отталкивает более мелкого компаньона и остается одна, она со временем теряет материал, замедляется и в конце концов не излучает сигнал, по которому ее можно было бы обнаружить. Но разве могут все системы в центре галактики быть двойными и все - пойти по одному пути развития? Черная дыра «на обед» Фото: Shutterstock.