Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается. Почему у воды поверхностное натяжение больше, чем у других жидкостей? #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать.
Глава 6 Поверхностное натяжение: капли и молекулы
Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как капля воды или мыльный пузырь.
Проанализируйте зависимость поверхностного натяжения данной жидкости от температуры, используя таблицу с. Как будет изменяться высота подъема жидкости в капиллярной трубке при изменении температуры жидкости? Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры с увеличением скорости движения молекул.
Расчет поверхностного натяжения в задачах Что такое поверхностное натяжение жидкости Поверхностное натяжение — характеристика поверхности раздела двух фаз, которые находятся в равновесии. Характеристика определяется работой образования единицы площади этой поверхности раздела. Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем вплоть до отчисления. Если нет возможности написать самому, закажите тут. Температуры чем больше температура, тем меньше натяжение.
Наличия ПАВ поверхностно-активных веществ.
Поверхностное натяжение Свойства поверхностного слоя жидкости. Поверхностное натяжение. Физическая химия.
Остались вопросы?
Высота подъема влаги зависит от радиуса капилляра и свойств жидкости, таких как поверхностное натяжение и вязкость. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). Поверхностное натяжение зависит от свойств молекул жидкости и внешних условий, таких как температура и давление. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой. Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул.
Почему зависит поверхностное натяжение от рода жидкости
Ну и что с того — для стирки ведь важен сам фактор снижения поверхностного натяжения. Объяснение, на мой взгляд, самое простое. Такое быстрое действие алкогольных напитков объясняется очень быстрым проникновением их в кровь благодаря низкому поверхностному натяжению, а точнее — благодаря ослабленным водородным связям в этих жидкостях. Старик приобретает прыткость молодого. Здесь я снова хочу напомнить читателям, что высокое поверхностное натяжение воды обеспечивают прежде всего водородные связи, имеющиеся между молекулами воды.
И если мы видим по конечному результату некоего воздействия на воду, что ее поверхностное натяжение значительно снижается, то можем предполагать, что в основе такого снижения лежит разрыв водородных связей между множеством молекул воды. Например, входя в воду, мы никак не чувствуем поверхностного натяжения этой воды и также не чувствуем суммарного действия водородных связей между молекулами воды. Но если вода замерзнет, то мы спокойно можем пройти, а то и проехать на машине по льду, — на поверхности воды нас будут удерживать водородные связи. А при температуре нашего тела оно равно 70 единицам.
Как видите, с повышением температуры воды все больше водородных связей разрывается. Почему хунзакутская вода имеет пониженное поверхностное натяжение — Фланаган об этом ничего не говорит. И неужели в хунзакутской воде нет больше ничего примечательного кроме пониженного поверхностного натяжения? Нам важнее было бы знать в каком количестве содержатся те или иные элементы.
А то, что в воде много серебра, тоже нельзя рассматривать как позитивное явление, так как с определенной концентрации этого элемента в воде начинается его негативное воздействие на организм более подробно об ионах серебра говорится в 6-ой главе. Странно в общем-то видеть, что исследователь столько времени затратил на разгадку причины благоприятного воздействия хунзакутской воды на организм человека, но при этом не определил химический состав этой воды, хотя мне кажется, что он все же производил анализы химического состава этой воды, иначе откуда бы он знал, что в ней находятся почти все химические элементы. Вероятнее всего, что он не пришел к определенному выводу, так как эта вода содержит очень мало минеральных веществ и ее можно было бы назвать маломинерализованной. Но и это определение еще мало о чем нам говорит, как мы знаем из предыдущей главы.
Поэтому Фланаган мог намеренно упустить вопрос о минерализации и уделил главное внимание поверхностному натяжению. Почему я пришел к такому выводу? А потому, что, опустив по сути дела вопрос о минерализации воды, Фланаган в итоге предлагает понижать поверхностное натяжение не обычной водопроводной воды, которой большинство людей пользуется, а только дистиллированной. Поэтому я считаю, что Фланаган не совсем логично заявляет, что позитивный биологический эффект дает вода, имеющая только одно качество — низкое поверхностное натяжение.
Следует учитывать и второе явное качество предлагаемой им воды — отсутствие в ней ионов кальция. Здесь уместно будет заметить, что вся грандиозная система Гималаев сложена из магматических пород, в которых практически нет кальция, а поэтому и все воды с этих гор являются мягкими и благоприятными для здоровья человека. Точно так же и Тибетское нагорье составляют магматические породы, и вТибете вода всегда была мягкая, а поэтому и так называемую высокоэффективную тибетскую медицину надо воспринимать через призму благодатной природной воды этих мест. Но стоит перенести методы этой медицины на нашу жесткую воду и результаты станут не столь впечатляющими.
То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности от того, насколько пленка деформирована , а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта. Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму рис. Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить рис. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна. На рамке образуется мыльная пленка рис. Будем растягивать эту пленку, действуя на перекладину подвижную сторону рамки с некоторой силой.
Заказать решение задач по физике Где проявляется поверхностное натяжение В жизни вы постоянно сталкиваетесь с проявлениями сил поверхностного натяжения. Так, благодаря ему на поверхности воды удерживаются легкие предметы рис. Монетка удерживается на поверхности воды благодаря силе поверхностного натяжения. Чтобы провести такой опыт, монетку нужно потереть между пальцев и осторожно опустить на поверхность воды. Когда вы ныряете, ваши волосы расходятся во все стороны, но как только вы окажетесь над водой, волосы слипнутся, так как в этом случае площадь свободной поверхности воды намного меньше, чем при раздельном расположении прядей в воде. По этой же причине можно лепить фигуры из влажного песка: вода, обволакивая песчинки, прижимает их друг к другу. Капля удерживается около небольшого отверстия до тех пор, пока сила поверхностного натяжения уравновешивает силу тяжести Стремлением жидкости уменьшить площадь поверхности объясняется и тот факт, что в условиях невесомости вода принимает форму шара, — при заданном объеме шарообразной форме соответствует наименьшая площадь поверхности.
Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить рис. Эксперимент по обнаружению сил поверхностного натяжения Почему же так произошло?
Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх. Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна рис. Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой. Таким образом, на перекладину действуют три силы — внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что Рис.
Вычисление силы поверхностного натяжения Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу. Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:. Изменение площади, в свою очередь можно определить следующим образом: , — длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна.
Если на жидкость не влияют посторонние силы или их действие крайне мало, ее элементы к форме сферы в виде капли воды или мыльного пузыря. Аналогичным образом начинают вести себя вода находясь в невесомости. Жидкость движется так, как будто по касательной к ее основной поверхности действуют факторы, сокращающие данную среду. Эти силы называются силами поверхностного натяжения.
Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости. Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать. Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть. Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов. Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь.
Как можно объяснить поверхностное натяжение жидкостей?
Их называют силами поверхностного натяжения. Проявления сил поверхностного натяжения Чтобы убедиться в реальном существовании сил поверхностного натяжения, достаточно провести простые опыты. Поместить мыльную пленку на рамку и увидеть, как она стремится уменьшить свою площадь. Опустить проволочное кольцо в мыльный раствор и подействовать на него силой, чтобы оторвать от поверхности. Таким образом, силовое и энергетическое определения поверхностного натяжения тесно взаимосвязаны между собой и дополняют друг друга. Давайте разберемся, от чего зависит это удивительное свойство. Зависимость поверхностного натяжения от условий Поверхностное натяжение определяется в первую очередь природой самой жидкости и того вещества, с которым она граничит обычно воздух или пар. Это связано с различной силой взаимодействия между молекулами.
Межмолекулярные силы определяют, насколько сильно молекулы притягиваются друг к другу и как они упорядочены на поверхности жидкости. Чем сильнее взаимодействие между молекулами, тем больше энергии требуется для разрыва этих связей и образования новой поверхности.
Это приводит к повышению поверхностного натяжения.
Как будет изменяться высота подъема жидкости в капиллярной трубке при изменении температуры жидкости? Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры с увеличением скорости движения молекул.
Поверхностное натяжение жидкости не зависит от температуры. Из теории я узнал, что молекулы воды испытывают силы взаимного притяжения. Именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри воды силы притяжения других молекул действуют со всех сторон, а молекулы на поверхности воды не имеют соседей снаружи, и их сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. Поверхностный слой находится в натяжении, которое называется поверхностным.
Благодаря этому натяжению поверхность жидкости ведет себя подобно упругой пленке. Для того, чтобы разорвать поверхность воды, требуется усилие, причем, как это ни странно, довольно значительное. Я решил определить существование поверхностного натяжения с помощью опытов. Водяная горка. Я взял стакан, наполнил его водой до краев и стал добавлять воду пипеткой по капельке. В процессе я понял, что эта процедура занимает много времени. Вода не скоро начнет выливаться из стакана. Поверхность воды приподнялась над краями стакана и ведет себя так, будто ее удерживает эластичная пленка. С увеличением объема жидкости пленка «растягивается», и образуется водяная «горка». Это явление в физике называется поверхностным натяжением.
Нетонущая скрепка. В этом опыте нам понадобятся стакан с водой и скрепка.
Поверхностное натяжение
Это происходит из-за поверхностного натяжения, которое стремится уменьшить площадь поверхности капли до минимума. Сферическая форма обеспечивает наименьшую площадь поверхности для заданного объема жидкости. Сферическая форма капли также объясняет, почему капли воды на поверхности не расплываются, а образуют шарики. Поверхностное натяжение делает поверхность капли похожей на эластичную пленку, которая позволяет капле сохранять свою форму. Влияние поверхностного натяжения на форму жидкости Поверхностное натяжение также влияет на форму жидкости, находящейся в контейнере или на поверхности. Если поверхностное натяжение жидкости выше силы тяжести, то жидкость будет образовывать выпуклую поверхность, например, в случае капли на поверхности или в контейнере. Однако, если поверхностное натяжение жидкости ниже силы тяжести, то жидкость будет образовывать вогнутую поверхность. Примером такой формы может быть жидкость, находящаяся в тонкой трубке или капилляре. В этом случае, поверхностное натяжение преодолевает силу тяжести и создает вогнутую форму. Поверхностное натяжение также может влиять на форму пузырьков воздуха, образующихся в жидкости.
Они также принимают сферическую форму, так как поверхностное натяжение стремится уменьшить площадь поверхности пузырька. Все эти примеры демонстрируют, как поверхностное натяжение влияет на форму жидкости и объясняют некоторые явления, которые мы наблюдаем в повседневной жизни. Практическое применение поверхностного натяжения Поверхностное натяжение имеет множество практических применений в различных областях науки и техники. Вот некоторые из них: Мыльные пузыри Поверхностное натяжение играет ключевую роль в образовании мыльных пузырей. Мыльные пузыри образуются из мыльного раствора, который содержит поверхностно-активные вещества. Поверхностно-активные вещества снижают поверхностное натяжение жидкости, позволяя пузырю образовываться и сохранять свою форму.
Молекулы воды имеют сильные силы сцепления благодаря их способности образовывать водородные связи друг с другом. Силы сцепления ответственны за поверхностное натяжение, склонность поверхности жидкости сопротивляться разрыву при растяжении или напряжении. Почему вода имеет сильное поверхностное натяжение и почему это важно? Вода имеет высокое поверхностное натяжение потому что водородные связи между молекулами воды сопротивляются растяжению или разрыву поверхности. Молекулы воды сильнее связаны друг с другом, чем с воздухом. Что вызывает высокое поверхностное натяжение, низкое давление пара и высокую температуру кипения воды? Многие уникальные и важные свойства воды, в том числе ее высокое поверхностное натяжение, низкое давление пара и высокая температура кипения, являются результатом водородная связь. Структура льда представляет собой правильный открытый каркас из молекул воды в шестиугольном расположении. Молекулы воды удерживаются вместе посредством водородных связей. Почему вода имеет большее поверхностное натяжение, чем глицерин? Из-за относительно высоких сил притяжения между молекулами воды из-за сети водородных связей. Как вы объясните тот факт, что вода имеет наибольшее поверхностное натяжение, но самую низкую вязкость? Вода имеет самое высокое поверхностное натяжение, но самую низкую вязкость. Поскольку молекулы воды маленькие, они движутся очень быстро, что приводит к большому избытку энергии и, следовательно, к высокому поверхностному натяжению и низкой вязкости. Смотрите также, как безопасно наблюдать за солнцем Чем отличается поверхностное натяжение воды? Чем отличается поверхностное натяжение воды от поверхностного натяжения большинства других жидкостей? Это выше. Имеет ли вода высокое поверхностное натяжение? Вода имеет высокую или низкую вязкость? Вязкость описывает внутреннее сопротивление жидкости течению и может рассматриваться как мера трения жидкости. Таким образом, вода «тонкая», имеющий низкую вязкость, а растительное масло «густое» с высокой вязкостью. Почему вещества с высоким поверхностным натяжением обладают высокой вязкостью? Почему вещества с высоким поверхностным натяжением также имеют высокую вязкость? Жидкости с более сильными межмолекулярными силами притяжения удерживают молекулы ближе друг к другу. Почему вода прилипает к поверхностям?
При увеличении температуры коэффициент поверхностного натяжения уменьшается, причем вдали от критической точки практически прямо пропорционально увеличению температуры коэфф поверх. Вплоть до нуля 1. Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь.
Равнодействующая же сил притяжения, действующих на молекулы поверхностного слоя, не равна нулю так как над поверхностью жидкости находится пар, плотность которого во много раз меньше, чем плотность жидкости и направлена внутрь жидкости. Под действием этой силы молекулы поверхностного слоя стремятся втянуться внутрь жидкости, число молекул на поверхности уменьшается, и площадь поверхности сокращается. Но все молекулы, разумеется, не могут уйти вовнутрь. На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое. Поверхностное натяжение зависит от рода жидкости и от ее температуры : с повышением температуры оно уменьшается.
Загадки поверхностного натяжения: почему жидкость любит себя?
Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры. Сила поверхности натяжения зависит от плотности жидкости. (следовательно и от рода жидкости). Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Почему у воды поверхностное натяжение больше, чем у других жидкостей? Поверхностное натяжение зависит от рода жидкости из-за различной структуры и взаимодействия молекул вещества. Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.
Род жидкости и поверхностное натяжение
- Поверхностное натяжение и адгезия (видео 17) | Жидкости | Физика - YouTube
- Поверхностное натяжение жидкости - формулы и определение с примерами
- Поверхностное натяжение
- Подборка опытов по поверхностному натяжению жидкостей | Пикабу
- Почему поверхностное натяжение зависит от вида жидкости
Капиллярные явления
Найди верный ответ на вопрос почему поверхностное натяжение зависит от рода жидкости по предмету Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Для чистых жидкостей поверхностное натяжение зависит от природы жидкости и температуры, а для растворов – от природы растворителя, природы и концентрации растворенного вещества. Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается. Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами.
Капиллярные явления
Например, мыло. Присутствия каких-либо примесей. Свойств газа, контактирующего с жидкостью. Чем вызвано поверхностное натяжение Причина возникновения явления поверхностного напряжения: молекулы, которые составляют верхний слой жидкости. Они создают взаимодействие между собой, возникает натяжение. Жидкости стремятся принять форму, которая требует минимальной площади поверхности.
Изменение площади, в свою очередь можно определить следующим образом: , — длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна. Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность Проявления сил поверхностного натяжения в природе Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара.
Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости рис. Вода в невесомости Рис. Мыльные пузыри Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды рис. Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести. Иголка на поверхности воды Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности.
Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться рис. Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.
Поверхностное натяжение растворов. Эффект поверхностного натяжения жидкости. Сила поверхностного натяжения жидкости формула. Поверхностное натяжение и капиллярные явления в природе. Природа поверхностного натяжения жидкости. Сила поверхностного натяжения. Поверхностное натяжение жидкости формула 10 класс. Формула поверхностного натяжения жидкости химия.
Поверхностное натяжение и смачивание. Коэффициент поверхности натяжения воды. Сила и коэффициент поверхностного натяжения. Формула коэффициента поверхностного натяжения жидкости вывод. Температурный коэффициент поверхностного натяжения формула. Коэффициент поверхностного натяжения определяется по формуле:. Свободная поверхность жидкости. Свободная поверхность жидкости примеры. Форма свободной поверхности жидкости. Поверхностное натяжение жидкости.
Поверхностное натяжение жидкостей смачивание капиллярные явления. Смачивающие и несмачивающие жидкости. Смачиваемость это в физике. Смачивание и несмачивание жидкостью твердого тела. Зависимость поверхностного натяжения от природы вещества. Эффект поверхностного натяжения. Зависимость поверхностного натяжения от пав. Поверхностное натяжение схема. Температурная зависимость поверхностного натяжения. Смачивание капиллярность.
Поверхностное натяжение и капиллярные эффекты. Поверхностная энергия жидкости формула. Поверхностная энергия определение и формула. Поверхностная энергия и поверхностное натяжение. Энергия поверхностного слоя жидкости формула. Определите факторы влияющие на поверхностное натяжение жидкости. Влияние температуры на поверхностное натяжение. Коэффициент поверхностного натяжения формула. Формулу для определения коэффициента поверхностного натяжения. Как вычислить коэффициент поверхностного натяжения.
Коэффициент поверхностного натяжения две формулы. Мыло и поверхностное натяжение. Поверхностное натяжение мыльной воды. Уменьшение поверхностного натяжения. Способы уменьшения поверхностного натяжения. Адсорбция от поверхностного натяжения. Поверхностное натяжение Размерность. Факторы влияющие на величину поверхностного натяжения. Поверхностное натяжение пав. Зависимость силы поверхностного натяжения от температуры.
Графики поверхностного натяжения. Зависимость поверхностного натяжения от температуры формула. График зависимости поверхностного натяжения от температуры. Влияние концентрации пав на поверхностное натяжение. Зависимость поверхностного натяжения от концентрации пав. Изотерма поверхностного натяжения водного раствора пав. Зависимость поверхностного натяжения растворов пав от концентрации.
Эти сильно полярные группы, создавая силовое поле, проявляют сродство к полярной фазе, а неактивная углеводородная цепь выталкивается из нее, обращаясь к менее полярной фазе, причем оси молекул ПАВ стремятся ориентироваться перпендикулярно к поверхности раздела. При насыщении слоя образуется мономолекулярный слой молекул толщиной в одну молекулу. Чем длиннее молекула, тем сильнее она ориентируется. Дюкло, а затем Траубе, изучая поверхностное натяжение водных растворов предельных органических кислот, нашли, что поверхностная активность этих веществ на границе раздела раствор — воздух тем больше, чем больше длина углеводородного радикала, причем в среднем она увеличивается в 3, 2 раза на каждую СН2-группу правило Дюкло-Траубе. Другая формулировка правила Дюкло-Траубе сводится к следующему: При возрастании длины цепи жирной кислоты в арифметической прогрессии, поверхностная активность увеличивается в геометрической прогрессии. Причина зависимости, установленной Дюкло и Траубе, заключается в том, что с увеличением длины углеводородной цепи уменьшается растворимость органических кислот и тем самым увеличивается стремление молекул перейти из объема в поверхностный слой. Вещества, увеличивающие поверхностное натяжение жидкости, называются поверхностно-неактивными или поверхностно-инактивными ПИВ. Поверхностно-инактивными веществами по отношению к воде являются неорганические электролиты — кислоты, щелочи, соли. Они взаимодействуют с водой сильнее, чем молекулы воды между собой. Явление изменения концентрации вещества в поверхностном слое жидкости в результате его самопроизвольного перехода из объема фазы называется адсорбцией. Адсорбционное равновесие определяется двумя процессами: притяжением молекул к поверхности под действием межмолекулярных сил и тепловым движением, стремящимся восстановить равенство концентраций в поверхностном слое и объеме фазы.
Поверхностное натяжение воды. НПК.
Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости. Следовательно, силы поверхностного натяжения будут действовать слабее. Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами.
Род жидкости и поверхностное натяжение
- Остались вопросы?
- Поверхностные явления
- Остались вопросы?
- Поверхностное натяжение воды. НПК. | Образовательная социальная сеть
- Поверхностное натяжение и его зависимость от температуры и рода жидкости
- Почему поверхностное натяжение зависит от рода жидкости? | Сайт вопросов и ответов