Нанометр (нм) равен В 1,000 раз меньше микрометра.
Конвертер: мкм в нм
Микроны в миллиметры | Микроны в Микрометры таблица. Микроны в Микрометры. Начало. Приращения. |
Перевод мкм в мм - 87 фото | 100 нанометров = 0.0000001 миллиметра. 1 нанометр = 0.000000001 метра Нанометр (от лат. nanos — карлик и др.-греч. μέτρον —мера, измеритель; русское обозначение: нм; международное: nm) — дольная единица измерения длины в. |
Нанометры в метр | Онлайн калькулятор | В нанометры единица № 1, 000.00 нм конвертируется в 1 мкм, один микрометр. |
микрометр (микрон) это сколько в километрах (км) онлайн конвертер, калькулятор. | Им Зм Эм Пм Тм Гм Мм км гм дам м дм см мм мкм нм пм фм ам зм им in ft yd mi лига kab. |
Как мм перевести в мкм?
для того что бы перевести единице 1 микрометр (микрон) соответствует = 1000 нанометров. Таким образом, отношения микрометру к нанометру равно 1000 к 1. Микрометр нанометр таблица. Микрон и нанометр соотношение. Преобразование длины из микрометр в нанометр в ваш телефон, планшет или компьютер. Ранее использовалось название "микрон", но с 1967 года оно было заменено на "микрометр". Чтобы узнать, сколько микрометров в миллиметре, достаточно вспомнить, что.
Сколько нанометров содержится в одном микрометре?
Расстояние обозначается латинской буквой S. Скорость — это расстояние, пройденное телом за единицу времени. Под единицей времени подразумевается 1 час, 1 минута или 1 секунда. Скорость обозначается латинской буквой v. Что такое ДМ по математике? Обозначения: русское «дм», международное «dm». Что такое 1 A?
Межсоединения транзисторов через эти слои образуют функциональные элементы например, схему «И-НЕ» , а из тех, в свою очередь, формируются более крупные структуры например, арифметический сумматор. Ещё два металлических слоя, ТМ0 и ТМ1 последний на фото не показан обеспечивают выход на процессорные контакты и коммуникации ЦП с системной логикой источник: Intel Здесь стоит на время отвлечься от поиска физического смысла в маркетинговых обозначениях нанометров для технологических процессов и задаться не менее важным вопросом: почему на протяжении десятков лет чипмейкеры вкладывают десятки и сотни миллиардов долларов в непрерывную миниатюризацию технологических норм? Ведь сам по себе переход от одного техпроцесса к другому вовсе не гарантирует немедленного прироста абсолютной производительности ЦП. В то же время поступательное сокращение технологических норм — удовольствие недешёвое. Чего ради городить столь недешёвый огород? Когда в 1965 г. Гордон Мур, в то время директор по НИОКР в компании Fairchild Semiconductor, формулировал своё знаменитое эмпирическое правило, известное ныне как «закон Мура», он прямо указывал : «Себестоимость полупроводникового элемента с немалой точностью обратно пропорциональна количеству компонентов на СБИС». Обезоруживающая в своей непосредственности диаграмма из регулярного доклада ITRS, наглядно демонстрирующая, как именно самосбывается пророчество Гордона Мура: новые инвестиции позволяют находить новые способы миниатюризации процессоров, новые ЦП обеспечивают прирост в производительности на каждый потраченный на них доллар, рынок для основанных на этих ЦП устройств расширяется, что обеспечивает дополнительный приток инвестиций — и всё повторяется снова источник: ITRS Иными словами, если примерно каждые два года удваивать число транзисторов на серийной микросхеме, себестоимость такого чипа для производителя будет оставаться примерно на прежнем уровне — тогда как продавать его по вполне объективным причинам можно будет значительно дороже. И никакого обмана клиентов: больше транзисторов на СБИС — больше операций в секунду для ЦП и ГП , выше плотность хранения данных для флеш-памяти , да ещё и энергоэффективность значительно лучше прежней, поскольку меньшие по габаритам полупроводниковые элементы не нуждаются в высоком напряжении. Поразительная ситуация: в выигрыше остаются все! Разработчики чипов, изготовители микросхем, поставщики оборудования для этой индустрии, программисты всех мастей, дистрибьюторы и продавцы — а в итоге ещё и конечные пользователи, которым всё это великолепие включая новое ПО, запускать которое на прежнем «железе» было бы нецелесообразно достаётся. Наглядное представление «закона Мура»: по горизонтали — годы, по вертикали — число транзисторов на кристалле ЦП логарифмическая шкала , каждая точка — тот или иной процессор источник: OurWorldInData Каждый новый этап технологического прогресса в микроэлектронике одних обогащает, другим предоставляет ещё более обширные возможности, третьим просто позволяет заниматься любимым делом за достойную плату. Неудивительно, что за последние полвека с лишним цифровизация всего и вся развивалась настолько бурно: чем больше потенциальных сфер применения вычислительной техники, тем шире рынок сбыта микросхем — и тем выгоднее всем причастным к их разработке, производству, продаже и применению, чтобы закон Мура продолжал соблюдаться. Фактически сложились все предпосылки для превращения подмеченной Гордоном Муром эмпирической закономерности в самосбывающееся пророчество : в середине 1960-х раз в год, а примерно через десять лет уже раз в два года число транзисторов на наиболее передовых на данный момент микросхемах непременно должно было удваиваться. Это оказалось настолько экономически оправданно, что под «закон Мура» верстались планы расширения полупроводниковых производств и оборудования для них, планировались сроки выпуска новых чипов и устанавливались целевые показатели для отделов продаж. Ещё один взгляд на «закон Мура»: особенно хорошо видно, как на фоне по-прежнему довольно уверенно растущего числа транзисторов с середины первого десятилетия 2000-х выходят на плато и рабочая тактовая частота, и потребляемая мощность ЦП, а количество приобретаемых на доллар транзисторов график на врезке и вовсе начало падать с 2014 года источник: ARTIS Ventures Увы, начиная со сравнительно недавних пор в свои права начала вступать физика: габариты отдельных транзисторов слишком опасно приблизились к пределу, отделяющему привычный нам макромир от области действия квантовых эффектов, которая подчиняется совсем иным законам. Примерно в 2012 году перестал расти важнейший для всей ИТ-отрасли экономический показатель — количество транзисторов в составе актуального на данный момент чипа , которые можно приобрести на один доллар, а ещё в начале 2000-х фактически на плато вышли предельно достижимые тактовые частоты процессоров и их теплопакеты под регулярной нагрузкой. Если принять размер передового в каждом поколении ЦП за постоянную величину, то удвоение числа транзисторов на этом чипе — допустим, их там равное количество по горизонтали и по вертикали — будет соответствовать уменьшению характерных размеров каждого из них примерно в 0,7 раза обратная величина к квадратному корню из двух. Самосбывающееся пророчество в действии: неумолимая поступь «закона Мура» подчиняется правилу 0,7 — по крайней мере должна подчиняться, чтобы снова и снова обеспечивать возобновление инвестиционного цикла источник: WikiChip Собственно, вот почему числовой ряд наименований технологических норм имеет в последние десятилетия именно такой вид : 90 нм — 65 нм — 45 нм — 32 нм — 22 нм — 15 нм… Сперва, где-то до конца 1990-х, производственные процессы в микроэлектронике действительно именовались в соответствии с физическими размерами минимального по габаритам полупроводникового элемента, который по этому процессу мог быть изготовлен. А именно — по протяжённости затвора gate полевого транзистора. Интересно, что в 1997 году Intel сознательно пошла на формальное увеличение декларируемого номинала техпроцесса по сравнению с реальными габаритами получаемых с его применением полупроводниковых устройств. Следующая производственная норма, «180 нм», также давала возможность получать транзисторы с меньшей длиной затвора — 0,13 мкм. Схема работы полевого транзистора. Слева: к затвору gate не приложено напряжение, поэтому исток source и сток drain изолированы; тока нет.
Для лучшего представления этой единицы длины можно привести следующие примеры: длины волн видимого человеком света лежат в диапазоне от 0,38 фиолетовый цвет до 0,78 мкм красный [4] ; диаметр эритроцита составляет 7 мкм [5] ; толщина человеческого волоса — от 40 до 120 мкм [6].
Инструмент для точных измерений линейных размеров. Толковый словарь Ожегова. Ожегов, Н. Зажимая измеряемый предмет винтом, по делениям на его головке определяют измеряемый размер. Точность измерений микрометра до 0,01 мм.
Нанометры в микроэлектронике: физика, маркетинг и здравый смысл
Для перевода микрометров в нанометры: нанометры = микрометры * 1000. Перевести микрометры (микроны) в миллиметры можно с помощью онлайн калькулятора. Микрометр является стандартной единицей, в микрометрах выражается допуск отклонений от заданного размера (по ГОСТу) в машиностроительном производстве и почти в любом производстве, где требуется исключительная точность размеров. Зная, что 1 миллиметр в 1000 раз меньше метра, получаем, что нанометр в миллиметрах запишется как 1 нм = 10-6 мм.
Единицы измерения длины
Что такое Um в измерении? | Пока же только наземные наблюдения во время затмений позволяют разом изучать структуру короны от края диска до нескольких радиусов Солнца в диапазоне длин волн от 300 нм до нескольких микрометров. |
Микрометры в нанометры перевод | Калькулятор измерений, который, среди прочего, может использоваться для преобразования нанометр в микрометр. |
Нанометры в микрометры
Сколько Нанометр в Микрометр (микрон) | Используйте этот простой инструмент, чтобы быстро преобразовать Нанометр в единицу Длина. |
Онлайн конвертер микрометры (μм) в нанометры (нм) | Чтобы преобразовать 1 микрометры в нанометры, выполните следующие действия: Мы знаем, что 1 нанометры = 0.001 микрометры. |
Перевести Микрометры в Нанометры (µm в nm) | Мкм это микрометр или микрон. Микрометр миллиметр сантиметр. |
Как считают нанометры, как их на самом деле надо считать, и почему не все с этим согласны | 1 микрометр [мкм] = 1000 нанометр [нм]. |
Микрометр | это... Что такое Микрометр? | Онлайн конвертер для преобразования микрон в миллиметры и обратно, калькулятор имеет высокий класс точности, историю вычислений и напишет число прописью, округлит результат до нужного значения. |
Калькулятор мкм в мм
Вы переводите единицы длина из микрометр в нанометр. 1 µm = 1000 nm. Во сколько раз 1 км больше 1 нм(нанометр)? На этой странице представлен самый простой онлайн переводчик единиц измерения микрометры в нанометры. для того что бы перевести единице 1 микрометр (микрон) соответствует = 1000 нанометров.
Как считают нанометры, как их на самом деле надо считать, и почему не все с этим согласны
это число * 10 в минус 6 степениУ нас число 0,0001-это 1*10 в минус 4 (откуда мы узнали, что минус 4 степень?! просто посчитали нули перед единицей), а нам нужно в минус шестой, то есть нам. Ранее использовалось название "микрон", но с 1967 года оно было заменено на "микрометр". Используйте этот простой инструмент, чтобы быстро преобразовать Нанометр в единицу Длина. Нанометр Нанометр в 1000 раз меньше микрометра. 1 Микрометр (микрон) равно 1 000 Нанометров.
Конвертер величин
Перед вами значение длины в других единицах измерения. Вводить можно числа или дроби -2. Более подробно читайте в правилах ввода чисел.
В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Кроме того, калькулятор позволяет использовать математические формулы. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.
После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение.
Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Наглядное представление «закона Мура»: по горизонтали — годы, по вертикали — число транзисторов на кристалле ЦП логарифмическая шкала , каждая точка — тот или иной процессор источник: OurWorldInData Каждый новый этап технологического прогресса в микроэлектронике одних обогащает, другим предоставляет ещё более обширные возможности, третьим просто позволяет заниматься любимым делом за достойную плату. Неудивительно, что за последние полвека с лишним цифровизация всего и вся развивалась настолько бурно: чем больше потенциальных сфер применения вычислительной техники, тем шире рынок сбыта микросхем — и тем выгоднее всем причастным к их разработке, производству, продаже и применению, чтобы закон Мура продолжал соблюдаться.
Фактически сложились все предпосылки для превращения подмеченной Гордоном Муром эмпирической закономерности в самосбывающееся пророчество : в середине 1960-х раз в год, а примерно через десять лет уже раз в два года число транзисторов на наиболее передовых на данный момент микросхемах непременно должно было удваиваться. Это оказалось настолько экономически оправданно, что под «закон Мура» верстались планы расширения полупроводниковых производств и оборудования для них, планировались сроки выпуска новых чипов и устанавливались целевые показатели для отделов продаж. Ещё один взгляд на «закон Мура»: особенно хорошо видно, как на фоне по-прежнему довольно уверенно растущего числа транзисторов с середины первого десятилетия 2000-х выходят на плато и рабочая тактовая частота, и потребляемая мощность ЦП, а количество приобретаемых на доллар транзисторов график на врезке и вовсе начало падать с 2014 года источник: ARTIS Ventures Увы, начиная со сравнительно недавних пор в свои права начала вступать физика: габариты отдельных транзисторов слишком опасно приблизились к пределу, отделяющему привычный нам макромир от области действия квантовых эффектов, которая подчиняется совсем иным законам. Примерно в 2012 году перестал расти важнейший для всей ИТ-отрасли экономический показатель — количество транзисторов в составе актуального на данный момент чипа , которые можно приобрести на один доллар, а ещё в начале 2000-х фактически на плато вышли предельно достижимые тактовые частоты процессоров и их теплопакеты под регулярной нагрузкой.
Если принять размер передового в каждом поколении ЦП за постоянную величину, то удвоение числа транзисторов на этом чипе — допустим, их там равное количество по горизонтали и по вертикали — будет соответствовать уменьшению характерных размеров каждого из них примерно в 0,7 раза обратная величина к квадратному корню из двух. Самосбывающееся пророчество в действии: неумолимая поступь «закона Мура» подчиняется правилу 0,7 — по крайней мере должна подчиняться, чтобы снова и снова обеспечивать возобновление инвестиционного цикла источник: WikiChip Собственно, вот почему числовой ряд наименований технологических норм имеет в последние десятилетия именно такой вид : 90 нм — 65 нм — 45 нм — 32 нм — 22 нм — 15 нм… Сперва, где-то до конца 1990-х, производственные процессы в микроэлектронике действительно именовались в соответствии с физическими размерами минимального по габаритам полупроводникового элемента, который по этому процессу мог быть изготовлен. А именно — по протяжённости затвора gate полевого транзистора. Интересно, что в 1997 году Intel сознательно пошла на формальное увеличение декларируемого номинала техпроцесса по сравнению с реальными габаритами получаемых с его применением полупроводниковых устройств.
Следующая производственная норма, «180 нм», также давала возможность получать транзисторы с меньшей длиной затвора — 0,13 мкм. Схема работы полевого транзистора. Слева: к затвору gate не приложено напряжение, поэтому исток source и сток drain изолированы; тока нет. Справа: под воздействием напряжения в полупроводнике возникает проводящий ток канал от истока к стоку источник: Georgia Institute of Technology Делалось это, разумеется, не из скромности, а ради того, чтобы «закон Мура» по-прежнему соблюдался без сучка, без задоринки, без отклонений — даже в сторону перевыполнения, — что лишний раз подчёркивает самосбывающийся характер этого технологического «пророчества».
Вот, кстати, почему недавнее переименование формально «10-нм» техпроцесса Intel в «Intel 7», «7-нм» в «Intel 4» и так далее, о котором мы упоминали выше, имеет под собой вполне логичное обоснование: компания просто навёрстывает данную прежде своим соперникам фору, возвращаясь к общепринятым темпам смены производственных норм. Представительный совет экспертов по СБИС включавший представителей региональных ассоциаций полупроводниковой индустрии — японской, американской, европейской, тайваньской, южнокорейской и китайской материковой до 2015 года регулярно обновлял своего рода руководство — точнее, свод рекомендаций — по развитию полупроводниковой технологии, The International Technology Roadmap for Semiconductors ITRS. В последнем издании этого свода явно указывается на чисто маркетинговый характер наименования технологических норм: в таблице с прогнозами по развитию логических СБИС до 2030 г. Выдержка из таблицы с прогнозами электрических характеристик грядущих процессоров, опубликованной в регулярном докладе ITRS за 2015 г.
Физический смысл в таком определении прослеживается: для СБИС в целом важны не сами по себе габариты отдельных её элементов, а возможность уверенно разделять проводники дорожки и полупроводники транзисторы , чтобы те и другие исправно работали должным образом. Исходный смысл определения масштаба производственной нормы как половинной ширины зазора между соседними металлическими дорожками на самом нижнем уровне чипа перечёркнутые прямоугольники обозначают контакты, соединяющие данный слой с вышележащими прост и очевиден источник: WikiChip Однако уже начиная с техпроцесса 45 нм, внедрённого в 2007 году, с физическим смыслом пришлось распрощаться. Именно тогда инженеры Intel создали традиционный планарный транзистор с длиной затвора 25 нм — а дальше, как выяснилось, уменьшать этот габарит не представляется возможным. Если не переходить от кремния к другим полупроводникам, конечно, — но это означает коренную перестройку всей микропроцессорной индустрии, на что пока ни решимости, ни денег у крупных игроков определённо нет.
Всё дело в физике: чтобы полупроводниковый прибор работал как должно, необходимо не допускать электрического пробоя его затвора в закрытом состоянии. По целой совокупности причин для основанного на кремнии даже с рядом улучшающих его свойства присадок полупроводника невозможно более, чем это было достигнуто в 45-нм техпроцессе, снижать рабочее напряжение, сокращать длину затвора и наращивать концентрацию примесей, препятствующих самопроизвольному прохождению заряда через канал пробою.
Как конвертировать микрометры в нанометры
Вероятно, вы не раз встречали в обзорах или технических характеристиках смартфонов такие понятия, как нанометры (нм), микрометры (мкм) или гигагерцы (ГГц). Мкм это микрометр или микрон. Микрометр миллиметр сантиметр. На этой странице мы можете сделать онлайновый перевод величин: микрометр (микрон) → нанометр. 1 Микрометр (микрон) равно 1 000 Нанометров. Произведите быстрое преобразование: 1 микрометр = 1000 нанометров, используя онлайн-калькулятор для преобразования показателей.
Как перевести микрометры в нанометры
- Нанометры в микроэлектронике: физика, маркетинг и здравый смысл / Offсянка
- Что меньше пикометра? - Справочник по компьютерам и ноутбукам
- Конвертер величин онлайн
- Перевести микрометры в нанометры - Перевод единиц длина онлайн
- Таблица преобразования
Перевести микрометры в нанометры
Основан на использовании рентгеновского излучения с длиной волны от 0,01 до 10 нанометров. В длинноволновой части диапазона наиболее используется участок длин волн 2,3 — 4,4 нм, соответствующий т. В коротковолновой части диапазона рентгеновские микроскопы применяют для исследований... Мембрана от лат. Инфракрасный спектрометр — прибор для регистрации инфракрасных спектров поглощения, пропускания или отражения веществ. В соответствии с типом поляризации, получаемой с помощью поляризаторов, они делятся на линейные и круговые.
Линейные поляризаторы позволяют получать плоскополяризованный свет, круговые — свет, поляризованный по кругу. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны частоты излучения, при этом максимум чувствительности приходится на 555 нм 540 ТГц , в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают... Химическая формула InSb.
В результате возникают две световые волны, которые могут интерферировать. Тонкоплёночная интерференция объясняет цветовую палитру, видимую в свете, отраженном от мыльных пузырей и масляных плёнок на воде. Это явление также является основополагающим механизмом, используемым в объективах камер, зеркалах, оптических фильтрах и антибликовых покрытиях... Подробнее: Интерференция в тонких плёнках Пьезоэлектричество — эффект продуцирования веществом кристаллом электрической силы при изменении формы. Сканирующий гелиевый ионный микроскоп СГИМ, гелий-ионный микроскоп, ионный гелиевый микроскоп, гелиевый микроскоп, HeIM — сканирующий растровый микроскоп, по принципу работы аналогичный сканирующему электронному микроскопу, но использующий вместо электронов пучок ионов гелия.
Linse, от лат. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стёкла, оптические стёкла, кристаллы, оптически прозрачные пластмассы и другие материалы. Фотоэлектронный умножитель ФЭУ — электровакуумный прибор, в котором поток электронов, излучаемый фотокатодом под действием оптического излучения фототок , усиливается в умножительной системе в результате вторичной электронной эмиссии; ток в цепи анода коллектора вторичных электронов значительно превышает первоначальный фототок обычно в 105 раз и выше.
Что такое 5 мкм? Микрон — это единица измерения, равная 0,001 миллиметра.
Выделяют следующие виды картриджей: 1 микрон мкм , 5 микрон мкм , 10 микрон мкм , 20 микрон мкм , 50 микрон мкм , 100 микрон мкм. Сколько мкм в 0 1 мм? Сколько микрон в миллиметре - в 1 миллиметре 1000 микрон.
Можно ли заглянуть в наномир? Обычным способом, как мы наблюдаем, например, микробов, нельзя. Потому что свет с некоторой долей условности можно назвать нановолнами. Длина волны фиолетового цвета, с которого начинается видимый диапазон, — 380—440 нм. Длина волны красного цвета — 620—740 нм. Длины волн видимого излучения составляют сотни нанометров.
При этом разрешение обычных оптических микроскопов ограничивается дифракционным пределом Аббе примерно на уровне половины длины волны. Большинство интересующих нас объектов еще меньше. Поэтому первым шагом на пути проникновения в наномир стало изобретение просвечивающего электронного микроскопа. Причем первый такой микроскоп был создан Максом Кноллем и Эрнстом Руска еще в 1931 году. В 1986 году за его изобретение была вручена Нобелевская премия по физике. Принцип работы такой же, как и у обычного оптического микроскопа. Только вместо света на интересующий объект направляется поток электронов, который фокусируется магнитными линзами. Если оптический микроскоп давал увеличение примерно в тысячу раз, то электронный уже в миллионы раз. Но у него есть и свои недостатки.
Во-первых, это необходимость получить для работы достаточно тонкие образцы материалов. Они должны быть прозрачны в электронном пучке, поэтому их толщина варьируется в пределах 20—200 нм. Во-вторых, это то, что образец под воздействием пучков электронов может разлагаться и приходить в негодность. Другим вариантом микроскопа, использующего поток электронов, является сканирующий электронный микроскоп. Он не просвечивает образец, как предыдущий, а сканирует его пучком электронов. Это позволяет изучать более «толстые» образцы. Обработка анализируемого образца электронным пучком порождает вторичные и обратноотраженные электроны, видимое катодолюминесценция и рентгеновское излучения, которые улавливаются специальными детекторами. На основании полученных данных и формируется представление об объекте. Первые сканирующие электронные микроскопы появились в начале 1960-х годов.
Сканирующие зондовые микроскопы — относительно новый класс микроскопов, появившихся уже в 80-е годы. Уже упомянутая Нобелевская премия по физике 1986 года была разделена между изобретателем просвечивающего электронного микроскопа Эрнстом Руска и создателями сканирующего туннельного микроскопа Гердом Биннигом и Генрихом Рорером. Сканирующие микроскопы позволяют скорее не рассмотреть, а «ощупать» рельеф поверхности образца. Полученные данные затем преобразуются в изображение. В отличие от сканирующего электронного микроскопа, зондовые используют для работы острую сканирующую иглу. Игла, острие которой имеет толщину всего несколько атомов, выступает в роли зонда, который подводится на минимальное расстояние к образцу — 0,1 нм. В ходе сканирования игла перемещается над поверхностью образца. Между иглой и поверхностью образца возникает туннельный ток, и его величина зависит от расстояния между ними. Изменения фиксируются, что позволяет на их основании построить карту высот — графическое изображение поверхности объекта.
Похожий принцип работы использует и другой микроскоп из класса сканирующих зондовых микроскопов — атомно-силовой. Здесь есть и игла-зонд, и аналогичный результат — графическое изображение рельефа поверхности. Но измеряется не величина тока, а силовое взаимодействие между поверхностью и зондом. В первую очередь подразумеваются силы Ван-дер-Ваальса, но также и упругие силы, капиллярные силы, силы адгезии и другие. В отличие от сканирующего туннельного микроскопа, который может применяться только для исследования металлов и полупроводников, атомно-силовой позволяет изучить и диэлектрики. Но это не единственное его преимущество.
Введите величину для перевода. После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны.
В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение.