Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели.
СУПЕРСИММЕТРИЯ
ВЗГЛЯД / «Вселенная удваивается» :: Общество | С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. |
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи | Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. |
Суперсимметрия и проблема калибровочной иерархии / Хабр | К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». |
Большой адронный коллайдер нанес еще один удар теории суперсимметрии. | Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля. |
Суперсимметрия и суперкоординаты
Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает.
Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия. Ждем запуска.
Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн. Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион.
Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время. Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой. Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. М-теория Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени. Тщательная классификация показала существование пяти различных последовательных теорий струн, и было непонятно, почему природа должна выбирать одну из пяти. И здесь в игру вступает М-теория. Во время второй революции струн в 1995 году физики предположили, что пять последовательных теорий струн на деле являются разными лицами уникальной теории, которая существует в одиннадцати пространственно-временных измерениях и называется М-теорией.
И теория суперсимметрии является одним из лучших кандидатов на замену см. К примеру, из частиц - суперпартнеров могла бы получиться темная материя", - говорит Уильям сатклифф, доктор философии имперского колледжа в Лондоне. Сатклифф вошел в крупный международный коллектив ученых, которые наблюдали за поведением кварков, субатомных частиц, составляющих протоны и нейтроны. Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму. Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк.
Во-первых, современные модели предполагают, что первичные черные дыры попадают в интервал масс от десяти до ста солнечных. Во-вторых, сигнал от их слияния может быть обнаружен исключительно при помощи гравитационного взаимодействия.
Суперсимметрия предполагает удвоение как минимум числа известных элементарных частиц за счет наличия суперпартнеров. Например, для фотона — фотино, кварка — скварк, хиггса — хиггсино и так далее.
Большой адронный коллайдер нанес еще один удар теории суперсимметрии.
Исследователям удалось исключить варианты теории, согласно которым масса суперпартнера глюона — глюино — меньше 700 гигаэлектронвольт. Вместе с тем, многие ученые полагают, что отсутствие признаков суперсимметрии в данных коллайдера не является дурным предзнаменованием для этой теории, которая сама по себе состоит из сотен разных вариантов, зависящих от сочетаний десятков возможных параметров. Его коллега, итальянский физик Томмазо Дориго полагает, что есть основания для беспокойства. Суперсимметрия должна нарушаться, чтобы суперпартнеры стали тяжелее «обычных» частиц. Причем это нарушение должно происходить при той же энергии, при которой нарушается электрослабая симметрия, в точке, когда переносчики слабого взаимодействия — W- и Z-бозоны — становятся массивными, а переносчики электромагнитного — фотоны — остаются безмассовыми. Считалось, что такое нарушение происходит при энергиях около 250 гигаэлектронвольт. Однако результаты БАКа показывают, что «точка разрыва» находится выше этого значения.
Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными. Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц. Однако на данный момент число столкновений, которые бы удовлетворяли всем этим условиям, относительно невелико. Участники коллаборации CMS в статье, опубликованной в электронной библиотеке Корнеллского университета, говорят лишь о новых ограничениях, которые накладываются на один из вариантов теории суперсимметрии. Ученые, работающие с детектором ATLAS, пытаются обнаружить рождение суперпартнеров, фиксируя рождение электронов и мюонов с потерей энергии. Таких событий фиксировалось еще меньше.
Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов. Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными. Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц. Однако на данный момент число столкновений, которые бы удовлетворяли всем этим условиям, относительно невелико. Участники коллаборации CMS в статье, опубликованной в электронной библиотеке Корнеллского университета, говорят лишь о новых ограничениях, которые накладываются на один из вариантов теории суперсимметрии. Ученые, работающие с детектором ATLAS, пытаются обнаружить рождение суперпартнеров, фиксируя рождение электронов и мюонов с потерей энергии.
Более аккуратно физики говорят, что каждый тип нейтрино электронное, мюонное и тау представлен квантово-механической смесью трех массовых состояний — или, упрощая, смесью трех частиц. Мы пытаемся разобраться, как реально все устроено. Сначала мы производим нейтрино — хорошо сфокусированный протонный сгусток сбрасывается на мишень, из мишени вылетают пи-мезоны, которые при распаде рождают мюоны и нейтрино. После выхода из распадного тоннеля мюоны останавливаются, а нейтрино пролетают 800 км под землей, и маленькая часть из них регистрируется детектором. Поскольку каждое нейтрино состоит из «частиц» с разными массами, которые двигаются с разными скоростями, то после пролета большого расстояния квантовомеханическое смешивание приводит к изменению типа нейтрино, осциллирующему с расстоянием. Это называется нейтринными осцилляциями. Цель нашего эксперимента — посмотреть, какое количество разных типов нейтрино мы реально регистрируем, разобраться с их массовыми состояниями и выяснить, как они смешиваются. Они же «бесплатные». Сейчас мы используем уже очень большой детектор — 14 килотонн, но поскольку взаимодействие нейтрино с веществом очень слабое, только очень маленький процент частиц регистрируется даже в таком большом детекторе. Его стоимость оценивается примерно в 3 млрд долларов. Сейчас мы находимся на этапе разработки проекта. LBNЕ подразумевает создание и установку детектора в 40 кт на глубине по 1,5 км и увеличение мощности пучка, с помощью которого производятся нейтрино, с 700 кВт до 1,2—2 МВт. Это огромная мощность! И вся эта мощность сконцентрирована в мишени для производства нейтрино, которая представляет собой маленький цилиндр длиной порядка метра и диаметром сантиметр. При этом пучок сфокусирован в еще меньший размер, то есть плотность энергии еще выше. Параметры пучка и мишени выбраны так, что мишень находится на грани взрыва. Чем больше энергия, тем больше «открывательная» способность. Но максимальная энергия ограничена размерами ускорителя. Хотя intensity frontier эксперименты не могут доставить такую же детальную картину, как energy frontier, они могут видеть эффекты, которые недоступны экспериментам в energy frontier, проводя измерения редких процессов с очень высокой точностью. LHC успешно работает, и сейчас обсуждается возможность строительства установки еще большего размера. На данном этапе определенности нет, все упирается в стоимость. Решение может быть принято как через 5 лет, так и через 50. Для понимания: мы говорим про установки, стоимость которых колеблется в пределах от 5 до 20 млрд долларов и которые потребляют 0,5—1ГВт. Даже по меркам физики высоких энергий — это огромные затраты. Если мы делаем машину на порядок больше по энергии, то потребляемая мощность и стоимость будут в три-четыре раза выше. Гигаватт энергии расходует солидный город. А стоимость также зависит от того, что учитывать. В американской системе подсчета, которая учитывает все, стоимость будет раза в два больше, чем в европейской. В CERN финансирование фиксировано правительствами европейских стран. На этот бюджет они ничего заметно большего, чем LHC, построить не могут. До сих пор стоимости были более или менее посильными. Tevatron в современных деньгах стоит шесть млрд долларов, у LHC — сопоставимая цифра. LHC в четыре раза длиннее, но за счет развития технологий, массового производства и накопленного опыта стоимость LHC получилась дешевле на метр, однако полные стоимости сопоставимы. Если говорить про строительство следующей машины, на мой взгляд, правильно было бы вкладываться в эксперименты с высокой светимостью. Их можно проводить на LHC его параметры позволяют это сделать , можно создавать новые установки на гораздо меньших энергиях. Главное, проводить прецизионные измерения, которые позволяют увидеть отклонения от предсказаний Стандартной модели. По величине этих отклонений можно судить, где находится «новая физика».
Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел
Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель.
Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей.
Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили.
Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма.
Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн.
И ничего не было бы больше. Хорошо, что науке предстоит ещё такое открывать, что мы пока и не представляем себе этого! LHC себя ещё покажет.
Она больше ставит вопросов, чем дает ответов — она говорит, что Вселенная намного сложнее, чем мы думали Одна из задач, которую ученые пытаются решить с помощью БАК, — это получение экспериментального подтверждения теории Суперсимметрии. Эта теория, предложенная в 1973 году Юлиусом Вессом и Бруно Зумино, предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Теория позволяет ответить на вопрос, почему Вселенная имеет значительно большую массу, нежели ее дает сложение всех наблюдаемых в ней космических объектов. Однако необходимых подтверждений мы не получили», — сказала она. Впрочем, Шиарс оговорилась, что опровергать теорию она бы пока не взялась, и отметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. По словам профессора Воробьева, о результатах экспериментов можно будет точно говорить в конце 2012 года Фото: hepd.
Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Профессор Крис Паркс, который является представителем британской части эксперимента под кодовым обозначением LHCb, говорит: "Суперсимметрия, возможно, не умерла как теория, но эти последние результаты свидетельствуют, что она тяжело больна". Суперсимметрия под вопросом Теория суперсимметрии предполагает существование более массивных версий элементарных частиц по сравнению с наблюдаемыми. Их обнаружение помогло бы объяснить, почему галактики вращаются быстрее, чем это можно объяснить Стандартной моделью. Физики высказывали догадки, что галактики содержат некую невидимую и необнаружимую обычными средствами темную материю, состоящую из суперчастиц. Поэтому их масса в реальности больше, чем следует из астрономических наблюдений, и поэтому они вращаются быстрее.
Они измерили скорость распада частицы под названием мезон Bs на две частицы - мюоны. Впервые такой распад наблюдался в искусственных условиях, и по подсчетам ученых, на каждый миллиард распадов этого мезона приходится всего три распада такого рода. Если бы сверхпартнеры обычных частиц существовали в реальности, число таких распадов было бы куда выше.
Поиски суперсимметрии на коллайдере принесли новую интригу
Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает. Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот.
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
А на этой гипотезе тоже уже успели понастроить различных теорий и предположений. Весь этот мусор, наконец, пойдёт в корзину истории и я рад этому, потому что давно пишу об ошибочности этих теорий. Но у официальной физики нет им альтернативы. Вернее, альтернативных теорий довольно много, но они не признавались и не проверялись, так как противоречили общепризнанным и сколько теперь понадобится времени на отсев, проверку, а главное объединение других теорий сказать сложно. По моей теории квантового пространства за пол года так и не прислали ответа не из РАН, не из Физико-технологического института, не из Китайской Академии. А жаль...
Хотя они может ещё про неё и вспомнят. Почему "однобокая", да потому что "привязана" только к восприятию исключительно "нашего" мира, который определяется "на ощуп". В "нашем" мире точно нет суперсимметрии. И темная материя с темной энергией, а также с виртуальными частицами никак в этот "однобокий" мир не вписываются. Главное понять, что есть реальный физический мир.
Существование одной из частиц новой теории позволяет решить проблему CP-симметрии, убирая разногласия и делая сильные взаимодействия полностью симметричными. Более того, эта же дополнительная частица может являться частицей темной материи, загадочной субстанции, на долю которой приходится подавляющая часть материи нашей Вселенной. Естественно, сейчас еще нет и не может существовать единого мнения насчет того, какая именно из теорий, объясняющих малую массу бозона Хиггса или проблему CP-симметрии сильных взаимодействий, является истинной, а какие теории не имеют шанса на существование. Боле того, наша новая теория предсказывает некоторые особенности, которые могут облегчить жизнь ученым, производящим поиски частиц темной материи». Как уже упоминалось выше, сейчас существует множество теорий, призванных объяснить малую массу бозона Хиггса. Эти теории включают в себя релаксационную полевую модель relaxion field model , базирующуюся на одном из новых явлений квантовой космологии, «эгоистичную» модель Хиггса.
В частности, суперсимметричная квантовая механика позволяет находить точные решения весьма нетривиальных уравнений Шрёдингера. Суперсимметрия оказывается полезной в некоторых задачах статистической физики например, суперсимметричная сигма-модель. Основная статья: Суперсимметричная квантовая механика Суперсимметричная квантовая механика отличается от квантовой механики тем, что включает супералгебру SUSY, в противоположность квантовой теории поля. Суперсимметричная квантовая механика часто становится актуальной при изучении динамики суперсимметричных солитонов, и из-за упрощенного характера полей, которые зависят от времени а не пространства-времени , в этом подходе достигнут большой прогресс, и эта теория теперь изучается самостоятельно. Квантовая механика SUSY рассматривает пары гамильтонианов, которые находятся в определённом математическом отношении, которые называются гамильтонианами-партнерами. А соответствующие члены потенциальной энергии, входящие в гамильтонианы, тогда известны как потенциалы-партнеры. Основная теорема показывает, что для каждого собственного состояния одного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией. Этот факт можно использовать для вывода многих свойств спектра собственных значений. Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам.
Частицы, выходящие за рамки Стандартной модели, могут помочь объяснить загадочные явления, как природа темной материи, загадочной и широко распространенной субстанции, о существовании которой физики знают, но её еще предстоит обнаружить. А что такое мюоны? Вся наша Вселенная построена из частиц размером меньше атома. Некоторые из этих частиц состоят из еще более мелких частиц, другие уже не дробятся. Это и есть элементарные частицы. Мюоны как раз и являются такими элементарными частицами: они похожи на электроны, только в 200 раз тяжелее. В ходе эксперимента Muon g-2 частицы разгонялись по 14-метровому кольцу в циркулярном коллайдере под воздействием мощного магнитного поля. Согласно известным законам физики, это должно было приводить к колебанию мюонов с определенной частотой. Однако физики обнаружили, что частота их колебаний оказалась выше предполагаемой. По их мнению, это может свидетельствовать о действии силы, ранее не известной науке. Никто не знает точно, что еще, кроме воздействия на мюон, подвластно этой новой силе. Иными словами, поведение мюонов выходило за рамки того, что знают ученые. Физики задумались, а не причастна ли тут какая-то еще неизвестная, пятая сила? О какой пятой силе идет речь? Вся наша жизнь подчинена законам физики. Все эти силы, с которыми мы имеем дело каждый день, можно свести к четырем фундаментальным категориям взаимодействий: электромагнитное, сильное, слабое и гравитационное. Четыре фундаментальных силы определяют взаимодействие всех объектов и частиц во Вселенной. К примеру, сила тяжести, она же гравитация, заставляет объекты падать на землю и не позволяет отрываться от нее без приложения другой силы. Но, как утверждает международная команда физиков, в ходе исследований в рамках эксперимента Muon g-2, проводившихся в лаборатории городка Батавия рядом с Чикаго, они, возможно, обнаружили новую, пятую силу природы. Теоретики полагают, что она может быть каким-то образом связана с еще не открытой субатомной частицей.
Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел
Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии. В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии.
Теория суперструн популярным языком для чайников
Суперсимметрия, возникшая независимо в теории струн, «убила» тахион. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот.
Экзамены суперсимметричной модели вселенной 1978
Суперсимметрия — это сопряженная симметрия пространства и времени. Ее можно интегрировать с теорией относительности Эйнштейна для предоставления полной информации о законах природы. Теория струн гласит, что вместо частиц, Вселенная состоит из микроскопических струн. Такая точка зрения может заменить нынешнее объяснение об устройстве Вселенной, Стандартной модели, разработанной в 1970-х годах, но в ней есть пробелы, которые включают гравитацию.
Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна.
Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми.
Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали.
Синельников, А. Ахиезер — ведущие ученые УФТИ. В 1956 году по окончании аспирантуры Д.
Здесь он сложился и вырос как ученый, защитив кандидатскую 1958 г. Научные интересы Дмитрия Васильевича охватывают широкий круг исследований в теоретической физике. Довольно рано сформировался его научный стиль, отличающийся глубоким и оригинальным подходом к исследуемым вопросам. Уже в первых его работах проявилась нестандартность подхода к фундаментальным проблемам квантовой теории поля. Международное признание ученый получил сразу — открытая им парастатистика, названная впоследствии статистикой Грина-Волкова и обобщая известные статистики Бозе-Эйнштейна и Ферми-Дирака, сыграла важную роль в развитии представлений о кварковой структуре адронов. В 1960 году Д. Волков, молодой еще физик, в составе советской делегации впервые принимал участие в конгрессе по физике элементарных частиц в США.
Обмениваясь в аэропорту с американскими коллегами новостями науки, глава делегации М. Марков спросил: «Что у вас нового? Ли ответил: «Это у вас новости! Результативными были и последующие годы. Мировую известность Волкову принесло открытие нового типа симметрии — суперсимметрии — и построение на ее основе теории супергравитации, обобщающей теорию тяготения Эйнштейна. Концепция суперсимметрии определила основное направление развития физики элементарных частиц на десятилетия. Волковское открытие в области суперсимметрии цитировалось как основополагающее в трудах многих крупных международных конференций.
В 1962 г. Волков открыл совместно с В. Грибовым новое явление, получившее название «заговор полюсов», что стимулировало целый поток теоретических и экспериментальных работ в области физики высоких энергий. Дмитрий Васильевич был не только талантливым ученым, но и удивительно трудолюбивым человеком, он работал много и упорно, предъявляя высокие требования к качеству выполняемой работы, ее логическому научному завершению. По воспоминаниям коллег, он был открытым человеком. Обсуждать с Волковым ту или иную проблему было большим удовольствием. Он быстро вникал в суть дела и высказывал, как правило, оригинальные соображения и идеи.
Ему был дан редкий дар видеть важный физический результат за сложными математическими выкладками, используя в расчетах современную математику. Дмитрий Васильевич не останавливался в поиске, для исследований он выбирал наиболее сложные научные проблемы, выдвигая новые идеи и фундаментальные подходы. Он постоянно следил за достижениями в различных областях физики и математики, старался расширять круг своих интересов. Этому способствовали научные командировки в международные центры Европы и Америки и общение с выдающимися учеными. Ездил он туда регулярно — с 1958 г. Каждая поездка завершалась подробным отчетом, где давался глубокий анализ не только основных теоретических исследований, проводимых в ЦЕРНе, но и организации научной работы; отмечались ее преимущества, давались конкретные рекомендации. В 1994 г.
Волков был приглашен на Международную конференцию авторов оригинальных идей и открытий XX века в физике элементарных частиц в Эриче Италия , где выступил с докладом «Supergravity before 1976». Последний раз он докладывал на конференции «Суперсимметрия-95» SUSY-95 во Франции, где выдвинул новую концепцию обобщенного принципа действия для суперструн и супермембран. К Дмитрию Васильевичу всегда тянулась молодежь, потому что он щедро делился идеями и открытиями и искренне радовался успехам и достижениям своих учеников и коллег. Созданная им в Харькове научная школа пользуется заслуженной мировой известностью. На его научных идеях и под его непосредственным руководством подготовлено около 20 кандидатских и докторских диссертаций. Много сил и энергии Д. Волков отдавал научно-организационной работе.
Он входил в состав ряда проблемных научных Советов, редколлегий, научных журналов и сборников. Достижения Д. Волкова неоднократно отмечались орденами и медалями. Ему было присвоено звание заслуженного деятеля науки Украины. В 1997 г. Интересы Дмитрия Васильевича далеко не исчерпывались одной наукой. Он увлекался индийской философией, любил классическую литературу, занимался спортом, прекрасно плавал, был хорошим лыжником.
Он любил семью, своих друзей, он горячо любил жизнь! В поселке Пятихатки есть улицы и проспекты, названные в честь известных ученых. В физике симметрии играют двоякую роль. Во-первых, каждому типу симметрии физической системы соответствует сохраняющаяся величина. Во-вторых, от новых физических теорий можно требовать выполнения различных симметрий. Чем больше таких требований — тем меньше произвол в построении теории. Примером физической теории, обладающей симметрией, является обычная квантовая механика, оперирующая волновыми функциями.
Волновая функция частицы — это комплексная функция, например, пространственных координат грубо говоря, комплексное число в каждой точке. Ее можно рассчитать из уравнения Шрёдингера. Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте. Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся. Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются. Это пример так называемой глобальной симметрии глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число. Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1.
Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля. В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным локальная симметрия. Интересно отметить следующий момент.
Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная.
Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили.
Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.
Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении.
Откройте свой Мир!
Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии.