Новости что такое кубит

Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов.

Как работает квантовый компьютер: простыми словами о будущем

Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке. IBM объявила о выпуске квантового процессора Eagle с рекордным количеством кубитов (127).

Самое недолговечное в мире устройство стало «жить» в два раза дольше

В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный В качестве физического кубита используются фотоны, нейтральные атомы, ионы, квантовые точки, примеси в кристаллах.
Кубит — Википедия с видео // WIKI 2 Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров.
Как устроен квантовый компьютер и зачем он нужен — Журнал «Код» Возможные значения кубита можно представить как поверхность сферы с единичным радиусом — специалисты называют ее сферой Блоха.
Количество кубитов в квантовых компьютерах — это обман. Вот почему Чем большее количество таких кубитов связывается друг с другом, тем меньшей стабильностью обладает их работа.

В погоне за миллионом кубитов

Квантовая криптография — обеспечение безопасности передачи и хранения данных с помощью квантовых протоколов, таких как квантовый ключевой распределение. Это может помочь в защите от кибератак и шпионажа. Квантовое машинное обучение — применение квантовых алгоритмов для анализа и классификации больших объемов данных. Это может помочь в распознавании образов, прогнозировании и рекомендациях. Для демонстрации возможностей квантовых компьютеров некоторые компании и организации уже проводят эксперименты с квантовыми приложениями. Например: Google совместно с NASA и USRA использовал свой 53-кубитный квантовый компьютер Sycamore для моделирования химической реакции гидрогена с нитрогеназой — ферментом, который участвует в фиксации азота в почве. IBM совместно с ExxonMobil использовал свой 20-кубитный квантовый компьютер IBM Q для оптимизации распределения грузопотоков в нефтехимическом комплексе. Microsoft совместно с Case Western Reserve University использовал свою платформу Azure Quantum для обработки медицинских изображений с помощью квантового машинного обучения. D-Wave совместно с Volkswagen использовал свой 2000-кубитный адиабатический квантовый компьютер D-Wave 2000Q для планирования оптимальных маршрутов для такси в Пекине.

Эти примеры показывают, что квантовые компьютеры уже способны решать некоторые практические задачи, хотя они еще далеки от полной реализации своего потенциала. В будущем ожидается, что квантовые компьютеры будут иметь больше возможностей и применений в разных сферах жизни. Технические характеристики реально существующих квантовых компьютеров Квантовые компьютеры могут быть реализованы на разных физических платформах, которые используют разные типы кубитов. Кубиты могут быть связаны друг с другом через квантовую запутанность, что позволяет проводить сложные вычисления. Существует несколько основных параметров, которые характеризуют квантовые компьютеры: Число кубитов — определяет размер квантового состояния и количество информации, которое может храниться и обрабатываться на квантовом компьютере. Чем больше кубитов, тем больше возможностей для решения сложных задач. Коэрентное время — определяет время, в течение которого кубит сохраняет свое квантовое состояние без потери информации из-за воздействия внешних факторов. Чем дольше коэрентное время, тем надежнее работает квантовый компьютер.

Скорость операций — определяет время, необходимое для выполнения одной элементарной операции над одним или несколькими кубитами. Чем выше скорость операций, тем быстрее работает квантовый компьютер. Точность операций — определяет вероятность ошибки при выполнении одной элементарной операции над одним или несколькими кубитами. Чем ниже точность операций, тем больше шума и искажений вносится в вычисления. Масштабируемость — определяет возможность увеличения числа кубитов и связей между ними без потери производительности и надежности. Чем выше масштабируемость, тем больше потенциал для развития квантового компьютера. В настоящее время существует несколько основных типов кубитов, которые используются для создания квантовых компьютеров: Сверхпроводящие кубиты — основаны на электрических цепях из сверхпроводящих материалов, которые имеют два дискретных энергетических уровня. Сверхпроводящие кубиты имеют высокую скорость операций и масштабируемость, но низкое коэрентное время и точность операций.

Ионные кубиты — основаны на заряженных атомах ионах , которые поддерживаются в ловушке электрическим или магнитным полем. Ионные кубиты имеют высокое коэрентное время и точность операций, но низкую скорость операций и масштабируемость. Фотонные кубиты — основаны на световых частицах фотонах , которые могут быть кодированы поляризацией или частотой. Фотонные кубиты имеют высокое коэрентное время и скорость операций, но низкую точность операций и масштабируемость. Фотонные кубиты используются в квантовых компьютерах Xanadu и PsiQuantum. Спиновые кубиты — основаны на спине электрона или ядра атома, который может быть ориентирован вверх или вниз. Спиновые кубиты имеют среднее коэрентное время и точность операций, но высокую масштабируемость. Спиновые кубиты используются в квантовых компьютерах Intel и QuTech.

Рассмотрение ключевых игроков в индустрии квантовых вычислений Индустрия квантовых вычислений является одной из самых динамичных и конкурентных в сфере высоких технологий. В этой области участвуют как традиционные ИТ-гиганты, так и стартапы, а также академические и правительственные организации. Вот некоторые из ключевых игроков в индустрии квантовых вычислений: IBM — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов.

Принцип работы таких транзисторов достаточно прост — в зависимости от подведенного напряжения мы получаем на выходе другое напряжение, которое интерпретируется или как логический 0, или как логическая 1.

Для того, чтобы проводить операции деления, есть битовый сдвиг — если у нас, к примеру, было число 1101, то после сдвига на 1 бит влево будет 01101, а если теперь сдвинуть его на 1 бит вправо — будет 01110. И основная проблема кроется в том, что для все того же деления может понадобиться несколько десятков таких операций. Да, с учетом того, что транзисторов миллиарды, такая операция занимает наносекунды, но вот если операций много — мы теряем на эти вычисления время. Принцип работы квантовых компьютеров Квантовый компьютер же предлагает совершенно другой способ вычислений.

Начнем с определения: Квантовый компьютер — вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Понятнее явно не стало. Разберем это на примере. Информация в квантовых компьютерах хранится в кубитах — если обычные биты могут иметь состояние 0 или 1, то кубит может иметь состояние 0, 1, и 0 и 1 одновременно.

Поэтому если мы имеем 3 кубита, к примеру 110, то это выражение в битах равносильно 000, 001, 010, 011, 100, 101, 110, 111. Что это нам дает? Да все! К примеру, у нас есть циферный пароль из 4 символов.

Как будет его взламывать обычный процессор?

Однако для того, чтобы называться универсальным программируемым квантовым компьютером, вычислитель в этом наборе обязательно должен иметь многокубитный запутывающий гейт. Реализация этого гейта представляет для квантовых вычислителей главную инженерную задачу. Двухкубитные гейты для атомов устроены гораздо сложнее однокубитных, выполняются существенно дольше, и именно их точность, так называемая величина фиделити, определяет эффективность квантового компьютера. Нетрудно в этом убедиться, ознакомившись со свежим выпуском Nature.

Статьи «High-fidelity parallel entangling gates on a neutral atom quantum computer» и «High-fidelity gates and mid-circuit erasure conversion in an atomic qubit» заявляют о достижениях в этом направлении. Авторам первой удалось сконструировать 60-кубитный атомный массив, точность выполнения запутывающего гейта в котором достаточно низкая, чтобы потенциально можно было получить устойчивые к ошибкам вычисления при использовании поверхностных кодов. Вторая же предлагает реализацию атомной архитектуры, позволяющую эффективно детектировать возникающие ошибки. Специалисты Atomic Computing при описании своей работы тоже предоставляют ссылку на работу в Nature, где заявляют о рекордном времени когерентности кубита. В статье можно подробнее ознакомиться с деталями реализации кубитной архитектуры.

Результаты действительно впечатляют — время декогеренции в 40 секунд существенно превосходит предыдущие показатели и потенциально позволяет производить очень объёмные вычисления.

Квантовый ключ представляет собой шифр, и передают его при помощи фотонов света — квантов. Если вы знаете шифр, а точнее, не вы, а ваш компьютер или телефон, они автоматически расшифровывают секретное сообщение. Это может быть что угодно: электронная подпись, информация из банка или страховой компании. При этом злоумышленники добраться до них никогда не смогут. Система тут же отреагирует на любую попытку взлома. Но это не все, на что способны кванты. Два года назад в США сумели перевести в квантовое состояние зеркала антенны массой десять килограммов. Это назвали едва ли не величайшим событием десятилетия — огромные зеркала подобно квантам находились в лаборатории и за ее пределами.

И стояли, и двигались, были и в прошлом, и в будущем. Возможно, если мы научимся вводить человека в состояние квантовой гибернации, это с успехом заменит анестезию при операции. А может быть, упростит межпланетные путешествия", — отметил директор лазерно-интерферометрической гравитационно-волновой обсерватории Массачусетского технологического института Дэвид Шумейкер. И выходить из него мы будем абсолютно здоровыми. Путешествия во времени, кстати, тоже могут стать обыденностью, ведь для квантов его не существует. Теперь ясно, о какой квантовой революции шла речь.

Квантовые компьютеры: как они работают — и как изменят наш мир

Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность. Увеличивается количество используемых кубитов, модернизируются системы поддержания кубитной когерентности, ведутся поиски оптимальной технологии изготовления многокубитных архитектур. Кубит (q-бит, кьюбит, кубит; от quantum bit) — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений.

Инвестиции в квантовые компьютеры: на что стоит обратить внимание

Все права защищены. Условия использования информации.

Например, специальную оптику, лазеры, вакуумное оборудование, криогенные камеры. Проблем много, но это путь развития — микроэлектроника уже прошла его. Это нормально: под каждый новый процесс промышленность адаптируется и придумываются новые проводящие металлы и другие открытия. Просто вся система пока на ранней стадии зрелости. На что обратить внимание?

Например, количество кубитов — это показатель? Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение. Как, например, с количеством кубитов — на самом деле это хорошо, но не говорит о том, насколько система умеет вычислять и с какой точностью. Для меня важно количество связанных между собой логических кубитов, точность вычисления, время жизни системы и способность вычислять практические алгоритмы. Поэтому кажется, что этим занимается очень ограниченное число организаций. Не значит ли это, что такие устройства будут работать только в пользу корпораций и государств?

И можно писать свои квантовые схемы и считать алгоритмы. Каждый разработчик заинтересован в увеличении количества практических задач, которые можно делать на их квантовом компьютере, поэтому стоимость удешевляется. По количеству инвестиций в сектор можно сделать вывод о том, что прогресс есть. Это косвенный параметр — если сотни инвесторов вкладывают и отрасль растёт, это говорит о многом. Видимо, мы близки к решениям, которые станут практическими. Но при этом есть всего 80 организаций, которые делают квантовые компьютеры.

Но цифры говорят, что в hardware проинвестировали 1,5 млрд. И из них львиную долю забрали 12 компаний. Специалисты здесь нужны в квантовой физике, математике, инженеры нарасхват. Интересный факт: советская школа здесь считается сильной. Программа разделена на несколько дорожных карт — квантовые вычисления курирует Росатом , коммуникации РЖД и Центр метрологии и сенсоры Ростех. Например, уже появилась специальная квантовая линия связи между Москвой и Петербургом — это основной протокол квантовой криптографии сегодня.

По моим ощущениям, они отстают от мировых компаний на 3-5 лет. Но у них серьёзные кадры и подход — они однозначно разработают что-то полезное. Ее уже пытаются регулировать? Как только появится что-то серьёзное, — дойдёт и до ограничений.

Эти последовательности уже существуют здесь и сейчас. Именно поэтому квантовые компьютеры работают быстрее обычных. Выше мы писали о Google Sycamore — она справилась со сложнейшими вычислениями за 200 секунд. На выполнение той же задачи у суперкомпьютера IBM ушло бы 10 000 лет.

Суперкомпьютер Google. Как кубит может принимать все значения разом Вы можете спросить: как так вышло, что в предыдущем параграфе кубит принимает значения 0 и 1 одновременно, а в этом — одновременно все возможные состояния, которые могут находиться и на промежутке от 0 до 1? Это справедливое замечание. Дело в том, что у частиц есть ещё одно примечательное свойство: они находятся в состоянии суперпозиции до тех пор, пока не окажутся под наблюдением, но как только кто-то начинает наблюдать их, они принимают полярное значение в множестве возможных — либо 0, либо 1. Всё зависит от того, к какому полярному значению частица находится ближе до того момента, как к ней обратились. Что такое квантовая запутанность Квантовая запутанность quantum entanglement — это фундаментальное явление в квантовой механике, когда два или более кубита или другие квантовые системы становятся так плотно связанными, что состояние одного кубита немедленно влияет на состояние другого, независимо от расстояния между ними. Грубо говоря, это большой часовой механизм, который состоит из кубитов, как из шестерёнок. Если повернуть одну шестерёнку, неизменно повернётся другая.

Если изменить состояние одного кубита, это непременно повлияет на состояние другого. В квантовых процессорах находятся несколько кубитов. К примеру, в 2022 году IBM представила компьютер с 433 кубитами. Поскольку они взаимодействуют между собой, возникает эффект совместной суперпозиции. Каждая частица в квантовом процессоре находится в суперпозиции, но теперь её значение в момент наблюдения зависит ещё и от другой частицы, с которой она взаимодействует. Это — огромный калейдоскоп, в котором до того момента, как в него посмотрит человек, одновременно выстраиваются все возможные узоры во всех вероятных положениях цветных стёклышек.

Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц где находятся их вторые «половинки» мы знаем. Мы проводим вычисления, и после этого «открываем коробку с бумажкой» — узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений. Так что для новых вычислений нужно снова создавать кубиты — просто «закрыть коробку с бумажкой» не получится — мы ведь уже знаем, что нарисовано на бумажке.

Возникает вопрос — раз квантовый компьютер может моментально подбирать любые пароли — как защитить информацию? Неужели с приходом таких устройств исчезнет конфиденциальность? Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным. Домашний квантовый компьютер Ну и последний вопрос — раз квантовые компьютеры такие классные, мощные и не взламываемые — почему мы ими не пользуемся? Проблема банальна — невозможность реализовать квантовую систему в обычных домашних условиях. Для того, чтобы кубит мог существовать в состоянии суперпозиции бесконечно долго, нужны крайне специфические условия: это полный вакуум отсутствие других частиц , температура, максимально близкая к нулю по Кельвину для сверхпроводимости , и полное отсутствие электромагнитного излучения для отсутствия влияния на квантовую систему. Согласитесь, создать такие условия дома мягко говоря трудновато, а ведь малейшее отклонение приведет к тому, что состояние суперпозиции исчезнет, и результаты вычислений будут неверными. Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается.

В итоге самый максимум на данный день — это квантовые компьютеры с парой десятков кубитов. Однако, есть квантовые компьютеры от D-Wave, которые имеют 1000 кубитов, но, вообще говоря, настоящими квантовыми компьютерами они не являются, ибо не используют принципы квантовой запутанности, поэтому они не могут работать по классическим квантовым алгоритмам: Но все же такие устройства оказываются ощутимо в тысячи раз мощнее обычных ПК, что можно считать прорывом.

Физик Алексей Устинов о российских кубитах и перспективах их использования

Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность. Что такое кубит, для чего он нужен и как физически может быть реализован? Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. Обычные компьютеры работают на битах, квантовые — на кубитах, то есть используют принципы элементарных частиц, которые позволяют экспоненциально наращивать вычислительную мощность. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора.

Как работает квантовый компьютер: простыми словами о будущем

Про квантовые компьютеры простыми словами Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение.
Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается.
Эксперт рассказал, из чего состоит квантовый компьютер, что такое кубиты и для чего они нужны Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака).
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела.
Кудиты лучше кубитов? Российские учёные доказали превосходство отечественной технологии Квантовый бит (кубит) может находиться в любом из бесконечного множества промежуточных состояний и плавно переключаться между ними.

Что такое квантовый компьютер? Принцип работы кубитов и квантовых вычислений

Поделиться Репостнуть Твитнуть «Квантовое превосходство» — меткое выражение физика Джона Прескилла, который в 2012 году назвал так способность квантового компьютера совершать вычисления с невиданной до сих пор для существующих суперкомпьютеров скоростью. Вычисления при этом не должны быть полезными — они призваны лишь доказать сам факт, как в случае экспериментального самолета братьев Райт в 1903 году или первого в мире ядерного реактора Энрико Ферми в 1942-м. Последние десять лет я занимался теоретическим обоснованием для экспериментов по достижению квантового превосходства. Работу Google я видел еще до публикации, поэтому я могу по крайней мере попытаться просто объяснить, что всё это значит. Зачем нужен квантовый компьютер? До недавних пор все компьютеры на планете, от больших ЭВМ 1960-х до вашего айфона или таких, на первый взгляд, экзотических изобретений, как нейроморфные компьютеры или ДНК-компьютеры, работали по одним и тем же принципам. Их сформулировал Чарльз Бэббидж в 1830-е годы и систематизировал Алан Тьюринг в 1930-е. В ходе компьютерной революции менялись только количественные показатели: увеличивались скорость, объем оперативной и физической памяти, количество процессоров. Но квантовые вычисления — это нечто совершенно иное. Это первая компьютерная модель со времен Тьюринга, которая изменит принципиальные основы вычислительных алгоритмов, позволяя выполнять невероятно сложные для традиционных компьютеров задачи.

Самые ожидаемые результаты квантовых вычислений — это возможность симулировать процессы химии и квантовой физики, а также разрушить большую часть систем шифрования, которые сейчас обеспечивают защиту данных в интернете. Демонстрация компанией Google способностей квантового компьютера стала критической вехой компьютерной революции. Квантовый компьютер: кубиты вместо битов В лаборатории Санта-Барбары Калифорния команда Google под руководством Джона Мартиниса создала микрочип под названием «Сикомор». Этот квантовый чип состоит из 53 проволочных петель, вокруг которых ток может течь при двух разных энергиях, представляя собой 0 или 1. Чип располагается в криогенной холодильной машине , которая охлаждает провода почти до абсолютного нуля, делая их сверхпроводимыми. Такая температура необходима, чтобы на мгновение точнее, на несколько десятков миллионных долей секунды уровни энергии стали вести себя как квантовые частицы — кубиты qubits, от quantum bits. Эти частицы могут находиться в состоянии так называемой суперпозиции — состояние 0 и 1 одновременно. Суперпозиция печально знаменита тем, что ее очень сложно объяснить. Многие популяризаторы используют образ, который заставляет физиков выть в муках: «Представьте, что кубит — это бит информации, который может быть сразу и 0, и 1 и исследовать эти состояния одновременно».

Если бы у меня была возможность рассказать об этом подробно, я бы упомянул об амплитудах вероятности — ключевой концепции квантовой механики со времен Вернера Гейзенберга и Эрвина Шрёдингера. Однако первичные элементы, из которых состоит вся окружающая действительность фотоны и электроны , подчиняются совершенно иным законам вероятности. Более того, если событие — скажем, фотон, врезающийся в какую-то точку на экране, — может произойти в одном случае с положительной амплитудой, а в другом случае с отрицательной, то обе вероятности могут взаимно уничтожиться: общая амплитуда станет равна нулю и событие никогда не произойдет. Это явление называется квантовой интерференцией, и именно она лежит в основе всего того, что вам кажется очень странным в квантовом мире. Вернемся к кубитам.

В контексте этого вызывает интерес исследование методов подавления ошибки на уровне логических кубитов. Точная оценка перспектив этих подходов требует более подробных экспериментальных данных, однако, можно утверждать, что IBM пока достаточно успешно поддерживают тренд роста числа кубитов сверхпроводниковых вычислителей. Озвученным прогнозом специалистов IBM стало получение компьютера с 4000 кубитов к 2025 году. И, несмотря на всю кажущуюся амбициозность данного заявления, фундаментальных ограничений, которые могли бы препятствовать достижению заявленных параметров, нет. Если специалисты IBM справятся с подавлением шумов и поддержанием когерентности для регистра с таким количеством кубитов — они смогут выполнить обещание. Холодные атомы Вычислители на основе холодных атомов не требуют криогенного охлаждения кубитов. Теоретически, за счёт возможности наращивания числа оптических ловушек, удерживающих атомы, и большей устойчивости к шумам, вычислители данного типа обладают несколько большим потенциалом масштабирования, по сравнению с квантовыми компьютерами на основе сверхпроводящих цепей. В то же время возникающие при работе с атомными кубитами ошибки в значительной мере поддаются контролю за счёт методов подавления. Это было продемонстрировано в 2021 году с представлением программируемого атомного симулятора на 256 кубитов [18]. По количеству кубитов для архитектуры на основе холодных атомов рекорд прошлого года — 256 кубитов на программируемом симуляторе, остаётся актуален. Однако произошел прорыв в технологии реализации двухкубитных гейтов. Поскольку атомы электрически нейтральны, они не взаимодействуют на расстоянии. Реализация двухкубитного гейта для них требует возбуждения одного из атомов в состояние с очень высокой энергией, называемое ридберговским. В таком состоянии радиус, на котором атомы могут взаимодействовать, существенно увеличивается и наблюдается эффект ридберговской блокады: если один атом уже находится в ридберговском состоянии, это приводит к смещению электронных уровней соседнего атома, что не позволяет возбудить его в ридберговское состояние при помощи характерного лазерного импульса. На основе этого эффекта может быть построен запутывающий гейт [19]. Новый подход использует ультракороткие лазерные импульсы для одновременного возбуждения атомов в ридберговские состояния за пределами режима ридберговской блокады [20]. Это даёт возможность преодолеть характерное временное ограничение и перейти от микросекундного временного масштаба к наносекундному. И, хотя рекордная точность операции пока не продемонстрирована, такой подход за счёт скорости взаимодействия атомов ведёт к значительному снижению вероятности возникновения ошибки при применении двухкубитного гейта. Новый тип запутывающих гейтов не предоставляет технологию для реализации квантовых операций с гигагерцовой частотой. Однако он позволяет преодолеть характерный временной барьер, так что вычислитель, построенный на гейтах такого типа, теоретически сможет по порядку величины приблизиться к быстродействию классических компьютеров. В совокупности со сравнительно долгим временем жизни атомного кубита данная технология в перспективе существенно повышает потенциал масштабируемости вычислителей на основе холодных атомов. Оптические кубиты Электрическая нейтральность атомов обеспечивает им меньшую чувствительность к шумам окружающей среды, но, в то же время, создаёт сложности для обеспечения взаимодействия атомов между собой. Это заставляет использовать более сложные схемы реализации двухкубитных гейтов, такие как гейты на основе ридберговской блокады. Ещё дальше в этом направлении заходят кубиты на основе фотонов. Фотоны практически не взаимодействуют ни с окружением, ни между собой. За счёт этого они, с одной стороны, практически не подвержены влиянию шума, но, с другой, реализация запутывающего гейта для фотонных кубитов в ряде случаев связана с фундаментальными ограничениями. По этой причине до недавнего времени оптические квантовые вычислители оценивались как наиболее перспективные на временном горизонте от 10 лет. Но в 2021-2022 годах стали доступны новые технические возможности, позволяющие обойти характерные для оптической архитектуры фундаментальные ограничения. Существуют несколько способов кодирования кубита в состоянии фотона. Наиболее простые — поляризационный кубит и двухрельсовая кодировка. Поляризационный кубит подразумевает сопоставление состояний 1 и 0 ортогональным поляризациям, например, вертикальной и горизонтальной. Двухрельсовая кодировка предлагает кодировать один кубит в паре оптических мод, сопоставленных состояниям 0 и 1, в одной из которых находится фотон. В обоих случаях из-за слабого взаимодействия фотонов реализация двухкубитного гейта требует использования нелинейной среды. Причём величина нелинейности должна на много порядков превосходить достижимые значения. Ввиду технической невозможности прямой реализации был найден альтернативный подход, названный протоколом KLM Knill, Laflamme, Milburn [21]. Он позволяет реализовывать двухкубитный запутывающий гейт с использованием только линейных элементов, однако получаемая схема имеет ограниченную вероятность успешного срабатывания. Такой подход уже является приемлемым для экспериментальных задач, и позволяет реализовывать квантовые вариационные алгоритмы с малым числом кубитов. Однако конечная вероятность успешного срабатывания гейта ведёт к экспоненциально малой вероятности срабатывания всей схемы при её масштабировании, что недопустимо. Преодоление этого ограничения потребовало выработки ещё одного альтернативного подхода. Из характеристик квантового состояния светового пучка могут быть выделены отдельные параметры, связанные соотношением неопределённостей Гейзенберга. Связь данных параметров позволяет кодировать в них состояние кубита. В некотором смысле это подобно тому, как оно кодируется в поляризации. Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела. Оказывается, что кубиты на сжатых состояниях можно телепортировать с использованием базовых оптических элементов. А корректируя протокол телепортации, можно менять телепортируемое состояние [22]. В обычных условиях такое изменение является нежелательным, но при работе со сжатыми состояниями скорректированную телепортацию можно использовать для реализации гейта. Телепортируя многокубитные состояния, можно реализовать многокубитные гейты детерменированным образом. Необходимо только владеть технологией приготовления запутанных состояний высокой размерности, необходимых для осуществления телепортации. Но опять же, для сжатых состояний генерация запутанности возможна при помощи базовых оптических элементов. Экспериментально была продемонстрирована генерация запутанных кластерных состояний на данной архитектуре объёмом до 1000000 кубитов. Строго говоря, сжатые состояния не являются кубитами. Кубит является лишь подмножеством пространства сжатых состояний. И телепортационные гейты не обеспечивают возможности произвольной трансформации сжатого состояния. Однако если специально выделить из сжатого состояния кубит, то и это ограничение удаётся преодолеть. Более того, оставшиеся степени свободы сжатого состояния можно использовать для дублирования состояний кубита, и таким образом реализовывать коррекцию ошибки. Он обеспечивает устойчивую коррекцию ошибок, если степень сжатия состояния, то есть отношение дисперсии квадратур, достигает 15-17дБ, а в теории — 10дБ [24]. Экспериментальные же результаты сегодня демонстрируют техническую возможность достижения сжатия состояния до 15 дБ, чего может быть достаточно для экспериментальной демонстрации коррекции ошибки. Таким образом для оптической архитектуры удалось преодолеть фундаментальные ограничения реализации запутывающего гейта, технически показана возможность создания регистра до 1000000 кубитов, архитектура включает естественный механизм коррекции ошибки, а продемонстрированный уровень шумов находится на границе устойчивой коррекции.

Если изменить состояние одного кубита, это непременно повлияет на состояние другого. В квантовых процессорах находятся несколько кубитов. К примеру, в 2022 году IBM представила компьютер с 433 кубитами. Поскольку они взаимодействуют между собой, возникает эффект совместной суперпозиции. Каждая частица в квантовом процессоре находится в суперпозиции, но теперь её значение в момент наблюдения зависит ещё и от другой частицы, с которой она взаимодействует. Это — огромный калейдоскоп, в котором до того момента, как в него посмотрит человек, одновременно выстраиваются все возможные узоры во всех вероятных положениях цветных стёклышек. Соответственно, вычислить, существует ли узор Х из многочисленных последовательностей стёкол, теперь можно гораздо быстрее и проще, чем если крутить футляр калейдоскопа до тех пор, пока не найдётся искомый результат. Что такое квантовое декогеренцирование Итак, мы знаем, что кубит находится в суперпозиции до тех пор, пока не измерить его значение. Во время наблюдения кубит принимает полярные значения — условные 0 или 1. При этом частицы изменяют своё поведение в зависимости от других частиц. Но ведь мир состоит из этих частиц, верно? К примеру, на состояние кубита могут повлиять частицы света вокруг него, а также окружающие его молекулы и атомы. Именно эта проблема и называется декогеренцированием. Она актуальна, и учёные ещё не нашли простого способа снизить её эффект на кубиты. У неё есть два самых известных решения: снизить температуру кубита до абсолютного нуля и окружить кубит суперпроводником, который защищает частицу от внешнего влияния. Во всяком случае, пока что. Зачем разрабатывать квантовые процессоры Несмотря на то, что квантовые вычисления могут быть ошибочными, а поддерживать кубиты стабильными — непростая задача, которую ещё предстоит решить, есть несколько причин, по которым технологию не оставили: Современные компьютеры ограничены в возможностях, а квантовые — нет. Даже сегодня суперкомпьютеры могут тратить десятки тысяч лет на решение сложнейших задач, когда квантовый компьютер может решить её за секунды.

Эта работа открывает перспективу создания принципиально новых приборов и устройств на основе сверхпроводниковых элементов. Мы расскажем вам о том, как интересен мир вокруг и поможем разобраться в самых сложных вещах. Если вам интересны космос, физика, робототехника, современная медицина и биология, то вам сюда.

Эксперт рассказал, из чего состоит квантовый компьютер, что такое кубиты и для чего они нужны

Начнем с понятия кубита и его отличий от бита классических компьютеров. Ознакомьтесь с вводными сведениями о кубитах и принципами их работы, включая информацию о различиях между кубитами и двоичными битами, а также о том, как кубиты формируют основу для квантовых вычислений. Кубит — это носитель квантовой информации и аналог бита в квантовом мире, основной элемент любых квантовых вычислителей. Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. «В области производства квантовых компьютеров всё идёт в соответствии с графиком, 20 кубитов нам обещает Росатом показать в конце этого года.

Похожие новости:

Оцените статью
Добавить комментарий