Новости профессии связанные с нейросетями

— Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%? В этой статье я расскажу мои предположения о перспективных профессиях будущего, связанных с новыми достижениями в области искусственного интеллекта. При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. Искусственный интеллект угрожает профессии технического писателя, потому что многие задачи, связанные с написанием технических документов, инструкций и справочных материалов, могут быть автоматизированы с помощью ИИ.

5 профессий, которые появились благодаря искусственному интеллекту

Как стать специалистом по нейросетям? В ближайшие годы ИИ сможет заменить профессии, связанные с работой с повторяющимися рутинными операциями.
5 профессий, которые появились благодаря искусственному интеллекту Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок.
Нейросеть составила список самых востребованных профессий будущего Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи.

Неожиданные профессии, где используют нейросети

Именно они помогут создать законодательство, регулирующее ИИ, и обеспечить соблюдение стандартных практик, действующих в той или иной юрисдикции. Навыки и компетенции Представление о технологиях и приложениях искусственного интеллекта, их экономических и социальных последствиях. Умение использовать инструменты и методы ИИ, чтобы генерировать ценную аналитическую информацию и прогнозы для формирования политики и проведения оценок. Умение взаимодействовать и сотрудничать с разными стейкхолдерами, включая исследователей, представителей отрасли, гражданского общества и органов власти. Умение находить компромисс между рисками и возможностями правового регулирования ИИ, согласовывать его применение с принципами этики и правами человека. Умение осуществлять мониторинг и обеспечивать комплаенс системами и пользователями ИИ соответствующих законов и стандартов. Директор по этике ИИ и специалист по количественной оценке этики ИИ Специалисты по комплаенсу использования данных ИИ будут защищать компании от судебных исков уже после реализованного проектного решения.

Но должен же быть кто-то, кто определяет, что такое проектное решение в принципе нужно. По идее, все выпускаемые модели ИИ должны взаимодействовать с людьми. Хочется надеяться, что это взаимодействие положительно повлияет на их жизнь. Думаю, в составе высшего руководства появится должность директора по этике. По-видимому, уже очень скоро компании будут назначать таких директоров или кого-то вроде. Основная цель такого руководителя — по максимуму уменьшить необъективность и в созданных, и в проектируемых моделях.

Кроме того, директор по этике должен следить за тем, чтобы модели выдавали результаты, позитивные и справедливые для участников процесса. Думаю, это должен быть топ-менеджер, потому что деятельность в области этики подразумевает введение множества ограничений для сотрудников. Если такой человек не занимает руководящую должность, если он не пользуется в компании заслуженным уважением, его можно без проблем уволить и заменить тем, кто закроет глаза на все нарушения. И, строго говоря, такое развитие событий совершенно не исключено. Навыки и компетенции Технические знания в области технологий ИИ и представление о том, как они могут повлиять на общество и отдельных людей. Представление о действующих и появляющихся законах и стандартах в области этики ИИ.

Представление о конкретной области и контексте применения ИИ с учётом специфики бизнеса и отрасли. Навыки коммуникации и умение работать с разными организациями и стейкхолдерами. Способность представлять и прогнозировать потенциальные последствия и возможности внедрения инноваций в области ИИ. Главным соратником директора по этике станет специалист по количественной оценке этики ИИ. Его задача — анализировать уровень предвзятости моделей и измерять воздействие на группы, интересы которых затрагивает та или иная модель. Думаю, появление такой должности кардинально изменит подход к этике в компаниях.

И чтобы эти перемены произошли, людям, создающим модели, нужны данные. Количественный подход к этике расширит круг тех, кто готов прислушаться к вопросам морали. Навыки и компетенции Технические знания в области технологий, систем, алгоритмов и инструментов ИИ. Понимание теорий и принципов, определяющих разработку и использование ИИ с точки зрения этики. Навыки аналитического и критического мышления для оценки и проработки решений по сложным этическим вопросам. Навыки коммуникации и умение объяснять и обосновывать этические решения при взаимодействии с разными аудиториями.

В первую очередь — переводы, техподдержку, подготовку аналитики, создание несложных текстов, дизайна. Ну а что в будущем? Кто может остаться без работы из-за этого научно-технического прогресса?

По мнению опрошенных Зарплатой. Копирайтеры, дизайнеры, переводчики, администраторы, бухгалтеры и специалисты по кадрам и документам уже сейчас должны задуматься - нет, не об увольнении и бедности, а о том, в какую сторону развивать свою карьеру. Так как в привычном сейчас виде многих профессий может не остаться уже через 10 лет.

Автоматизация и цифровизация процессов, по прогнозам экспертов ВЭФ Всемирный Экономический Форум , в ближайшие несколько лет ликвидируют 85 млн рабочих мест по всему миру.

Насколько реальна опасность На самом деле, утверждения, что роботы или нейросети оставят без работы представителей той или иной профессии, звучит чаще всего в заголовках новостей и журналистских статьях. Даже в названиях своих исследований ученые используют более мягкие формулировки: Насколько профессии восприимчивы к автоматизации? Исследование компании McKinsey и вовсе показывает: только незначительное количество профессий будут полностью автоматизированы с помощью современных технологий. В остальных роботы или ИИ станут выполнять только отдельные задачи. Дело в том, что, хотя ChatGPT или Midjourney нейросеть, которая генерирует изображения способны быстрее человека обрабатывать огромные объемы информации и предлагать большое количество разных решений, запрос, корректировка и оценка работы остаются за людьми. Ведущая роль — роль креатора — по-прежнему принадлежит дизайнерам, копирайтерам, преподавателям или программистам. Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать.

В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens. Хотя нейросети и учатся распознавать эмоции, они пока слабо приближаются к тому, чтобы обладать уникальным характером, харизмой, опытом и эмпатией, которую ценят в коммуникации.

Треть российских соискателей полагает, что их профессию могут заменить нейросети Поделиться Телеканал «Наука» и сервис по поиску работы hh. Изменения профессионального ландшафта ждать не заставят, на трансформацию потребуется 5—10 лет, считают участники опроса, который проходил с 10 по 27 марта 2023 года.

Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться

Как нейросети открывают новые направления в edtech Профессии будущего. Активная аудитория только ChatGPT-3. Переход на рельсы ИИ меняет ситуацию на рынке труда. Ожидается , что в 2025 году в сфере нейронных сетей будут работать 97 млн человек, которых необходимо обучить.

Edtech подстраивается под тренд, а мы рассказываем про опыт зарождения новых профессий. Заметны перемены и в России. Жизнь до бума.

Например, в «Нетологии» первый поток по Data Science с блоком про нейронные сети запустился 6 лет назад. Поэтому на рынке уже давно существуют образовательные программы, которые помогают закрывать запрос компаний и развивать сферу. Но также мы думаем, что этот тренд сегодня будет расти еще больше, и количество курсов увеличится».

Несколько лет существует направление и в Skillbox: «Курсы по ИИ всегда входили в нашу комплексную программу по обучению профессии Data Science. Они существуют с 2019 года, — объясняет руководитель образовательных программ по анализу данных в Skillbox Надежда Бойкова. Или присоединятся к командам, их разрабатывающим».

Все эти курсы — авторский контент от действующих senior-специалистов крупных компаний. Кроме практических заданий в рамках учебных программ студенты решают реальные задачи бизнеса. Компании-партнеры регулярно приглашают студентов попробовать силы на стажировках, в том числе оплачиваемых.

В рамках образовательной программы студенты изучают Python — самый популярный язык для машинного обучения и создания нейросетей, SQL для работы с базами данных, линейную алгебру, статистику и теорию вероятностей, так как без них не получится построить прогнозную модель или найти скрытые закономерности. Ключевым в программе является модуль по машинному обучению, на нем студенты изучают классические алгоритмы, создают рекомендательные системы и уже непосредственно обучают нейросети.

Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами.

И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака.

И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком. То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером. Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск.

Кулинкович Да, да, да. Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего. Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да? Это все умножается на стоимость часов специалиста.

И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов. Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили?

Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо. Кулинкович: Ну да. Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее.

Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой. Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос. Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна.

Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги. Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта. Но, в целом, она выдавала такие же результаты. Сейчас вместо этой кисти что-то другое. Завтра будет еще что-то другое.

Но, в целом, какого-то такого слома я не наблюдаю. Просто появилась новая возможность делать то, что раньше требовало большого количества часов, быстро. Но фактически это просто расширяет, как сказать, перераспределяет усилия людей. То есть сейчас мы видим, что появляются новые профессии. Они такие, околодизайнерские: наполовину дизайнерские, наполовину технические. Люди, которые занимаются промт-инжинирингом, которые учатся взаимодействовать с этим инструментом, задавать ему правильные вопросы и получают правильные ответы. Но по факту это тот же дизайн, просто инструментом дизайнера является уже не кисть, уже не какие-то программы редактирования графики. А просто нейросеть.

Поэтому ничего не меняется на самом деле, просто трансформируются инструменты производства. И это было и 100 лет назад, когда происходили какие-то переходы от ручного труда к фабричному, так и сейчас. Так я себе это представляю. Гребенников: Правильно, если простым языком сказать, когда нам говорили, что появилось телевидение, то театр умрет. Точно так же, как не умер театр, не умерло телевидение после появления интернета, точно так же и с появлением искусственного интеллекта, мне кажется, у дизайнера просто появилось больше инструментов для того, чтобы творить. Кулинкович: Да. Совершенно верно. Более того, интересный эффект, что тот крафт, ручная такая работа, которая… Вот этот рынок объединял в себе большое количество профессионалов и сейчас кажется, что пришли нейросети и этот рынок разрушили.

И, конечно, вода из этого моря утекла в моменте. Но при этом останутся мастера, как в случае с театрами, есть гениальные постановки, которые собирают огромные залы и оказываются суперактуальными и, возможно, даже более редкими и более неожиданными, чем они были ранее. Потому что ранее это был такой массовый продукт, то сейчас это штучный. Поэтому, когда все говорят, что нейросети убивают работу дизайнера, здесь, наоборот, я это вижу, как создание каких-то интересных локальных ниш, которые, наоборот, создают возможности. Они как бы преумножают варианты применения каких-то творческих усилий. Коротнева: Сергей, вопрос о том, появится ли новая профессия на стыке дизайна и около какой-то научной истории Data Science. Вы уже сказали про профессию промт-инжиниринг. Кулинкович: Разные люди это называют по-разному.

Мы в студии называем это «нейровод» — человек, который выбирает финальный вариант, потому что вариантов очень много, выбрать из них конечный — это и есть одна из самых сложных задач. У нас есть специальные нейроводы. Которые делают дизайн мозгами Николая, но принимают ответственность за принятие финального решения. Гребенников: Сергей, такой вопрос. Николай — это все-таки когда-то был реальный человек или полностью вымышленный персонаж? Кулинкович: Это полностью вымышленный персонаж. С этим есть очень интересная история, потому что, когда мы начали получать работы, которые сопоставимы по качеству с живыми людьми, мы решили, это не просто прикол. Мы решили проверить, насколько… либо это наш глюк, либо это действительно похоже на то, что делает живой человек.

Поэтому мы придумали Николая Иронова и начали под его именем отдавать эти работы нашим клиентам, которые не знали о том, что это генеративный дизайн, для того чтобы обойти вот этот блок предрассудков по поводу того, что если дизайн был синтезирован, значит, он какой-то не такой, какой-то недостаточно человеческий, недостаточно качественный. И мы воспользовались вот этой секретностью и анонимностью. Более того, мы даже засекретили его внутри компании, завели ему там карточку в бухгалтерии, завели ему e-mail, Facebook и так далее, поддерживали какую-то социальную даже жизнь от его имени, придумали ему фоторобот.

Это химик, инженер и эколог в одном лице. И такие профессионалы действительно не останутся без работы, считает эксперт hh. Обрабатывает и оцифровывает языковые данные, генерируя их в технологические и производственные процессы. Нейросеть видит в таком специалисте баланс между "технарем" и "гуманитарием", безупречную грамотность и системное мышление. Шансы у этой профессии будущего есть, по крайней мере, в компаниях, связанных с machine-to-machine-технологиями.

А робот сможет лишь озвучить книгу. Но без живых людей здесь не обойтись. Чтобы наложить графику нужна какая-то основа. Например, человек в специальном костюме, его лицо чтобы считывать эмоции. Бенедикт Камбербэтч в костюме для захвата движений в процессе создания образа дракона Смауга для кинотрилогии «Хоббит»: Опытный артист знает все о влиянии на зрителя, а искусственный интеллект в лучшем случае лишь скопирует его. Юристы Одно дело знать закон, а совсем другое — уметь использовать его в пользу клиента особенно, если он сам и нарушил этот закон. А еще нужно уметь строить линию защиты или нападения в судебных заседаниях, приводить подходящие в конкретной ситуации аргументы, убеждать в своей правоте и многое другое. Роботы этого не умеют. Нейросети не так развиты, чтобы отнять работу у людей. Соответственно, лучше всего — научиться использовать их в решении своих задач. Артем Попов, руководитель отдела маркетинга в магазине XCOM-SHOP компьютеры, комплектующие, периферия , рассказал, как их компания использует Midjourney для подготовки красивого визуала. Нейросеть и штатный дизайнер поделили между собой обязанности — нейросеть генерирует креативы, а дизайнер отбирает самые лучшие и дорабатывает их. В результате на работу уходит намного меньше времени на подготовку баннера — в 2 раза , так как не нужно придумывать идеи, искать графику на фотобанках и самостоятельно отрисовывать картинку с нуля. Павел Молянов, руководитель контент-агентства «Сделаем», провел интересный эксперимент — он брал заказы на бирже копирайтинга еТХТ и отдавал их в работу нейросети. Из 8 заказов не удалось сдать один, а еще 2 получились совсем плохо. К каким выводам он пришел: Нейросеть пишет не хуже дешевого копирайтера; Тексты от нейросети можно использовать как драфт, который придется доработать — тогда получится нормальный текст; Нейросеть плохо дорабатывает текст лучше пишет с нуля, чем рерайтит. Что в итоге? Хороший специалист не только не потеряет работу, но и упростит ее — сможет автоматизировать некоторые задачи и сэкономить время. Чат-бот частично подтверждает наши догадки насчет некоторых профессий. ИИ придет туда, где нужна автоматизация. В первую очередь, это производство, транспорт и клиентский сервис. Но даже здесь ИИ отмечает, что он не заменит полностью людей — он лишь освободит их от рутинных задач.

Эксперт назвал профессии, куда нейросети могут прийти уже в 2023 году

Огонь нейросетей: как попасть в индустрию Профессионально овладеете нейросетями, сформируете клиентскую базу, что позволит вам выйти на 5-10 т.р. в ДЕНЬ.
Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности - CNews Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи.
Разработчик нейросетей: кто это, вакансии, где учиться Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок.
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться Новые профессии с нейросетями в 2023 и 2024Не можешь остановить – возглавь.
Специалист по нейросетям Один из примеров, связанных с использованием нейросетей на рынке труда — это автоматизация работ, которые ранее выполняли люди.

ТОП-5 профессий в сфере ИИ, которые изменят мир

Создатель сайта Кремля предрек исчезновение ряда профессий из-за нейросетей. Также, существуют профессии, которые трудно или невозможно заменить искусственным интеллектом, например, профессии, связанные с творчеством, социальным взаимодействием и эмоциональной поддержкой», — приводит текст чат-бота ChatGPT Pro на русском языке. При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. У нейросети спросили, какими будут профессии будущего.

«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ

Умение собирать, очищать, маркировать и классифицировать данные для моделей ИИ — например, работать с пайплайнами данных, инструментами аннотирования, проверки качества данных и т. Умение организовать хранение и работу с крупномасштабными наборами данных, в том числе с использованием облачных платформ, баз данных, хранилищ и озёр данных и т. Способность понимать и применять принципы этики и конфиденциальности данных, такие как Общий регламент ЕС по защите персональных данных GDPR , законы о защите конфиденциальности потребителей, деперсонализация данных, Data Governance и т. Знакомство со средствами и фреймворками ИИ, включая обработку текстов и речи, компьютерное зрение, TensorFlow, PyTorch и т. Специалист по комплаенсу использования данных ИИ Конечно, всё вертится вокруг данных, но как-то не до конца понятно, кому, собственно, они принадлежат. В разных странах действуют разные законы о защите персональных данных, разные представления о том, какие данные разрешается использовать для обучения больших моделей. По-видимому, компаниям понадобятся юристы, чувствующие себя в серой зоне законодательства по обращению с данными как рыбы в воде, потому что именно в этой зоне все сейчас и работают.

На OpenAI, Microsoft и GitHub уже подали в суд за то, что они брали чужой программный код, распространяющийся по лицензии. Размышляют и о том, что многие модели обучаются на пиратских книгах и другом контенте. А ещё модели часто обучают на тексте или изображениях, которые предоставляют пользователи. Вот ещё дополнительная область, где всё как-то мутно. Всё это актуальная повестка, и вскоре компаниям понадобятся люди с юридическим образованием и опытом работы с данными на должность специалиста по комплаенсу использования данных ИИ. Именно такие люди помогут разобраться в этих трудностях и снизить риски судебных разбирательств.

Навыки и компетенции Представление о законах и нормах о защите персональных данных, таких как GDPR, законах о защите конфиденциальности потребителей и т. Умение оценить воздействие на защиту данных DPIA , выявлять потенциальные риски и меры по уменьшению рисков в связи с использованием персональных данных в системах ИИ. Умение применять и анализировать законодательные нормы и требования к комплаенсу в области ИИ, сопоставлять их с целями компаний и мерами защиты бизнеса. Умение проводить мониторинг и аудит производительности и эффективности систем ИИ, следить за их соответствием принципам и стандартам этики. Умение взаимодействовать и сотрудничать со стейкхолдерами, включая дата-сайентистов, инженеров, специалистов по надзору, клиентов и т. Специалист по правовому регулированию ИИ Конечно, компании стремятся соблюдать закон и избегать юридических проблем; другим же придётся всерьёз напрячься, чтобы понять, как вписать в законодательство невиданные ранее системы ИИ.

Каждый год принимают всё больше законов об искусственном интеллекте. Думаю, по мере развития ChatGPT нас ожидает взрывной рост такого законодательства. Скорее всего, оно зародится в аналитических центрах, университетах и профильных группах. Но в конечном счёте у нас появятся грамотные специалисты, которые будут осуществлять правовое регулирование и мониторинг в области использования ИИ совместно с местными и национальными органами власти. Я бы назвал таких людей специалистами по правовому регулированию ИИ. Именно они помогут создать законодательство, регулирующее ИИ, и обеспечить соблюдение стандартных практик, действующих в той или иной юрисдикции.

Навыки и компетенции Представление о технологиях и приложениях искусственного интеллекта, их экономических и социальных последствиях. Умение использовать инструменты и методы ИИ, чтобы генерировать ценную аналитическую информацию и прогнозы для формирования политики и проведения оценок. Умение взаимодействовать и сотрудничать с разными стейкхолдерами, включая исследователей, представителей отрасли, гражданского общества и органов власти. Умение находить компромисс между рисками и возможностями правового регулирования ИИ, согласовывать его применение с принципами этики и правами человека. Умение осуществлять мониторинг и обеспечивать комплаенс системами и пользователями ИИ соответствующих законов и стандартов. Директор по этике ИИ и специалист по количественной оценке этики ИИ Специалисты по комплаенсу использования данных ИИ будут защищать компании от судебных исков уже после реализованного проектного решения.

В качестве промта, или заявки для генерации, использовали текст «Рейтинг наиболее перспективных и востребованных специальностей в России в ближайшем будущем». Что из этого получилось, расскажем ниже. Анна Неделько, продюсер проекта «Топ Джобс» на телеканале «Ключ» Специалист по кибербезопасности Задача специалиста по кибербезопасности — создавать защищённую архитектуру пользования данными, предотвращая киберпреступления и исключая кибертеррористические атаки. В эпоху, когда массовые «сливы» данных происходят едва ли не каждую неделю, а от кибератак страдают банки, органы власти и глобальные производства, ценность таких профессионалов будет только расти. В число компетенций, необходимых для развития в качестве специалиста по кибербезопасности, входят навыки программирования, умение обрабатывать массивы данных, знание технических аспектов электронных приборов и гаджетов, а также аналитическое мышление, внимательность и аккуратность. Востребованности специалистов по кибербезопасности способствуют развитие блокчейна и рынка криптовалют, а также форм и механизмов киберпреступности. Нейропилот Нейропилотирование развивается параллельно с беспилотным транспортом, которому предсказывают большое будущее в космосе, под землёй и в Мировом океане.

Профессиональные нейропилоты управляют БЛА буквально силой мысли, передавая мозговые импульсы на нейроинтерфейс: поднимает дрон в воздух, расслабляясь, а опускает, напротив, сосредотачиваясь. Отсюда особые требования не только к хард-, но и к софт-скилам — и в первую очередь необходимы стрессоустойчивость и самоконтроль.

Контента будет много, но потреблять его продолжим мы с вами. А теплые человеческие коммуникации станут настолько востребованными, что появится контент-лейбл «создано людьми для людей».

Кроме того, нейросети помогают быстро визуализировать идеи, экономя время и деньги. Например, в Midjourney получится быстро рисовать визуалы для презентаций, не прибегая к услугам иллюстратора. Или создавать изображения продукции на этапе пресейла. Обычно эту рутинную и не очень творческую работу выполняют дизайнеры, а результаты их труда часто просто остаются на бумаге.

В условиях, когда для механической работы возникают более эффективные инструменты, чем человеческий мозг, людям становится выгоднее развивать мягкие навыки. Учиться творчески думать, формулировать и ставить задачи, выбирать лучшие из возможных вариантов. Человек выигрывает у ИИ тем, что у него есть неповторимый психологический портрет, который и делает его креативный продукт уникальным.

В то время как молодые специалисты ожидают от программ лёгкой и бесперебойной работы. Как бы то ни было, использовать машинный разум, вероятно, предстоит всем — в ближайшие годы рынок нейросетей будет только расти. Нейросеть пригодится, чтобы проанализировать отзывы покупателей и понять, как клиенты оценивают товар или услугу. Много возможностей генеративный ИИ открывает в сфере персонализированной рекламы. Он может готовить предложения под конкретного пользователя, учитывая его интересы, предпочтения и поведение. Например, показывать рекламные баннеры на конкретные товары с учётом предыдущих покупок клиента.

Использовать нейросети под силу каждому, независимо от опыта и профессии. Они могут помочь в создании идей, написании текстов, автоматизации задач. Вы научитесь правильно составлять запросы, генерировать тексты и изображения, а также разберётесь, как использовать новые технологии этично и безопасно. Чаще всего они поддерживают популярные языки программирования вроде Python, Java, C. Кроме того, ИИ можно попросить подготовить документацию, чтобы пояснить смысл написанного другим разработчикам. Умные инструменты используют и в интегрированных средах разработки — программах, в которых специалисты пишут и проверяют собственный код. Там нейросети способны давать подсказки и советы, которые помогают быстрее и эффективнее решить задачу.

Профессии будущего. Как нейросети открывают новые направления в edtech

Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться. Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные. Реже специалистов по нейросетям ищут в госсекторе, строительстве, логистике, здравоохранении и тяжелом машиностроении – по 1% вакансий. Я считаю, нейросети драматически изменят ландшафт нашей профессии.

Неожиданные профессии, где используют нейросети

Представляем 5 уникальных профессий будущего, связанных с обработкой данных и искусственным интеллектом. Самая известная нейросеть ChatGPT составила рейтинг специальностей, которые, по ее мнению, будут наиболее востребованы в будущем. Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег.

Специалист по нейросетям — что это за профессия

Чтобы добиться успеха, надо иметь уникальный склад ума. В основном требуются знания математики, Python, алгоритмов и библиотек машинного обучения. В среднем предлагают зарплату 100-300 тыс. Но за первоклассными специалистами ведется настоящая охота крупнейшими компаниями. Потолка дохода для них нет. Аналитик данных Такие специалисты области ИИ работают с большими объемами данных для выявления тенденций и закономерностей, создания моделей и прогнозов на основе этих данных.

Для работы в этой сфере необходимо иметь знания в статистике и программировании, уметь взаимодействовать с базами данных и специальными инструментами. У опытных сотрудников доход может достигать 200 000-300 000 руб. Нейро-иллюстратор Эта специальность ИИ занимается созданием изображений, используя технологии искусственного интеллекта и нейросетей. Работа художника заключается в разработке алгоритмов и моделей AI, которые смогут создавать художественные произведения, отталкиваясь от определенных правил и параметров. Одна из задач нейро-художника — создание алгоритмов, которые могут анализировать и интерпретировать художественные произведения.

Вы узнаете какие задачи можно решать с помощью популярных нейросетей, познакомитесь с бесплатными инструментами, которые можно освоить в пару кликов и научитесь делегировать ИИ рутинные задачи. Заполните форму ниже и сразу получите доступ к документу. Забрать гайд Обещаем, что обойдемся без спама и навязчивых сообщений.

Изучите топовые AI и отдайте им всю рутину Генерируйте сеты иконок, детализированные фотографии, арты и прототипы в Midjourney Научите ИИ говорить на вашем языке, задайте ему роли и пишите тысячи текстов в ChatGPT Оживляйте изображения и создавайте анимацию и видео с нуля, используя только промт и силу Runaway и Stubble Diffusion Интеллект искусственный, Генерируйте сотни уникальных идей для постов, статей или дизайна Пишите эффективные промты для любых нейросетей и получайте предсказуемые результаты Создавайте эффектные изображения и проводите фотосессии всего за пару кликов Генерируйте контент-планы, статьи для блогов и SEO-оптимизированные тексты самостоятельно Разрабатывайте прототипы интерфейсов, дизайн посадочных страниц и фирстиль без подрядчиков Получите преимущества на рынке труда за счет навыков работы с искусственными интеллектом Программа «Cпециалист по нейросетям: профессия промт-инженер» — это большая программа повышения квалификации. Вы можете освоить ее целиком или выбрать для изучения только один из модулей. Знакомство с нейросетями.

Принципы работы, направления развития. ИИ-этика — 11 часов Тема 1. История создания нейросетей и основные принципы их работы — 3 часа Тема 2.

Чем совершеннее ИИ робота, тем больше задач он может выполнять. К примеру, если робот-таксист четверть века назад встречался исключительно в фантастических произведениях, то сегодня роботакси авто, управляемое искусственным интеллектом компании «Яндекс» уже курсирует по Москве. Не за горами и беспилотные комбайны и самолеты, роботы-курьеры или администраторы гостиниц, и всех их нужно будет не только спроектировать, но и натренировать, применяя методы машинного обучения. Дойдет ли до роботов — школьных учителей или терапевтов, сказать сложно, но нехватка работы инженерам-робототехникам в ближайшие десятилетия точно не грозит, а зарплаты однозначно увеличатся. Хотя эти специалисты и сейчас не могут пожаловаться на зарплату: она начинается от 100 тыс. Инженер-электротехнолог инженер по электротехнологическим установкам Представить современный мир без результатов деятельности инженеров-электротехнологов невозможно, ведь они занимаются тысячей вещей — от промышленных плазменных печей до электростанций, от бытовой электротехники до трамваев. Они отвечают за создание и обслуживание всех систем, использующих или преобразующих электроэнергию; разрабатывают и тестируют предназначенное для этих систем оборудование и отдельные элементы; обеспечивают безопасность энергетической сферы и устанавливают ее стандарты. Применение искусственного интеллекта в работе электротехнологов зависит от конкретного сегмента деятельности: так, в энергосистемах ИИ прогнозирует потребление, диагностирует неисправности, оптимизирует производство и распределение энергии.

Требования к образовательному уровню в этой области высокие: специалист должен закончить бакалавриат или магистратуру по специальности 13.

Так, например, недавнее исследование показало, что больше половины опрошенных россиян вешают трубку, услышав, что им звонит робот. А если возникает проблема, каждый второй предпочитает общаться с реальным оператором. Кстати, несмотря на предположение Фрея и Осборна, что с развитием ИИ работники call-центров первыми окажутся под угрозой, в США с 2014 по 2022 год наблюдается неизменный рост занятости в этой сфере. Выходит, что новые технологии в силу своей искусственности пока не могут полноценно конкурировать с человеком. Но они уже выставляют новые требования к тому, как организовать труд и какие навыки развивать, чтобы оставаться адекватным изменениям в индустрии. Как использовать новые технологии Чтобы не поддаваться популистским уверениям, что роботы и нейросети отберут хлеб у трудящихся, и адаптироваться к новым технологиям, полезно в рамках своей профессии определить: какие задачи по-прежнему в силах решать только человек; какую часть работы передать ИИ; где продуктивно сотрудничество человека и машины. На удаленке у креативных специалистов не всегда есть возможность «разогнать» свои идеи с коллегами. А нейросеть помогает быстро проверить гипотезы, описать механику работы какого-то процесса, сравнить сложные данные.

Виталий Микрюков, директор по маркетингу глобальной команды ИКРЫ уже несколько месяцев использует инструменты ИИ для решения задач, связанных с маркетингом, стратегией и продажами.

8 перспективных профессий, связанных с ИИ

Ломоносова возможность подготовить по-настоящему современных специалистов в области цифровых медиа и коммуникаций. Александр Крайнов, директор по развитию технологий искусственного интеллекта в Яндексе Медиа — среди отраслей, в которых открываются самые большие возможности, связанные с генеративным ИИ. Появляются новые профессии как в самой медиаотрасли, так и на стыке с другими областями, например с Data Science. И мы стараемся помочь эти возможности найти и раскрыть. Совместная программа с МГУ — очередной шаг в этом направлении.

Пройти обучение могут выпускники бакалавриата любых направлений. Для поступления нужно сдать вступительный экзамен, проверяющий знания по теории медиа, медиаэкономике и медиаменеджменту, социологии медиа и другим сферам медиакоммуникаций.

Чаще всего соискатели не принимают предложения из-за низких зарплат. Также среди причин назвали несоответствия между тем, что указано в описании вакансии и реальными обязанностями. Еще одна часть отказов связана с неудобным графиком.

Входной массив здесь — просто массив пикселей картинки, выходной — вектор с вероятностями, что изображено на картинке. Выходной массив может быть и картинкой например, как в задачах pix2pix на улучшение картинок или дорисовывание.

Входной массив может быть не картинкой, а последовательностью слов — так, например, происходит в генерации картинок по тексту. С отдельными элементами входного массива обычно не работают: действия собирают в слои и применяют операцию ко всему массиву сразу. Котика на картинке распознают независимо от того, в какой части картинки он находится. Саму формулу пишут не как аналитическую формулу, а вычислительным графом — это рецепт для калькулятора, в каком порядке и что делать с входным и промежуточным массивами. Очень популярная, старая и довольно простая моделька. Она может показаться сложной, но операции — простые, а концепция вычислительного графа позволяет работать со сложными формулами. В этих слоях скрываются числа, они же — веса — коэффициенты в большой формуле. Сначала параметры инициализируют небольшими случайными числами, а затем улучшают с помощью градиентного спуска.

Так система самообучается. Обвязку к этому движку обычно делают на Python. Но на них сейчас нейросети почти не пишут, кроме низкоуровневых сетей для устройств. Знания Python достаточно, чтобы писать крутые вещи. Есть библиотеки, позволяющие упростить процесс разработки. Крутые обертки и сборники моделей — одна из причин, почему сейчас стало популярно разрабатывать нейросети. Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing. Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат.

А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях. В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось. Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился. Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах. Прикладными проектами может заниматься обычный разработчик.

Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно. А все остальное получится в свое время. Самое тяжелое умение — на грани hard skills и soft skills — понимать, что делаешь. Подвох в том, что данные могут лежать в каком угодно виде, и надо уметь грамотно их обрабатывать. Если есть десятки CSV, которые ссылаются друг на друга, нужно правильно соединить их между собой по ключам и в процессе ничего не потерять и не приобрести. Это сложная задача для людей, которые хотят создавать искусственный интеллект. Чтобы стать разработчиком нейросетей, должен быть искренний, неиссякаемый интерес к этому.

Желательно иметь в голове образ результата, абстрактное желание заниматься нейросетями ни к чему не приведет. Сильная образовательная база не так важна, как любознательность и усидчивость. Однако, если в вузе вы хорошо изучили математику и алгоритмы, ваш инструментарий будет богаче. Многие задачи, которые встречаются в моей работе сейчас, я научился решать еще в университете. Помимо математических знаний и опыта разработки, здорово обладать профильной экспертизой — это помогает быстрее находить очевидные глупости и лучше понимать ценность решения.

Midjourney К работам с наибольшим риском автоматизации относятся те, которые связаны с повторяющимися задачами, такими как работа на конвейере, ввод данных и телемаркетинг. Однако ИИ также способен автоматизировать и более сложные задачи, такие как обслуживание клиентов, бухгалтерский учет и даже такие профессии как врачи, юристы и архитекторы. Это может привести к снижению спроса на людей, а в некоторых случаях и к полной автоматизации определенных профессий.

Вот несколько примеров профессий, которые рискуют быть захваченными ИИ: Репетиторы и преподаватели. ИИ может автоматизировать многие рутинные задачи, связанные с образованием. Например, алгоритмы искусственного интеллекта можно использовать для создания индивидуальных планов уроков и автоматической проверки и оценки заданий. ИИ также можно использовать для немедленной обратной связи со студентами и помощи им в разработке более эффективных стратегий обучения. Алгоритмы ИИ могут непрерывно анализировать результаты учащихся и адаптировать учебный план к их индивидуальным сильным и слабым сторонам и стилям обучения. Системы искусственного интеллекта можно обучить выполнению бухгалтерских задач, таких как ввод данных и сверка счетов. Этот тип работы часто требует высокой степени точности и внимания к деталям, которые могут быть выполнены более эффективно с помощью ИИ. Midjourney Производственные рабочие.

Системы искусственного интеллекта можно использовать для автоматизации производственных задач, таких как работа на сборочном конвейере. Этот тип работы часто включает в себя повторяющиеся задачи, которые могут быть выполнены более эффективно и точно с помощью ИИ, что снижает потребность в людях. Технические писатели.

Похожие новости:

Оцените статью
Добавить комментарий