Новости атомная батарейка

Российские ученые создали атомную батарейку энергия которой выше в 10 раз по сравнению с предшествинниками. Если политика позволит, атомные батареи дадут возможность никогда не заряжать мобильный телефон, а дроны, которые могут летать только 15 минут, смогут летать непрерывно". Betavolt планирует выпустить версию ядерной батарейки на 1 ватт к 2025 году. Российские ученые разработали прототип ядерной батарейки мощностью до 100Вт, которая может работать с помощью бета-распада никеля-63.

Без зарядки 50 лет: в Китае разработали ядерную батарею

В МИФИ создали прототип плутониевой батарейки Устройство ядерной батарейки можно сравнить с полупроводниковой солнечной батареей.
Вечный заряд: российские ученые создают батарейку, способную работать десятилетиями В отличие от литийионных аккумуляторов, атомная батарейка в тридцать раз компактнее и совершенно безвредна для человека.
В России создана миниатюрная и долговечная атомная батарейка Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта.
Российские ученые сделали уникальную атомную батарейку - Hi-Tech Российские учёные презентовали прототип атомной батареи, способной работать без подзарядки 80 лет.

Российские ученые создали уникальную атомную батарейку

Атомная батарейка состоит всего из двух ключевых компонентов: источника бета-излучения и полупроводникового преобразователя. Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы). Ядерная батарейка на основе радиоизотопного термо электрического генератора РИТЭГ изобретен и применяется в космосе и в МО более 50 лет. Китайские ученые создали «вечную» ядерную батарею, которая может производить энергию до 50 лет без подзарядки.

Без зарядки 50 лет: в Китае разработали ядерную батарею

А ещё защитный корпус с толщиной стенки около сантиметра». Если используемый изотоп более мощный и выдаёт больше энергии, с ним можно сделать более компактную батарейку. Скажем, элементы питания для тех же кардиостимуляторов делались на основе более активного плутония и потому занимали очень мало места. Но и защита у мощных изотопов должна быть сложнее, а ещё интенсивное излучение изнашивает элементы батарейки. А это надёжно? Защитный корпус батарейки проектируют с учётом условий эксплуатации. А ещё учитывают, какой именно изотоп используется внутри.

Например, тритий даёт довольно слабое излучение, поэтому делать огромный корпус с толстыми стенками для него не нужно. А вот для плутония нужна куда более серьёзная защита: его рекомендуют применять только там, где минимален риск потенциальной аварии. А для гипотетического бытового применения можно использовать изотопы с низкими энергиями, например тритий или никель-63. Защитные корпуса для них могут быть тоньше и меньше, ведь глубина проникновения излучения очень низкая. Даже если человек случайно возьмёт в руки никель-63, ему будет достаточно просто помыть руки, чтобы избежать негативного влияния». Корпус разрабатывают так, чтобы он мог выдерживать большие нагрузки: перепады давления вплоть до полного вакуума, повышенные и пониженные температуры, удары и катаклизмы.

Ведь существующие сейчас прототипы собираются использовать в довольно суровых условиях. Даже если с источником питания что-то случится — контур закрытый, и радиация не выйдет наружу. А ещё современные батарейки оснащают системами контроля обстановки, в том числе мониторингом радиационного фона и геолокацией. Так можно следить за работой устройства, даже если оно находится в космосе или на дне океана. Для чего нужны такие батарейки Ядерные батарейки способны бесперебойно питать элементы годами, пока не достигнут периода полураспада радиоактивного изотопа. Для трития это 12 лет, а для никеля-63 — около 100.

И даже после этого батарейка не перестанет работать совсем, просто её мощность упадёт вдвое. На протяжении всего срока службы её не надо подзаряжать или заменять источники питания, она полностью автономна. Реактор для кофеварки Поэтому ядерные батарейки можно использовать для питания критичных узлов. Например, на космических или арктических станциях. Обычно ядерные батарейки применяют как дополнительный источник питания вместе с химическими и солнечными батареями. Дело в том, что в производстве ядерная батарейка очень дорогая — использовать её как основной источник электричества невыгодно, хотя характеристики это позволяют.

Впрочем, свою сферу применения такие элементы питания всё-таки находят. Сейчас привлекают финансирование для создания малых серий тритиевых батареек, которые отправят в космос для питания важных технологических узлов. А плутониевые термофотовольтаические батарейки от НИЯУ «МИФИ» планируют пустить в производство в ближайшие три года — и использовать на объектах вдоль Северного морского пути, к примеру на маяках или метеостанциях. А в магазинах они появятся? К сожалению, вряд ли. Главная проблема с ядерными батарейками — стоимость.

В этой системе увеличен токовый сигнал, поскольку регенерация вторичных электронов происходит внутри наноструктурированных плёнок никеля. В процессе окисления этих плёнок на металлическом ядре образуется оксидная оболочка, что увеличивает эффективность источника питания. Кроме того, никель-63 испускает мягкое бета-излучение, поэтому для него легко создать физическую защиту. Это делает применение никеля-63 достаточно доступным.

Ядерная батарейка на углероде 14 работающая 100 лет У данной атомной батарейке по сравнению с другими радиационными источниками энергии имеются следующие преимущества: Дешевизна. Долгий срок работы до 100 лет. Низкая токсичность. Способна работать в экстремальных температурных условиях. Радио активный изотоп углерод 14 имеет период полураспада 5700 лет.

Он абсолютно не токсичен и имеет низкую стоимость. Активную работу по модернизации ядерной батарейки ведут не только США и Россия, но и другие страны! Исследователи научились наращивать пленку на карбидной подложке. В результате чего подложка подешевела в целых 100 раз. Такая структура устойчива к радиации, а это делает данный энергетический источник безопасным и долговечным.

Применяя карбид кремния в ядерные батареи можно добиться ее работы при температуре в 350 градусов Цельсия. Таким образом ученым удалось создать атомную батарейку своими руками!

Устройство может безопасно, автономно и без подзарядки давать электроэнергию десятки лет», — сообщает «Росатом».

Созданная установка преобразовывает энергию полураспада в электричество. Как отмечают авторы опубликованного видеоролика, плутоний излучает 87 лет, а, например, америций-241 — 432 года.

В МИФИ создали прототип плутониевой батарейки

Срок службы такой батарейки составляет не менее 50 лет, стоимость – около 4000 долларов. Российская ядерная батарейка в отличие от традиционных источников питания получает электрическую энергию в результате естественного распада радиоактивных изотопов. Китайский стартап Betavolt разработал атомную батарейку, которая может вырабатывать энергию в течение 50 лет без необходимости зарядки. Такие батареи могут стоить $100 за кВт·ч, что вдвое дешевле самых простых литий-ионных версий. Что это: атомная батарейка размером с монету, которая может работать до 20 лет. Отмечается, что ядерные батарейки работают за счет преобразования в электричество энергии распада метастабильных ядер.

Ученые НИЯУ МИФИ создали прототип ядерной батарейки

Но они пока не готовы сказать, когда подобные решения появятся в массовом производстве. Это тоже интересно:.

Хотелось бы в это верить. В основе атомной батарейки Betavolt используется изотоп никель-63 и алмазные полупроводники. В процессе радиоактивного распада он превращается в изотоп медь-64. В природе изотопа никель-63 не существует.

Он получается в специальных ядерных реакторах, поэтому цена 1 г изотопа запредельная. Явно не для батареек смартфонов.

Российские специалисты разработали "атомную батарейку", имеющую повышенную мощность 17 Января 2023 Специалисты российского НИТУ "МИСиС" практически завершили работы по перспективному автономному и при этом миниатюрному источнику питания, выполненному в виде плоской "батарейки" с компактными размерами, способной проработать не менее 20 лет. Новая разработка имеет бетавольтаический элемент с двусторонним нанесением радиоактивного элемента и оригинальной трехмерной структурой, из-за чего данный источник питания имеет небольшие размеры, повышенную удельную мощность, а также низкую себестоимость при массовом производстве.

До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония.

Плюс на борту имелось по девять нагревателей RHU их может быть и больше, они устанавливаются точечно в рассчитанных местах. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране.

Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу. Фото: Los Alamos National Laboratory Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода потом аппарат становился мусором, который летает вокруг Земли до сих пор , и это при более высоком весе ядерного топлива. Поэтому требовались регулярные запуски, с которыми то и дело не ладилось.

На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза. Однако новые системы получили лишь два спутника, и один из них был уничтожен. Фото: kerbalspaceprogram.

Однако какого-то значительного шага вперед с точки зрения эффективности сделано не было. Новые «атомные батарейки» устанавливали в автоматическую межпланетную станцию АМС «Улисс», изучавшую Солнце и Юпитер; в спускаемый зонд «Галилео» для исследования атмосферы Юпитера; в станцию «Кассини-Гюйгенс», которая исследовала Сатурн, его кольца и спутники; в АМС «Новые горизонты», выполняющую программу исследования объектов Солнечной системы. АМС «Улиcс».

Китай также предпринял попытки использовать технологию — в АМС «Чанъэ-3» и вездеходе «Юйту», прибывшем на Луну тем же «рейсом». Точно не известно, были это источники питания или обогреватели, так как данные разнятся. Что дальше?

В рамках него планируется разработать систему, которая позволит активнее путешествовать по Солнечной системе. Правда, это уже не «атомные батарейки», а стационарная система на обогащенном уране. Рендер реактора Kilopower с рассеивающим тепло «зонтом».

Почему ядерные батарейки так и не стали популярны? История почти забытой технологии

На практике преобразование ядерной энергии в электрическую осуществляется преимущественно по непрямому ступенчатому принципу: энергия альфа- и бета-частиц сначала превращаются в другие виды энергии, например в тепловую, химическую, механическую или световую энергию, а они уже превращаются в электричество. Почему никель-63? Сегодня ученые НИЯУ МИФИ занялись исследованием возможностей использования никеля-63 в качестве радиоизотопа для ядерных батарей в гражданском секторе. Это наиболее перспективный радионуклид: в миниатюрном элементе питания от излучаемого этим изотопом мягкого бета-излучения легко создать защиту, а его период полураспада - более 100 лет - достаточно длительный. Группа ученых из Института ЛаПлаз под руководством Петра Борисюка предложила оригинальную физическую систему, позволяющую провести эффективную генерацию вторичных электронов непосредственно внутри наноструктурированных пленок никеля и значительно увеличить токовый сигнал, вызванный многократными соударениями излучаемых изотопом бета-частиц. Эта система является относительно простой, она представляет собой ансамбль плотно упакованных нанокластеров никеля, наночастицы которого осаждены на поверхности диэлектрика — оксида кремния. Ключевая особенность предложенной системы заключается в том, что наночиастицы никеля распределены по размерам, средний размер частицы постепенно изменяется в выделенном направлении. И в этом же направлении происходит увеличение электрических зарядов.

Фото topwar.

Российские исследователи предложили нанести радиоактивный элемент по обе стороны планарного p-n перехода. Это позволило сделать технологию изготовления элемента более простой. При этом появилась возможность контроля обратного тока, существенно влияющего на общую мощность батареи. Так же увеличена в 14 раз эффективная площадь преобразования бета-излучения, что увеличило общий выходной ток.

Защита от взрыва и теракта. Аспирант факультета прикладной физики Массачусетского технологического института Егор Касаткин отметил, что рынок для атомных батареек даже в существующих условиях безграничен. Военная и гражданская авиация, добывающая промышленность, автономные системы энергоснабжения — можно миллион направлений подобрать, где такая технология будет пользоваться спросом. Весь вопрос в том, насколько гибкой в конечном счёте получится архитектура — можно ли надстроить источник питания для подключения, скажем, не компьютера, а полноценного жилого помещения? Егор Касаткин Аспирант факультета прикладной физики Массачусетского технологического института Конкуренты тоже есть Промышленный выпуск радиоактивных изотопов для российских атомных батареек хотят наладить до конца 2020 года. Если коронавирус и спровоцированные им изменения не преподнесут дополнительных сюрпризов, то "бензин" для маленьких реакторов со слабым бета-излучением начнут делать в достаточных для экспорта количествах.

К созданию батареек, в которых радиоактивный изотоп и алмазный преобразователь для электрической энергии могут спокойно работать 50 и даже 100 лет, в разных странах подошли практически одновременно. Первые разработки российских учёных в этом направлении датируются 2018 годом, их британские коллеги создали такую же технологию в 2019-м, однако ни те ни другие батарейки в продаже ещё не появились. Третий Чернобыль? Что в КНДР с реактором атомной станции Зато у американских учёных есть вполне жизнеспособный образец. Разумеется, атомная батарейка в современном её виде — это почти всегда прототип, который нужно дорабатывать. Но американская технология существенно отличается от российской. Два прототипа бета-гальванических батарей значительно мощнее российских, хоть и работают по схожему принципу — преобразовывают радиоактивное бета-излучение в электрический ток. Репетиция конца света. Как российские подлодки стреляют ядерным залпом В компании NDB разработчик батарейки утверждают, что продукт позволит "вечно" снабжать энергией абсолютно любое устройство: от смартфона до небольшой баллистической ракеты, которая может автономно и скрытно храниться где-нибудь недалеко от противника.

По словам Сергея Леготина, максимум, на что сгодится ядерная батарейка, — это использование ее в качестве аварийного элемента питания резервных датчиков или передачи коротких сигналов. Эксперт допускает, что в будущем появятся модификации батарей для зарядки более ресурсоемкой техники, но сделать их миниатюрными в ближайшей перспективе вряд ли удастся: скорее всего, первый рабочий вариант ядерной батарейки для смартфона будет по размеру больше его самого.

Атомная батарейка: разработан прототип, способный держать зарядку тысячи лет

Физики оптимизировали толщину слоев ядерной батарейки, использующей для производства электрической энергии бета-распад изотопа никеля-63. С учётом улучшенных характеристик российская атомная батарейка сможет занять существенную долю этого рынка, уверены исследователи. Про супер-долгую атомную батарейку с повышенной в 10 раз мощностью". Атомную батарейку, которая эффективно сможет работать десятки лет, продлевая работоспособность космических и глубоководных приборов, создали ученые НИТУ «МИСиС». Петр Борисюк занимается разработкой атомной батарейки, способной работать без подзарядки порядка 80 лет. Атомная батарейка, также известная как радиоизотопный генератор тепла (РИГТ), является источником энергии, который использует процесс распада радиоактивных изотопов для.

Российские ученые создали уникальную атомную батарейку

Миниатюрную атомную батарейку разработали учёные НИТУ «МИСиС». Атомная термоэлектрическая станция (АТСТ) малой мощности "Елена-М", разработанная в Национальном исследовательском центре "Курчатовский институт", и РИА Новости. Атомная батарейка состоит всего из двух ключевых компонентов: источника бета-излучения и полупроводникового преобразователя. "Росатом" изготовил первую опытную партию компактных ядерных батареек.

В Красноярском крае разработана атомная батарейка, работающая 50 лет

Секрет в специальных термофотоэлементах, которые эффективно преобразуют свет ближнего диапазона инфракрасного спектра в электричество. В итоге энергии теряется меньше. Правда, батарейка остается объектом лабораторных исследований. Оттого и многочисленные разъемы на окружающих корпус фланцах. И радиоактивного изотопа внутри пока нет: разогрев рабочей капсулы имитирует обычная нить накаливания. Остальные параметры соответствуют проектным значениям, в том числе и напряжение на выходных клеммах. Захоронят по программе «Вакуум в рабочей камере нужен для исключения конвекционных потерь. Теплопроводность в сердцевине изделия отсутствует, и нужно добиться, чтобы как можно больше энергии альфа-распада переходило в излучение, — объясняет Петр Борисюк. Но так в теории — чтобы проверить это, вскоре мы проведем натурный эксперимент». Отсюда закономерный вопрос: поскольку долговременный источник работает фактически автономно в безлюдной местности, как его контролировать?

То есть для учета состояния ядерной батареи собираемся задействовать весь набор современных телекоммуникационных систем.

Неудивительно, что улавливанию и нейтрализации этого элемента уделяется такое внимание. Александр Аникин, заместитель директора отделения, начальник научно-технического отдела разработки технологии и оборудования для получения изотопов и изотопной продукции ВНИИНМ им. Бочвара: «В прессе можно встретить сенсационные заявления о создании тритиевых батареек для смартфонов. Это, конечно, мечта: такой источник позволит телефону обходиться без подзарядки годами. Мы и сами просчитывали подобный вариант, но поняли, что пока он вряд ли возможен.

Но все же их недостаточно для питания целого гаджета — либо батарейка будет слишком большой и потеряет одно из главных своих преимуществ, компактность». Батарея Радиоизотопные источники тока трудно назвать технологической новинкой. Существуют РИТЭГ и другие термоэлектрические батареи, которые используют распад нестабильных ядер для извлечения тепла и превращения его в электричество. В таких генераторах применяются достаточно мощные излучатели с большими потоками альфа- и бета-частиц высоких энергий стронций-90, америций-241 и даже плутоний-238 , позволяющие получать сотни ватт. Тритий же считается мягким излучателем, его слабосильные бета-частицы на это неспособны. Зато изотоп отлично подходит для создания батарей другого типа — тех, что называют бета-вольтаическими, или просто атомными.

Работают они почти так же, как фотоэлементы солнечных панелей, только полупроводниковый генератор тока в атомных батареях бомбардируется не фотонами, а бета-излучением. Попадание достаточно энергичной 1—100 тыс. На границе полупроводников с электронной N— и дырочной P— проводимостью возникают разница потенциалов и ток. Мощность его невелика, не более сотен микроватт, зато источник получается исключительно миниатюрным, долговечным и надежным. Ориентировочная стоимость: от 200—300 тыс.

Это означает, что в электропроводящей системе соприкасающихся друг с другом металлических наночастиц, средний размер которых монотонно изменяется в выделенном направлении, в этом же направлении должна регистрироваться разность потенциалов. Таким образом, формирование нанокластерных пленок никеля-63 с градиентным распределением наночастиц по размерам открывает уникальную возможность и позволяет совместить сразу два важных процесса: во-первых, формировать покрытия с фиксированной разностью потенциалов определяется разницей размеров наночастиц в выделенном направлении ; во-вторых, осуществлять преобразование энергии бета-распада 63Ni в ток электронов без использования дополнительных сложных для реализации полупроводниковых систем. Главным вопросом, которому посвящена разработка НИЯУ МИФИ, является исследование электрофизических свойств формируемой нанокластерной пленки никеля и подбор оптимальных параметров эксперимента для создания эффективного преобразователя энергии бета-распада 63Ni в электричество. Первичные результаты, подтверждающие возможность реализации такой системы, ранее были опубликованы коллективом авторов в престижном журнале Applied Physics Letters. Однако оказалось, что данные наноструктурированные пленки могут использоваться в качестве селективного фотоэмиттера — системы с перераспределенным спектром излучения в заданном спектральном диапазоне. Как показали проведенные эксперименты, процесс окисления данной пленки приводит к образованию оксидной оболочки поверх металлического ядра нанокластера. Таким образом, при окислении металлической пленки формируется ансамбль металлических нанокластеров с пространственным распределением нанокластеров по размерам и имеющих слой оболочку оксида. Малые размеры нанокластеров 2-15 нм приводят к проявлению квантовых свойств, в связи с чем ансамбль подобных нанокластеров, имеющих оксидную оболочку, представляет собой набор полупроводниковых материалов с широким разбросом значений ширины запрещенной зоны.

Отмечается, что по мере совершенствования разработки мы вскоре можем увидеть батареи для смартфонов, которые не требуют подзарядки. Как разработка приблизит появление отечественного квантового компьютера Зимой прошлого года китайские ученые заявили, что изобрели новый двигатель для дронов, который поможет устройствам находиться в воздухе на протяжении долгого времени. В частности, специалисты из Северо-Западного политехнического университета Китая изобрели модуль, который преобразует энергию света в электричество и позволяет заряжать дроны в воздухе. Создатели не раскрывают деталей проекта, чтобы избежать его использования в военных целях, однако заверяют, что с таким двигателем дрон сможет подниматься на высоту небоскреба.

Атомная батарейка. 80 лет без подзарядки

Такая атомная батарейка будет экологически безопасна и безвредна для человека за счёт производимого мягкого бета-излучения (и отсутствия опасной гаммы). О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Атомные батарейки, то есть источники электрического тока, получающие энергию от распада радиоактивных веществ. Американцы первые образцы своих атомных батареек устанавливали на спутники Transit 4A и 4B.

Ученые создали атомную батарейку. Она может работать 20 лет

Как делают ядерные батарейки и зачем они нужны — Журнал «Луч»: объединяем жителей атомных городов Учитывая, что батарейка которая указана в новости будет в продаже только в конце этого года, скорее у вас была другая батарейка, и может не ядерная, хз.
Российские ученые создали батарейку, работающую 100 лет Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта.
Российские ученые сделали уникальную атомную батарейку - Hi-Tech В России представили прототипы уникальных ядерных батареек, срок службы которых составляет более пятидесяти лет.

Российская армия получит портативные атомные источники электропитания военной техники

Применение такой батареи возможно лишь в специальных микроэлектронных устройствах, в том числе в приборах, работающих в критических условиях — в космосе, под водой или в горах, отмечают исследователи. Например, в качестве аварийного источника питания небольших датчиков. Также по теме Слоёная батарея: учёные предложили новую технологию создания натриевых аккумуляторов Российские и немецкие исследователи выяснили, что в аккумуляторных батареях вместо редкого и дорогого лития можно использовать натрий,... Несмотря на относительную безопасность для человека и возможность работать до 20 и более лет, атомные батарейки пока не находят применения в быту из-за дороговизны производства. Но это очень-очень дорого и сложно.

Потребуется много радиоактивного материала, батарейки начнут вскрывать, а это уже вопросы безопасности производства, использования и переработки», — сообщил в разговоре с RT Сергей Леготин.

Основные компоненты ядерной батареи состоят из преобразователя, подложки, источника никеля-63 и защитного слоя. Она имеет модульную структуру, где каждый модуль состоит, по меньшей мере, из двух преобразователей и одного слоя никеля-63. В настоящее время батарея проходит стадию пилотных испытаний, а китайская компания планирует уже совсем скоро запустить её в серийное производство.

Сложно сказать, насколько данный продукт обладает высокой масштабируемостью. Пожалуй, разумная цена и возможность выпускать миллионы батарей в год и определят успех данной технологии. Пока ни одна разработка, которая ранее казалась перспективной, так и не нашла путь на массовый рынок. Напомним, атомные батареи, или ядерные батареи, представляют собой устройства, использующие радиоактивные изотопы для генерации электричества.

Они отличаются от обычных батарей тем, что могут работать в течение длительного времени без необходимости замены или подзарядки. Такие батареи могут быть полезными в ситуациях, где доступ к источникам энергии ограничен или затруднён. Атомные батареи действительно обладают высоким потенциалом для использования в различных областях, таких как космические исследования, военные приложения и медицинская техника.

Как минимум лет 50 точно Китайский стартап Betavolt представил, как он заявляет, первую в мире миниатюрную ядерную батарейку. Создатели разработки утверждают, что такая батарейка абсолютно безопасна, совершенно не имеет внешнего излучения, а после периода распада изотоп никеля превращается в стабильный и нерадиоактивный изотоп меди, не представляющий угрозы для окружающей среды. Мощность ядерной батарейки Betavolt на данном этапе составляет 100 микроватт, а напряжение — 3 Вольта.

Учёные НИТУ «МИСиС» под руководством профессора кафедры полупроводниковой электроники и физики полупроводников Виктора Мурашова представили инновационный автономный источник питания — компактную атомную батарейку, которая может работать до 20 лет. Результаты исследования были опубликованы в международном научном журнале Applied Radiation and Isotopes.

Похожие новости:

Оцените статью
Добавить комментарий