Новости температура земли на глубине

Если на поверхности Земли температура 5 градусов, то на глубине 2000 метров она составит 65 градусов.

Проверим температуру под землей на глубине 50 сантиметров?

Через каждые 33 метра, температура повышается на один градус. В итоге, для того, чтобы бесплатно отапливать дом, порядка 100 м2, достаточно пробурить скважину около 600 метров и получать тепло 22 градуса на протяжении всей жизни! Теоретически, система бесплатного отопления от энергии земли достаточно проста. В скважину закачивается холодная вода, которая нагревается до 22 градусов и по законам физики с небольшой помощью насоса 400-600 вт поднимается по утепленным трубам в дом. Недостатки использования энергии земли для отопления частного дома: — Давайте более подробно разберем финансовые затраты на создание такой системы отопления. Средняя стоимость 1 м бурения скважины составляет порядка 3000 рублей. Итого глубина в 600 метров обойдется в 1 800 000 рублей. И это только clean rolex gmt master ii rolex calibre 2836 2813 mens 16710pepsi hands and markers black dial бурение!

Ученые разделили климатические состояния Земли на 4 вида, которые они назвали жаркое Hothouse , теплое Warmhouse , прохладное Coolhouse и холодное Icehouse.

Эти климатические состояния сохранялись в течение миллионов или даже десятков миллионов лет. Так, "теплое" преобладало в первые десять миллионов лет исследуемого периода, когда средняя температура была более чем на пять градусов по Цельсию выше сегодняшней. Фаза Hothouse началась 56 миллионов лет назад, продолжалась до 47 миллионов лет назад. По утверждению Вестерхольда, тогда было более чем на 10-14 градусов теплее, чем сегодня. Затем появилась тенденция к похолоданию: до 34 миллиона лет назад длилась фаза Warmhouse. На этапе Coolhouse 3,3 млн лет назад сформировались огромные ледяные щиты в Антарктике и в северном полушарии. Эта стадия, на которую попадает и эволюция человека, закончилась голоценом ближе к концу последнего ледникового периода - около 12000 лет назад.

В рамках проекта с помощью гидроразрыва пласта был создан искусственный коллектор из вертикальных трещин в монолитной породе. Подобные гидроразрывы применяют и при добыче нефти, однако расходы воды в геотермальных скважинах должны быть в десятки раз больше, чем при нефтедобыче. Проект выявил сразу несколько проблем создания подобных станций. Выяснилось, что стандартный способ гидроразрыва давал недостаточное количество трещин, чтобы достичь нужной проницаемости и хорошего теплообмена. Поэтому в последующем ученые пошли по пути создания обширных резервуаров с множеством трещин и естественных дефектов пород. Всего на сегодняшний день реализовано около двадцати опытных систем в США, Японии, Великобритании, Франции, Германии и Австралии, которые подтвердили техническую возможность извлечения глубинного тепла с глубин до 5,1 км. Эти исследования помогли определить минимальные необходимые требования для создания таких станций.

На понижение температуры влияет как особенности конструкции теплообменника, так и режим его эксплуатации. Например, в системах с высокими величинами отводимой тепловой энергии несколько десятков ватт на метр длины теплообменника или в системах с грунтовым теплообменником, расположенным в грунте с низкой теплопроводностью например, в сухом песке или сухом гравии понижение температуры будет особенно заметным и может привести к замораживанию грунтового массива вокруг грунтового теплообменника. Немецкие специалисты провели измерения температуры грунтового массива, в котором устроен вертикальный грунтовой теплообменник глубиной 50 м, расположенный недалеко от Франкфурта-на-Майне. Для этого вокруг основной скважины на расстоянии 2,5, 5 и 10 м от было пробурено 9 скважин той же глубины. Во всех десяти скважинах через каждые 2 м устанавливались датчики для измерения температуры — всего 240 датчиков. На рис. В конце отопительного сезона хорошо заметно уменьшение температуры грунтового массива вокруг теплообменника. Возникает тепловой поток, направленный к теплообменнику из окружающего грунтового массива, который частично компенсирует снижение температуры грунта, вызванное «отбором» тепла. Схемы распределения температур в грунтовом массиве вокруг вертикального грунтового теплообменника в начале и в конце первого отопительного сезона Поскольку относительно широкое распространение вертикальные теполообменники стали получать примерно 15—20 лет назад, во всем мире ощущается недостаток экспериментальных данных, полученных при длительных несколько десятков лет сроках эксплуатации систем с теплообменниками такого типа. Возникает вопрос об устойчивости этих систем, об их надежности при длительных сроках эксплуатации. Является ли низкопотенциальное тепло Земли во- зобновляемым источником энергии? Каков период «возобновления» этого источника? С 1986 года в Швейцарии неподалеку от Цюриха проводились исследования системы с вертикальными грунтовыми теплообменниками. В грунтовом массиве был устроен вертикальный грунтовой теплообменник коаксиального типа глубиной 105 м. Этот теплообменник использовался в качестве источника низкопотенциальной тепловой энергии для теплонасосной системы, установленной в одноквартирном жилом доме. Вертикальный грунтовой теплообменник обеспечивал пиковую мощность примерно 70 Вт на каждый метр длины, что создавало значительную тепловую нагрузку на окружающий грунтовой массив. Годовое производство тепловой энергии составляет около 13 МВт ч На расстоянии 0,5 и 1 м от основной скважины были пробурены две дополнительных, в которых на глубине в 1, 2, 5, 10, 20, 35, 50, 65, 85 и 105 м установлены датчики температуры, после чего скважины были заполнены глинисто-цементной смесью. Температура измерялась каждые тридцать минут. Кроме температуры грунта фиксировались и другие параметры: скорость движения теплоносителя, потребление энергии приводом компрессора теплового насоса, температура воздуха и т. Первый период наблюдений продолжался с 1986 по 1991 год. Измерения показали, что влияние тепла наружного воздуха и солнечной радиации отмечается в поверхностном слое грунта на глубине до 15 м. Ниже этого уровня тепловой режим грунта формируется главным образом за счет тепла земных недр. За первые 2—3 года эксплуатации температура грунтового массива , окружающего вертикальный теплообменник, резко понизилась, однако с каждым годом понижение температуры уменьшалось, и через несколько лет система вышла на режим, близкий к постоянному, когда температура грунтового массива вокруг теплообменника стала ниже первоначальной на 1—2 оC. Осенью 1996 года, через десять лет после начала эксплуатации системы, измерения были возобновлены. Эти измерения показали, что температура грунта существенным образом не изменилась. В последующие годы были зафиксированы незначительные колебания температуры грунта в пределах 0,5 градусов C в зависимости от ежегодной отопительной нагрузки. Таким образом, система вышла на квазистационарный режим после первых нескольких лет эксплуатации. На основании экспериментальных данных были построены математические модели процессов, проходящих в грунтовом массиве, что позволило сделать долгосрочный прогноз изменения температуры грунтового массива. Математическое моделирование показало, что ежегодное понижение температуры будет постепенно уменьшаться, а объем грунтового массива вокруг теплообменника, подверженного понижению температуры, с каждым годом будет увеличиваться. По окончании периода эксплуатации начинается процесс регенерации: температура грунта начинает повышаться. Характер протекания процесса регенерации подобен характеру процесса «отбора» тепла: в первые годы эксплуатации происходит резкое повышение температуры грунта, а в последующие годы скорость повышения температуры уменьшается. Продолжительность периода «регенерации» зависит от продолжительности периода эксплуатации. Эти два периода примерно одинаковы. В рассматриваемом случае период эксплуатации грунтового теплообменника равнялся тридцати годам, и период «регенерации» также оценивается в тридцать лет. Таким образом, системы тепло- и холодоснабжения зданий, использующие низкопотенциальное тепло Земли, представляют собой надежный источник энергии, который может быть использован повсеместно. Этот источник может использоваться в течение достаточно длительного времени, и может быть возобновлен по окончании периода эксплуатации. Литература 1. Rybach L. International course of geothermal heat pumps, 2002 2. Васильев Г. Энергоэффективная сельская школа в Ярославской области. Sanner B. Ground Heat Sources for Heat Pumps classification, characteristics, advantages. International course of geothermal heat pumps, 2002 5. IGA News no. Ground-source heat pump systems — the European experience. GeoHeat- Center Bull. Maxi Brochure 08. Atkinson Schaefer L. Georgia Institute of Technology, 2000 9. Morley T. The reversed heat engine as a means of heating buildings, The Engineer 133: 1922 10. Fearon J. The history and development of the heat pump, Refrigeration and Air Conditioning. Энергоэффективные здания с теплонасосными системами теплоснабжения. Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии. Энергоэффективный жилой дом в Москве. Энергоэффективный экспериментальный жилой дом в микрорайоне Никулино-2. Оказывается, в суровых сибирских условиях можно получать тепло прямо из земли. Первые объекты с геотермальными системами отопления появились в Томской области в прошлом году, и хотя они позволяют снизить себестоимость тепла по сравнению с традиционными источниками примерно в четыре раза, массового хождения «под землю» пока нет. Но тренд заметен и главное - набирает обороты. По сути, это наиболее доступный альтернативный источник энергии для Сибири, где не всегда могут показать свою эффективность, например, солнечные батареи или ветряные генераторы. Геотермальная энергия, по сути, просто лежит у нас под ногами. Температура земли ниже этой отметки остается одинаковой и зимой и летом в диапазоне от плюс одного до плюс пяти градусов Цельсия. Работа теплового насоса построена на этом свойстве, - говорит энергетик управления образования администрации Томского района Роман Алексеенко. В системе труб циркулирует теплоноситель - этиленгликоль. Внешний горизонтальный земляной контур сообщается с холодильной установкой, в которой циркулирует хладагент - фреон, газ с низкой температурой кипения. При плюс трех градусах Цельсия этот газ начинает закипать, и когда компрессор резко сжимает кипящий газ, температура последнего возрастает до плюс 50 градусов Цельсия. Нагретый газ направляется в теплообменник, в котором циркулирует обычная дистиллированная вода. Жидкость нагревается и разносит тепло по всей системе отопления, уложенной в полу». Чистая физика и никаких чудес Детский сад, оборудованный современной датской системой геотермального отопления открылся в поселке Турунтаево под Томском летом прошлого года. По словам директора томской компании «Экоклимат» Георгия Гранина , энергоэффективная система позволила в несколько раз снизить плату за теплоснабжение. За восемь лет это томское предприятие уже оснастило геотермальными системами отопления около двухсот объектов в разных регионах России и продолжает заниматься этим в Томской области. Так что в словах Гранина сомневаться не приходится. По сути это был первый опыт такого рода. И он оказался вполне успешным. Еще в 2012 году в ходе визита в Данию, организованного по программе Евро Инфо Корреспондентского Центра ЕИКЦ-Томская область , компании удалось договориться о сотрудничестве с датской компанией Danfoss. А сегодня датское оборудование помогает добывать тепло из томских недр, и, как говорят без лишней скромности специалисты, получается довольно эффективно. Основной показатель эффективности - экономичность. Эта сумма несопоставима с той, которую садик платил бы за тепло, используя традиционные источники. Система без проблем проработала в условиях сибирской зимы.

Внутреннее строение Земли

«Оказалось, что температура поверхности выше ожидаемой — +70 градусов Цельсия — однако уже на глубине нескольких миллиметров температура падает до −10 градусов. На глубине 5 км исследователи столкнулись с неожиданно высокой температурой — более 700 °С. Через 2 км температура выросла до 1 200 °С. Тогда работы отложили на год — до установки модифицированной версии «Уралмаш-15000» с повышенной термостойкостью. Если верить американским исследователям из Агентства по защите окружающей среды (U.S. Environmental Protection Agency (EPA), то за столетие (с 1913 года) средняя температура на Земле поднялась на половину градуса Цельсия. на глубине 400 км температура должна достигать 1400 1700 °С. Наиболее высокие температуры (около 5000 °С) получены для ядра Земли. Вопрос о распределении температур в мантии ниже слоя В и ядре Земли еще не решен, и поэтому высказываются различные представления. Известно, что ядро Земли имеет чрезвычайно высокую температуру, для этого есть свои причины.

Температура грунта на разных

Для построения же самой зависимости температуры от глубины необходимо задаться исходным значением адиабатической температуры в начале отсчёта, например на поверхности Земли. Новости Новости. Аппарат измеряет температуру верхнего слоя лунной почвы. Он оснащен датчиком с механизмом, который может измерять температуру почвы на глубине до 10 см, говорится в сообщении ISRO в соцсети X. В публикации приводится график температур. Индийский луноход "Прагьян", доставленный на спутник Земли посадочным модулем миссии "Чандраян-3", передал на Землю первые научные данные, которые во многом меняют представления о южном полюсе Луны.

Тепловое поле Земли

Зависит от интенсивности теплового потока Земли. В верхних слоях земной коры она колеблется от 11 до 120 м. Под геотермическим градиентом понимается прирост температуры на 100 метров глубины. Он зависит от теплопроводности горных пород и температурного режима земных недр.

В целом он возрастает с глубиной. В складчатых областях он больше, чем на платформах, а геотермическая ступень наоборот — меньше.

Не факт, что детки будут привязаны к этому дому и не захотят его продать. Энергия земли для отопления дома эффективна в следующих регионах: На Кавказе есть действующие примеры работающих скважин с минеральной водой выходящей наружу самоизливом, с температурой 45 градусов с учетом глубинной температуры около 90 градусов. На Камчатке использование геотермальных источников с температурой на выходе около 100 fendi 758963 1 aaa quality card bag градусов — самый оптимальный вариант использования энергии земли для отопления дома. Технологии развиваются бешеными темпами. КПД классических систем отопления растет на глазах.

Несомненно и отопление дома энергией земли станет менее дорогой. Видео: Геотермальное отопление. Энергия земли.

Не факт, что детки будут привязаны к этому дому и не захотят его продать. Энергия земли для отопления дома эффективна в следующих регионах: На Кавказе есть действующие примеры работающих скважин с минеральной водой выходящей наружу самоизливом, с температурой 45 градусов с учетом глубинной температуры около 90 градусов. На Камчатке использование геотермальных источников с температурой на выходе около 100 fendi 758963 1 aaa quality card bag градусов — самый оптимальный вариант использования энергии земли для отопления дома. Технологии развиваются бешеными темпами. КПД классических систем отопления растет на глазах. Несомненно и отопление дома энергией земли станет менее дорогой. Видео: Геотермальное отопление. Энергия земли.

Геотермическая ступень в различных случаях неодинакова и чаще всего она колеблется от 30 до 35 м. В некоторых случаях эти колебания могут быть и выше. Например, в штате Мичиган США , в одной из буровых скважин, расположенных близ оз. Мичиган, геотермическая ступень оказалась не 33, а 70 м. Таким образом, геотермическая ступень оказалась всего около 12 м. Малые геотермические ступени наблюдаются также в вулканических областях, где на небольших глубинах могут быть еще неостывшие толщи изверженных пород. Но все подобные случаи являются не столько правилами, сколько исключениями. Причин, влияющих на геотермическую ступень, много. Кроме приведенных выше, можно указать на различную теплопроводность горных пород, на характер залегания пластов и др. Большое значение в распределении температур имеет рельеф местности. Последнее хорошо можно заметить на приложенном чертеже рис. Геоизотермы здесь как бы повторяют рельеф, но с глубиной влияние рельефа постепенно уменьшается. Сильный изгиб геоизотерм вниз у Балле обусловливается наблюдающейся здесь сильной циркуляцией вод.

Нижегородский ученый объяснил изменения температуры на Луне

Мантия или часть Земли, которая находится непосредственно под корой планеты, но выше ядра слишком слабо проводит электрический ток и не может генерировать такое поле. Согласно модели геодинамо данная модель претендует на объяснение магнитного поля планеты говорится что только проводящая жидкость способна на это. Из этого следует, что один слой ядра жидкий. Кроме того, в свое время ученые наблюдавшие за колебаниями поверхности Земли, которые представляют собой S-волны, заметили одну интересную особенность. Что S-волны, не появляются на другой стороне нашей планеты, а исчезают. Известно, что упругие S-волны не способны проходить через жидкость, только через твердые материалы. Исходя из этого ученые сделали вывод, что внутри земли находится жидкий слой ядра. Проведя дополнительные исследования ученые выяснили, что жидкий слой ядра начинается на глубине около 3000 км. В 1930 году был открыт новый тип волн P-волны, которые в два раза быстрее S-волн и способны проходить через любые материалы. Проходя через ядро P-волны во внутренней части немного замедлялись, поэтому и появилась теория, что ядро имеет два слоя: жидкий и твердый.

Вероятное присутствие примесей в жидком железном ядре приводит к оценке температуры на границе ядра и мантии в 4000—5000 К. В жидком ядре по причине конвективного перемешивания температура не может сильно отличаться от адиабатической , тогда в центре Земли температура может достигать 5000—6000 К. Более детальное распределение температуры получают из решения уравнений тепловой конвекции с использованием реперных точек — температур фазовых переходов в мантии. Для переходов на глубинах 410, 660 и 2650 км эти температуры составляют соответственно 1810, 1940 и 2500 К. Опубликовано 23 января 2023 г. Последнее обновление 23 января 2023 г. Связаться с редакцией.

Такие аномалии вызваны тем, что в пределах поднятий развит преимущественно песчаный разрез, обладающий повышенной теплопроводностью. В пределах синклинальных прогибов и впадин преимущественно глинистые породы, обладающие меньшей теплопроводностью. Зоны глубинных разломов на картах изотерм выделяются положительными аномалиями. По замерам температур в скважинах составляются карты геотермических градиентов, выявляются геотермические аномалии. В Западной Сибири повышенными температурами недр отличается Салымский нефтеносносный район, пониженными температурами — недра Северных областей. Вертикальная геотермическая зональность определяет глубинную углеводородную зональность в условиях земных недр.

Наука 7 ноября 2013 13:30 Географы создали карту Всемирного потопа Взгляните, как будет выглядеть Земля, после того, как на ней растают все льды Подписаться Поделиться Если верить американским исследователям из Агентства по защите окружающей среды U. То есть, потеплело. В результате растаял кое-какой лед в Арктике и в Антарктике. И от этого уровень мирового океана поднялся почти на 20 сантиметров. Сейчас лед покрывает 10 процентов поверхности Земли. Его объем, по приблизительным подсчетам, составляет 9 миллионов кубических километров. Что будет, если вся эта замерзшая вода растает? Как будет выглядеть наша планета после потопа? Это изобразил National Geographic, создав серию карт. Белой линией обозначены границы суши до потопа. То есть, нынешние Азия Африка Придется распрощаться со многими прибрежными городами вроде Лондона или Венеции. Исчезнут и некоторые страны - Голландия и Дания в первую очередь. Мало чего останется от Латвии, Литвы и Эстонии. США потеряют Флориду и часть Аляски. Сан-Франциско, благодаря своим холмам, превратится в островки. Под водой скроются территории, на которых проживают более миллиарда человек. Меньше других пострадают Австралия и Африка. Антарктида изменится до неузнаваемости - обнажит свой гористый рельеф. Но там никто не пострадает. Возможно, именно туда переселятся вытесненные потопом азиаты. У нас единым водоемом станут Черное, каспийское и Аральское моря. Затопленным окажется все Поволжье.

Тема 2: температура в недрах земли.

Ученые обнаружили скрытую экосистему под самой сухой и жаркой пустыней Земли на глубине четыре метра. Климатологи впервые составили непрерывный график температур на Земле за последние 66 миллионов лет. Закономерный рост температуры с увеличением глубины указывает на существование теплового потока из недр Земли к поверхности. Установлено, что вблизи поверхности Земли возрастание температуры с глубиной составляет примерно 20° на каждый километр. Какова температура Земной коры, на глубине 1-30 км от поверхности? Температуры разных глубин Земли Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли.

Температура Земли приблизилась к рекордным показателям за 50 млн лет

Тепловое поле Земли Известно, что ядро Земли имеет чрезвычайно высокую температуру, для этого есть свои причины.
Географы создали карту Всемирного потопа На глубине 5 км исследователи столкнулись с неожиданно высокой температурой — более 700 °С. Через 2 км температура выросла до 1 200 °С. Тогда работы отложили на год — до установки модифицированной версии «Уралмаш-15000» с повышенной термостойкостью.

Рекордно высокую температуру зафиксировали на Земле

Поэтому учёные имеют хорошее представление о том, из чего состоят верхние горизонты мантии нашей планеты. Также по теме Геолог рассказал RT о причинах образования загадочных кратеров на Ямале Летом 2014 года в тундре Ямала появились загадочные кратеры. Для их изучения были направлены несколько экспедиций. Участник 2-ой... Отмечу, что если бурить там, где самая тонкая кора — на дне океана, то там мы столкнёмся с самым большим геотермическим градиентом.

Это означает, что по мере углубления в скважину температура будет быстро расти. Хотя проекты по бурению на океанических глубинах есть, они не направлены на создание очень глубоких скважин. Интерес представляют геологические отложения, которые можно найти на большой глубине — например, в Марианской впадине. Например, много геотермальных станций действует в Исландии, есть такие станции и на Камчатке.

Однако нужно понимать, что не везде геотермальная энергия доступна для использования. Геотермический градиент везде отличается. Это означает, что для того, чтобы просто вскипятить воду, нам придётся пробурить скважину глубиной 10 км. И чтобы нагреть воду до состояния кипения, нам нужно бурить лишь чуть больше километра — это уже выгодно и целесообразно.

Гейзер Gettyimages. Если да, то не относится ли это в равной мере и к добыче газа и нефти методом гидроразрыва пласта? Дело в том, что крупные землетрясения вызываются только движением литосферных плит, тектоническим явлениями. К счастью, вызвать их искусственно человек не способен.

Хотя небольшие колебания верхних горизонтов земной коры гидроразрыв пласта действительно может вызвать, но здесь речь идёт о такой активности, которую могут зафиксировать только сейсмометры, но человек вряд ли сможет её заметить. Также по теме Как вулкан землетрясение остановил: учёные о взаимодействии двух стихийных бедствий Один из самых мощных действующих вулканов в мире — японский Асо — помог остановить сильное землетрясение. В такому выводу пришли... Находит ли эта теория подтверждение?

Однако гравитационное взаимодействие Земли с другими космическими телами, включая Солнце, такое влияние оказывать может. Конечно, сегодня это воздействие не очень сильное и вряд ли может быть основной причиной землетрясений и вулканической активности. Однако следует напомнить, что, когда Луна проходит рядом с нашей планетой, поднимается не только уровень воды в океане, но также и суши на несколько сантиметров.

Гречко и старший преподаватель кафедры физики, математики и физико-математического образования Мининского университета Алексей Киселев. Напомним, ранее индийский посадочный модуль «Чандраян-3» впервые выполнил прямые измерения температуры поверхности и подповерхностного слоя в районе южного полюса Луны, а ряд СМИ в очередной раз поставил под сомнение высадку американцев на спутнике Земли.

Преимущества технологий теплоснабжения, использующих в сравнении с их традиционными аналогами, связаны не только со значительными сокращениями затрат энергии в системах жизнеобеспечения зданий и сооружений, но и с их экологической чистотой, а также новыми возможностями в области повышения степени автономности систем жизнеобеспечения. По всей видимости, в недалеком будущем именно эти качества будут иметь определяющее значение в формировании конкурентной ситуации на рынке теплогенерирующего оборудования. Анализ возможных областей применения в экономике России технологий энергосбережения, использующих нетрадиционные источники энергии , показывает, что в России наиболее перспективной областью их внедрения являются системы жизнеобеспечения зданий. При этом весьма эффективным направлением внедрения рассматриваемых технологий в практику отечественного строительства представляется широкое применение теплонасосных систем теплоснабжения ТСТ , использующих в качестве повсеместно доступного источника тепла низкого потенциала грунт поверхностных слоев Земли.

При использовании тепла Земли можно выделить два вида тепловой энергии — высокопотенциальную и низкопотенциальную. Источником высокопотенциальной тепловой энергии являются гидротермальные ресурсы — термальные воды, нагретые в результате геологических процессов до высокой температуры, что позволяет их использовать для теплоснабжения зданий. Однако использование высокопотенциального тепла Земли ограничено районами с определенными геологическими параметрами. В России это, например, Камчатка, район Кавказских минеральных вод; в Европе источники высокопотенциального тепла есть в Венгрии, Исландии и Франции. В отличие от «прямого» использования высокопотенциального тепла гидротермальные ресурсы , использование низкопотенциального тепла Земли посредством тепловых насосов возможно практически повсеместно. В настоящее время это одно из наиболее динамично развивающихся направлений использования нетрадиционных возобновляемых источников энергии. Низкопотенциальное тепло Земли может использоваться в различных типах зданий и сооружений многими способами: для отопления, горячего водоснабжения, кондиционирования охлаждения воздуха, обогрева дорожек в зимнее время года, для предотвращения обледенения, подогрева полей на открытых стадионах и т. В англоязычной технической литературе такие системы обозначаются как «GHP» — «geothermal heat pumps», геотермальные тепловые насосы. Климатические характеристики стран Центральной и Северной Европы, которые вместе с США и Канадой являются главными районами использования низкопотенциального тепла Земли, определяют главным образом потребность в отоплении; охлаждение воздуха даже в летний период требуется относительно редко.

Поэтому, в отличие от США, тепловые насосы в европейских странах работают в основном в режиме отопления. В США тепловые насосы чаще используются в системах воздушного отопления , совмещенного с вентиляцией, что позволяет как подогревать, так и охлаждать наружный воздух. В европейских странах тепловые насосы обычно применяются в системах водяного отопления. Поскольку эффективность тепловых насосов увеличивается при уменьшении разности температур испарителя и конденсатора, часто для отопления зданий используются системы напольного отопления, в которых циркулирует теплоноситель относительно низкой температуры 35—40 оC. Большинство тепловых насосов в Европе, предназначенных для использования низкопотенциального тепла Земли, оборудовано компрессорами с электрическим приводом. За последние десять лет количество систем, использующих для тепло- и холодоснабжения зданий низкопотенциальное тепло Земли посредством тепловых насосов , значительно увеличилось. Наибольшее число таких систем используется в США. Швейцария лидирует по величине использования низкопотенциальной тепловой энергии Земли на душу населения. В Москве в микрорайоне Никулино-2 фактически впервые была построена теплонасосная система горячего водоснабжения многоэтажного жилого дома.

В качестве низкопотенциального источника тепловой энергии для испарителей тепловых насосов используется тепло грунта поверхностных слоев Земли , а также тепло удаляемого вентиляционного воздуха. Установка для подготовки горячего водоснабжения расположена в подвале здания. Она включает в себя следующие основные элементы: парокомпрессионные теплонасосные установки ТНУ ; системы сбора низкопотенциальной тепловой энергии грунта и низкопотенциального тепла удаляемого вентиляционного воздуха; циркуляционные насосы, контрольно-измерительную аппаратуру Основным теплообменным элементом системы сбора низкопотенциального тепла грунта являются вертикальные грунтовые теплообменники коаксиального типа, расположенные снаружи по периметру здания. Эти теплообменники представляют собой 8 скважин глубиной от 32 до 35 м каждая, устроенных вблизи дома. Поскольку режим работы тепловых насосов, использующих тепло земли и тепло удаляемого воздуха, постоянный, а потребление горячей воды переменное, система горячего водоснабжения оборудована баками-аккумуляторами. Данные, оценивающие мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов, приведены в таблице. Таблица 1. Мировой уровень использования низкопотенциальной тепловой энергии Земли посредством тепловых насосов Грунт как источник низкопотенциальной тепловой энергии В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных глубиной до 400 м слоев Земли. Теплосодержание грунтового массива в общем случае выше.

Тепловой режим грунта поверхностных слоев Земли формируется под действием двух основных факторов — падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15—20 м. Температурный режим слоев грунта, расположенных ниже этой глубины «нейтральной зоны» , формируется под воздействием тепловой энергии, поступающей из недр Земли и практически не зависит от сезонных, а тем более суточных изменений параметров наружного климата рис. График изменения температуры грунта в зависимости от глубины С увеличением глубины температура грунта возрастает в соответствии с геотермическим градиентом примерно 3 градуса С на каждые 100 м. Величина потока радиогенного тепла, поступающего из земных недр, для разных местностей различается. В эксплуатационный период массив грунта, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта системы теплосбора , вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно.

Иначе говоря, грунтовый массив системы теплосбора, независимо от того, в каком состоянии он находится в мерзлом или талом , представляет собой сложную трехфазную полидисперсную гетерогенную систему, скелет которой образован огромным количеством твердых частиц разнообразной формы и величины и может быть как жестким, так и подвижным, в зависимости от того, прочно ли связаны между собой частицы или же они отделены друг от друга веществом в подвижной фазе. Промежутки между твердыми частицами могут быть заполнены минерализованной влагой, газом, паром и льдом или тем и другим одновременно. Моделирование процессов тепломассопереноса, формирующих тепловой режим такой многокомпонентной системы, представляет собой чрезвычайно сложную задачу, поскольку требует учета и математического описания разнообразных механизмов их осуществления: теплопроводности в отдельной частице, теплопередачи от одной частицы к другой при их контакте, молекулярной теплопроводности в среде, заполняющей промежутки между частицами, конвекции пара и влаги, содержащихся в поровом пространстве, и многих других. Особо следует остановиться на влиянии влажности грунтового массива и миграции влаги в его поровом пространстве на тепловые процессы, определяющие характеристики грунта как источника низкопотенциальной тепловой энергии. В капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве. При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных осадков , а также грунтовые воды.

Основные факторы, под воздействием которых формируются температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. Факторы, под воздействием которых формируются температурный режим грунта Виды систем использования низкопотенциальной тепловой энергии Земли Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом. Кроме «извлечения» тепла Земли, грунтовые теплообменники могут использоваться и для накопления тепла или холода в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии Земли : открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам; замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение. Основная часть открытых систем — скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои. Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания.

Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы: достаточная водопроницаемость грунта, позволяющая пополняться запасам воды; хороший химический состав грунтовых вод например, низкое железосодержание , позволяющий избежать проблем, связанных с образованием отло- жение на стенках труб и коррозией. Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль Louisville , штат Кентукки. Система используется для тепло- и холодоснабжения гостиничноофисного комплекса; ее мощность составляет примерно 10 МВт. Иногда к системам, использующим тепло Земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных.

В верхнем горизонте мерзлой толщи температура не остается стабильной во времени; она меняется в течение года, следуя за сезонами. Колебания температуры, происходящие в верхнем слое в течение года, называются сезонными колебаниями, и они постепенно затухают на некоторой глубине обычно на глубине 10-15 м от поверхности. Ниже глубины сезонных изменений температура вечномерзлой толщи остается постоянной в течение года. Рекордная глубина залегания вечной мерзлоты - 1 370 метров в верховьях реки Вилюй в Якутии. Температура мерзлых толщ непостоянна, она меняется с глубиной. Например, на севере Ямала толщина слоя вечной мерзлоты достигает 400 метров, а его температура опускается ниже минус восьми градусов. Они наблюдаются в горных районах Таймыра, Средней Сибири, на севере Якутии.

Похожие новости:

Оцените статью
Добавить комментарий