Знание того, где хранится информация о структуре белка, помогает нам лучше понять его функцию и важность для живых организмов.
Адрес доставки белка указан уже в матричной РНК
ДНК несет информацию о: 1) последовательности аминокислот в молекуле белка 2) месте определенной аминокислоты в белковой цепи 3) признаке конкретного организма 4) аминокислоте, включаемой в белковую цепь 4. Код ДНК вырожден потому, что: 1). 19 ответов - 0 раз оказано помощи. Хранится в ядре, синтез РНК. Хранится в ядре, синтез РНК. Первичная структура белка представляет собой уникальную последовательность аминокислот, которая определяется его генетической информацией.
Ответы на вопрос:
- Где хранится информация о первичной структуре белка: основные источники и методы исследования
- Где хранится информация о структуре белка
- Рекомендуемые сообщения
- Найден ключ от замка жизни: биолог Северинов о главном прорыве года
Где хранится информация о структуре белка
Это делает хранение и передачу генетического кода более надёжными. Лишь две аминокислоты триптофан и метионин являются исключением: они кодируются одним-единственным триплетом. Однозначность: каждый триплет может кодировать только одну аминокислоту. Неперекрываемость: один и тот же нуклеотид не может быть частью одновременно двух кодонов, расположенных рядом друг с другом. Наличие «знаков препинания» так называемых «стоп-кодонов» между генами. Наконец, перейдём непосредственно к биосинтезу белка. Этот процесс возможен лишь при наличии ряда компонентов, таких как: информационная РНК иРНК — переносит информацию от ДНК к месту синтеза белков; рибосомы — в этих органоидах происходит сам процесс биосинтеза; необходимые аминокислоты в цитоплазме клетки — собственно, из них и происходит «сборка» нужных белков; транспортные РНК тРНК — кодируют аминокислоты и доставляют их к месту синтеза; АТФ — обеспечивает энергией протекание нужных реакций. Весь процесс биосинтеза белка включает два этапа: транскрипцию и трансляцию.
О них мы детально поговорим в следующих постах, а на сегодня информации хватит ; Не забудь поставить лайк и поделиться полезной информацией с друзьями! Продолжение статьи читай здесь.
Эти коды образуют последовательность символов, представляющую первичную структуру белка. Белковые базы данных: в таких базах данных хранятся последовательности аминокислот, включая информацию о первичной структуре белка.
Каждая запись в базе данных содержит уникальный идентификатор, сведения о белке и его организме-источнике, а также ссылки на дополнительные данные и источники. В файле формата FASTA первая строка обычно содержит идентификатор белка, а последующие строки — его последовательность. Данные о первичной структуре белка могут быть представлены в таком формате и использоваться для анализа и аннотирования белковых последовательностей. Инструменты анализа белков: с помощью специализированных программ и онлайн-ресурсов можно проводить анализ и исследование первичной структуры белка.
Такие инструменты позволяют искать гомологичные белки, определять консервативные участки, прогнозировать вторичную и третичную структуры и многое другое. Все эти типы информации о первичной структуре белка важны и помогают исследователям в изучении свойств и функций белков, а также в разработке новых методов лечения и диагностики различных заболеваний. Цель хранения информации о первичной структуре белка Хранение такой информации имеет ряд важных целей: Анализ и сравнение белков: Зная первичную структуру, можно сравнивать различные белки и искать сходства и различия между ними. Это позволяет ученым выявлять семейства белков, определять их родственные связи, а также понимать общие принципы их функционирования.
Поиск новых белков и функций: Информация о первичной структуре белка может быть использована для поиска и идентификации новых белков. Это позволяет находить новые функции и потенциальные цели для лекарственных препаратов. Предсказание структуры и функции белка: На основе информации о первичной структуре можно предсказывать вторичную и третичную структуры белка. Это важно для понимания его функций и взаимодействий с другими молекулами.
Хранение и доступность данных: Системы хранения информации о первичной структуре белка позволяют ученым сохранять и делиться результатами исследований. Это способствует развитию науки и позволяет экспертам по всему миру проводить дальнейшие исследования на основе уже существующих данных.
Некоторые из основных методов включают: Геномные базы данных: Это базы данных, которые содержат генетическую информацию о различных организмах. Одним из известных примеров такой базы данных является GenBank, которая содержит информацию о генетической последовательности открытых чтений ДНК белка. Протеиновые базы данных: Это базы данных, которые содержат информацию о белках и их свойствах. Примерами таких методов являются Сангеровское секвенирование и методы секвенирования следующего поколения, такие как Illumina и Ion Torrent. Масс-спектрометрия: Это метод анализа, который позволяет определить массу ионов белков. Масс-спектрометрия может быть использована для идентификации аминокислот в белке и определения его последовательности. Все эти методы и источники информации играют важную роль в изучении первичной структуры белков, позволяя исследователям получить ценные данные о последовательности аминокислот и других свойствах белков. Белковые базы данных и репозитории В базах данных и репозиториях собраны результаты исследований, проведенных широким спектром методов, таких как секвенирование белков, рентгеноструктурный анализ, ядерное магнитное резонансное исследование, масс-спектрометрия и другие.
Эти методы позволяют определить последовательность аминокислот в белке, а также некоторые его структурные особенности. Некоторые из известных белковых баз данных и репозиториев: Protein Data Bank PDB — является крупнейшей базой данных структурных данных о белках. Она содержит детальные 3D-структуры белков, полученные с помощью рентгеноструктурного анализа и ядерного магнитного резонанса.
В этих базах данных можно найти информацию о первичной структуре белка, а также о различных атрибутах и свойствах белков. Биоинформатические инструменты: Существуют различные биоинформатические инструменты, которые позволяют проводить анализ последовательности белка и определять его первичную структуру. Научные публикации: Научные статьи являются также источниками информации о первичной структуре белка.
Многие исследования содержат детальные описания структуры протеинов и их последовательностей. Результаты экспериментальных исследований: Информация о первичной структуре белка может быть получена путем проведения экспериментальных исследований, таких как секвенирование ДНК или аминокислотного анализа. Результаты этих исследований могут быть опубликованы или доступны в лабораториях и институтах, занимающихся биомолекулярными исследованиями. Все эти источники информации могут быть использованы для изучения первичной структуры белка и расширения нашего понимания о белках и их функциях. Оцените статью.
Строение и функции белков. Денатурация белка
На протяжении десятилетий исследователи использовали экспериментальные методы, такие как рентгеновская кристаллография и криоэлектронная микроскопия. Но такие методы могут быть трудоемкими и дорогостоящими, а некоторые белки не поддаются подобному анализу. DeepMind в 2020 году показала , как ее программное обеспечение может точно предсказывать структуру многих белков, используя только их последовательность, которая определяется ДНК. Исследователи работали над своей системой в течение десятилетий, и AlphaFold 2 отлично показала себя в рамках критической оценки прогнозирования структуры белка CASP, решив 50-летнюю проблему фолдинга или «сворачивания» белков. Компания пообещала опубликовать документы с более подробной информацией и сделать программное обеспечение доступным для исследователей. Однако никаких подробностей о том, когда и как это произойдет, не последовало.
В заключении, электронные репозитории являются ценным инструментом для хранения и обмена информацией о первичной структуре белков.
Они позволяют ученым быстро получить доступ к большому количеству данных и использовать их в своих исследованиях. Благодаря таким платформам, исследования в области белковой структуры и функции могут продвигаться вперед, способствуя развитию науки и медицины. Биоинформационные ресурсы В настоящее время существует множество биоинформационных ресурсов, которые играют важную роль в хранении информации о первичной структуре белков. Эти ресурсы предоставляют доступ к базам данных и инструментам, которые помогают в анализе и интерпретации биологических данных. Одним из наиболее популярных ресурсов является база данных UniProt, которая содержит информацию о белках, их последовательности и функциональных свойствах. Ресурс также предлагает инструменты для анализа белковых последовательностей и предсказания их функций.
PDB предоставляет доступ к 3D-структурам белков, полученных с помощью методов рентгеноструктурного анализа и ядерного магнитного резонанса. Ресурс позволяет исследователям изучать взаимодействия белков, предсказывать их функции и разрабатывать новые лекарственные препараты. Кроме того, существуют и другие биоинформационные ресурсы, такие как NCBI National Center for Biotechnology Information , которые предлагают широкий спектр инструментов для анализа генетической информации. Использование биоинформационных ресурсов стало неотъемлемой частью работы биологических исследователей. Они позволяют собирать и анализировать огромное количество данных, что помогает расширять наши знания о биологических процессах и разрабатывать новые подходы к лечению различных заболеваний. Онлайн-каталоги белков В онлайн-каталогах белков можно найти информацию о белках различных организмов, включая человека, животных, растений и микроорганизмов.
Каталоги содержат данные о последовательности аминокислот, структуре белка, его функциях, взаимодействиях с другими молекулами и классификации. Онлайн-каталоги белков являются ценным источником информации для исследователей в области биоинформатики, биохимии, молекулярной биологии и медицины. Они позволяют искать и анализировать данные о конкретных белках, а также проводить сравнительные анализы между различными белками и их структурами. Такие анализы могут помочь в понимании функций белков, их роли в биологических процессах и развитии заболеваний. Кроме того, онлайн-каталоги белков могут быть использованы для предсказания структуры белка на основе его последовательности аминокислот.
Программу тренируют узнавать элементы структуры, фактически создается огромный каталог, где указано, какие тенденции имеют те или иные участки из аминокислот. Простыми словами можно сказать, что программы были обучены методом перебора. Помимо этого, есть, к примеру Foldit — онлайн-головоломка об укладе белка. Игра является частью исследовательского проекта Вашингтонского университета, в ней люди могут по-разному укладывать или сворачивать молекулу, играя с ее формой. Игровой процесс не сложен, цепочка аминокислот в нем напоминает кубик Рубика, поэтому в исследовании принимали участие люди без биохимического образования: от школьников до водителей-дальнобойщиков. Гражданская наука Сказанное выше — хороший пример гражданской науки, когда в научный процесс интегрируются не только ученые, но и обычные люди. Такие проекты развиваются и в России, к примеру, школьники привлекаются к сбору данных для научных исследований. Подобная интеграция ведет к демократизации и глобализации науки. К примеру, одной из упомянутых выше программ — AlphaFold — может воспользоваться любой пользователь интернета, способный правильно сформулировать запрос. Что это значит для медицины и для жизни Пандемия коронавируса вызвала интерес людей к биологии — все с нетерпением и вниманием следили за разработкой и тестированием вакцин, а также первыми результатами их применения. Вакцина или лекарство прямого действия не зависит от мутаций, которые накапливает вирус. Мутация вируса — это изменение его РНК, вместо одной аминокислоты возникает другая, и это меняет его свойства. Эти изменения касаются и поверхности вирусного белка: меняется его форма, за счет этого важные для нас антитела перестают узнавать вирус и бороться с ним. Если же предсказать данное изменение и заранее знать трехмерную структуру белка, может быть разработано лекарство, взаимодействующее точечно с измененным участком поверхности. Таким образом, предсказание трехмерной структуры белков значительно ускоряет процесс разработки лекарств. Новое открытие в биологии позволяет по-другому взглянуть на жизненные процессы. Мы переходим от понимания жизни как набора последовательности нуклеиновых кислот генома к набору трехмерных структур молекул.
На некоторых участках ее между комплементарными нуклеотидами образуются водородные связи, и молекула по форме напоминает лист клевера. На ее верхушке расположен триплет свободных нуклеотидов антикодон , который соответствует определенной аминокислоте, а основание служит местом прикрепления этой аминокислоты На доске схема строения транспортной РНК Каждая т-РНК может переносить только свою аминокислоту. Т-РНК активируется специальными ферментами, присоединяет свою аминокислоту и транспортирует ее в аминокислотный центр рибосомы. После этого рибосома продвигается на один кодон вперед. Первая т-РНК с аминокислотой оказывается в пептидильном центре рибосомы. В освободившийся аминоациальный центр поступает вторая т-РНК с аминокислотой. Внутри рибосомы в каждый данный момент находится всего два кодона и-РНК. Аминокислоты располагаются рядом в большой субъединице рибосомы, и с помощью ферментов между ними устанавливается пептидная связь. Рибосома перемещается на один триплет и процесс повторяется. Начало синтеза определяется кодоном-инициатором АУГ , а окончание сборки молекулы белка-кодонами-терминаторами УАА, УАГ, УГА После завершения синтеза белковая молекула отделяется от рибосомы и приобретает свойственную ей вторичную, третичную, или четвертичную структуру. Слайд 16 Последний этап в биосинтезе — трансляция — это перевод последовательности нуклеотидов в молекуле и-РНК в последовательность аминокислот в полипептиде. Работа с заранее подготовленной аппликацией из цветной бумаги: ребята наглядно самостоятельно изобразят последовательность процессов, происходящих в молекуле ДНК. Готовая аппликация представлена на фото: Рефлексия урока с помощью метода опорного конспекта: ученикам каждой из команд раздаются альбомные листы на которых они должны будут представить свои мини-проекты по данной теме и представить их перед аудиторией. Заключительная часть. Оценка уровня компетентности учащихся Ответив на данный вопросы, учащиеся покажут уровень усвоения изучаемых понятий, что даст возможность выявить пробелы в знаниях и поможет их скорректировать. Выберите три правильно названных свойства генетического кода. A Код характерен только для эукариотических клеток и бактерий Б Код универсален для эукариотических клеток, бактерий и вирусов B Один триплет кодирует последовательность аминокислот в молекуле белка Г Код вырожден, так аминокислоты могут кодироваться несколькими кодонами Д Код избыточен. Может кодировать более 20 аминокислот Е Код характерен только для эукариотических клеток 2.
Торжество компьютерных методов: предсказание строения белков
Остались вопросы? | Информация о структуре белков «записана» в ДНК в виде последовательности нуклеотидов. В процессе транскрипции она переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка. |
«Ситуация изменилась кардинально»: ИИ научился предсказывать структуру белка (Science, США) | Свойства белков определяются ихпервичной структурой, т. е. последовательностью аминокислот в их молекулах.В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекуле ДНК. |
Важнейшее открытие за 50 лет: алгоритм DeepMind научили определять структуру белка - | Первичная структура белка представляет собой уникальную последовательность аминокислот, которая определяется его генетической информацией. |
Где хранится информация о структуре белка | старения у животных. |
Где и в каком виде хранится информация о структуре белка | Информация о первичной структуре белка хранится в. Наследственная информация о первичной структуре белка. |
Адрес доставки белка указан уже в матричной РНК
Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка). AlphaFold способна выявить структуру белков почти всех живых организмов — от животных и людей до бактерий и вирусов. Кроме того, программа представляет информацию в трехмерном измерении. Информация о структуре белка хранится ва его синтез осуществляется_Роль uPHK в процессе биосинтеза белка_Роль mPHK в процессе биосинтеза.
Ответы на вопрос:
- Смотрите также
- Лучший ответ:
- Генетический код. Биосинтез белка | теория по биологии 🌱 основы генетики
- Нейросеть DeepMind расшифровала структуру почти всех белков, известных науке
- Как понять что в организме переизбыток белка?
Программа нашла все 200 млн белков, известных науке: как это возможно
Это происходит за счет работы рибосом, которые считывают мРНК и связывают аминокислоты в цепочку. Масс-спектрометрия: для определения точной последовательности аминокислот в белке используется масс-спектрометрия. Этот метод позволяет определить массу аминокислоты и последовательность их расположения в белке. Биоинформатический анализ: после получения данных о последовательности аминокислот, следует провести биоинформатический анализ. Он включает в себя поиск сходств с уже известными белками, предсказание вторичной структуры и функции белка. Хранение и доступ к данным: информация о первичной структуре белка хранится в специализированных базах данных, таких как UniProt. Эти данные доступны для скачивания или поиска через веб-интерфейс. Изучение первичной структуры белка является основой для дальнейших исследований, таких как изучение вторичной и третичной структуры, а также функции белка. Это позволяет расширить наше понимание об организации и функционировании живых систем.
Образцы для анализа первичной структуры белка Тип образца Описание Изолированные белки Это белки, которые были выделены из определенного организма или тканей с использованием различных методов.
Кстати о них, какими они бывают: Водородные связи — куда уж без них. Гидрофобное слипание — ведь глобула прячет свои гидрофобные остатки, так что они взаимодействуют друг с другом. Ионные связи — между разнозаряженными радикалами. Ковалентная связь между остатками цистеина дисульфидная — самая прочная. Связи, которые стабилизируют глобулу Про все эти связи у меня есть статейка ;] Ещё раз сказу, что здесь взаимодействуют только радикалы. Когда глобула сложилась в пространстве, то всю эту сложную структуру называют конформацией получается, что конформация — это положение атомов друг относительно друга в пространстве. Есть еще кое-что интересное: посмотрите на связи, которые образуют эту структуру. Большая часть из них — это силы слабого взаимодействия между молекулами. Это значит, что они очень легко рвутся, даже простого повышения температуры на несколько градусов хватит для того, чтобы эти связи разорвались.
Как выйти из такого положения такой большой молекуле? Дело в том, что таких связей настолько много, что существует конформационная лабильность. По сути это означает, что некоторые связи могут рваться, а другие тут же образовываться. Какой можно сделать вывод из всего этого? Не стоит думать о третичной структуре белка, как о чем-то статичном. Представьте ее как дом, который меняет свой цвет при повышении или понижении температуры, еще он может менять свой размер в зависимости от того идет дождь или нет. Какой странный дом…. В таком долго не проживешь. Некоторые участки глобулы такие чсвшники, что собираются отдельно от всей остальной молекулы. Эти части называются доменами.
Домен собирается в мини-третичную структуру самостоятельно, их даже может быть несколько. Чаще всего они имеют какую-то важную задачу, например, входят в состав активного центра. Строение активного центра Стоп-стоп-стоп. Это тиво еще такое? Ты про это ничего не говорил. Точно, помните мы сказали, что с этого уровня белок начинает пахать? А задача глобулы — это связать что-то, опять же грубо. Так вот, как она все это делает? Да-да, через активный центр, такие вы умные конечно… В чем прикол активного центра? Он должен соответствовать молекуле, с которой будет взаимодействовать.
Это называется комплементарностью. Не путать с комплиментами. Активный центр — это замок, а другая молекула — ключ, которые должны подходить друг другу. Такие вот соулмейты. Хотя к некоторым активным центрам могут подходить много ключиков. Связи, которые образуются в активном центре — слабые: чаще всего ионные, водородные и Ван-дер-Вальсовы. Но иногда могут быть и ковалентными, но не будем забегать вперёд — об этом мы поговорим, когда будем разбирать ферменты. Ну а теперь, как все это работает. В активном центре располагается уникальная последовательность аминокислот, допустим там будет две положительнозаряженных и две отрицательнозаряженных аминокислоты. А у молекулы, с которой происходит взаимодействие, будет: две отрицательных группы и две положительных.
Форма молекулы совпадает с формой активного центра. Кстати, у молекулы, которая взаимодействует с активным центром тоже есть свое название — лиганд. Надоели уже эти названия? Мне тоже… Строение активного центра и его взаимодействие с лигандом Ах, да — вся третичная структура определяется первичной…. Я знаю, что вы запомнили, но хочу немного понадоедать. Эти связи образуются между радикалами. Четвертичная структура белка Последняя, но самая большая! Не пугайтесь, только по размеру. Она есть не у всех белков, некоторые прекрасно работают в виде третичной структуры и не парятся. Но представьте, что мы возьмем несколько третичных структур и как соединим их вместе.
Пусть их будет 4 штуки, берем 4 шарика и соединяем их. Получаем четвертичную, но не из-за того, что мы взяли 4 шарика…. Эти шарики комплементарны друг другу в участках связывания — не активный центр, но чем-то похоже. Таких участков связывания много, поэтому ошибиться и не узнать своего товарища очень трудно. Каждая глобула, которую мы взяли — это отдельная полипептидная цепь. Прочитай это еще раз. До этого все касалось только одной полипептидной цепи, а теперь их несколько. Такая цепь называется мономером или субъединицей , а при соединении мономеров образуется олигомер. Так что вся большая молекула — это олигомер. Четвертичная структура белка Какие связи все это стабилизируют?
Чаще всего это водородные, ионные и Ван-дер-Вальсовы, так как каждый мономер прячет свои гидрофобные остатки вглубь молекулы, то они образуются редко. Получается, что четвертичную структуру стабилизируют силы слабого взаимодействия, ковалентных связей здесь почти никогда не бывает — очень редко могут быть дисульфидные. Поэтому можем спокойно забить на них. В чем отличие четвертичной структуры от третичной? Ну кроме того, что тут объединено несколько полипептидных цепей. А вот какое — у олигомерных белков есть не только активный центр, но и другой — аллостерический центр. К этому замку не подойдут лиганды от активного центра, у него есть свои собственные ключики. Это очень важно, нужно запомнить! Господи, я превращаюсь в препода….
Запомни его обязательно: Генетический код — это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в иРНК. Генетический код обладает следующими свойствами: Триплетность: каждая аминокислота кодируется тремя расположенными подряд нуклеотидами. Последовательность из трёх нуклеотидов называется триплетом, или кодоном. Всего их 64. При этом в кодировании аминокислот принимают участие 61 из них. Зачем нужны ещё три кодона? Об этом расскажу чуть ниже. Универсальность: генетический код един для всех живых организмов — от прокариот до человека. Вырожденность или избыточность : одна и та же аминокислота может быть зашифрована несколькими триплетами обычно от 2 до 6. Это делает хранение и передачу генетического кода более надёжными.
То есть перемещение мРНК внутри клетки происходит уже после начала трансляции. Однако авторы исследования показали, что даже если искусственно остановить в клетке трансляцию при помощи соответствующих антибиотиков или нарушив последовательность нуклеотидов с помощью мутаций, то мРНК всё равно устремляются к месту локализации белка, который они кодируют рис. Таким образом, уже в самой молекуле мРНК прописан «адрес доставки» будущего белка. У мРНК, кодирующих мембранный белок, локализация вдоль клеточной мембраны не нарушается даже при ингибировании трансляции. Различные способы остановки белкового синтеза у мРНК гена bglF, кодирующего одну из мембранных пермеаз , не изменяют локализацию мРНК внутри клетки. Иллюстрация из обсуждаемой статьи в Science Но как же быть, если мРНК полицистронна, то есть кодирует сразу несколько белков, которые имеют разные «адреса доставки»? У бактерий такая ситуация встречается очень часто, когда несколько генов которые, допустим, кодируют ферменты одного метаболического пути организованы в оперон и имеют один промотор , с которого считывается одна большая мРНК. Оказалось, что у такой мРНК достаточно одной открытой рамки считывания для трансляции мембранного белка, чтобы молекула переместилась к плазматической мембране. То есть участок мРНК, кодирующий мембранный белок, является определяющим для выбора места локализации всей молекулы. Такое происходит, даже если все остальные белки, кодируемые этой мРНК, цитоплазматические. Если же разделить такую большую молекулу мРНК на отдельные участки цистроны , которые кодируют отдельные белки, то распределение в клетке отдельных мРНК происходит в зависимости от локализации белков, которые они кодируют рис. Локализация полицистронной мРНК, кодирующей два белка мембранный и цитоплазматический определяется цистроном, который кодирует мембранный белок. Локализация моноцистронных мРНК в клетке: a — кодирует мембранный белок, b — кодирует цитоплазматический белок.
Информация о структуре белков хранится в
Узнав их последовательность, можно попытаться теоретически предсказать структуру белка и то, как он ведет себя в организме. Тегиструктура белка это, где хранится информация о структуре белка, кто открыл первичную структуру белка, для определения белка применяют в химии, какая структура молекулы белка определяется. Если предсказанная структура белка близка к экспериментально определенной структуре, то можно сделать вывод о высоком качестве предсказания. Информация о структуре белка закодирована в ДНК. Дезоксирибонуклеиновая кислота имеет очень сложную структуру, которую не до конца удалось раcшифровать ученым в наши дни. Именно это вещество отвечает за синтез белка, наследственность и прочее. Лучший ответ: Васян Коваль. Хранится в ядре, синтез РНК. Как называется отрезок молекулы ДНКсодержаий информацию о первичной структуре одного белка?