Лафет (нем. lafette) – станок, на котором закрепляется ствол артиллерийского орудия.
Что такое гаубица и почему она до сих пор на вооружении. Объясняем простыми словами
Для уменьшения действия отдачи на оружие и пулемётную установку на дульной части ствола закреплён дульный тормоз. Ответы на кроссворды. →. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия, 5 букв. – вид артиллерии, вооруженный артиллерийскими орудиями и установками на самоходной базе (боевые машины артиллерии). + 152-мм пушка-гаубица Д-20. Руководство службы.
Лежак пушечного ствола - слово из 5 букв
Тюфяки – небольшие артиллерийские орудия, предназначенные для стрельбы металлическим и каменным дробом по живой силе противника. Люлька устанавливается и закрепляется наметками в цапфенных гнездах верхнего станка. Лафет — станок, на котором закрепляется ствол артиллерийского орудия. Предназначен для придания стволу вертикальных и горизонтальных углов (с помощью механизмов наводки), поглощения энергии отдачи при выстреле (противооткатными устройствами).
Станок где укрепляется ствол артиллерийского орудия
Фундамент артиллерийского орудия 5 букв | Стержень для канала ствола пушки делали так же, как и ее модель, с той разницей, что сердечником для него служил железный прут; вместо соломенного жгута брали пеньковую веревку, а шаблон, по которому вытачивали стержень, имел конфигурацию внутреннего канала. |
RU2699199C1 - СПОСОБ ИЗГОТОВЛЕНИЯ СТВОЛОВ АРТИЛЛЕРИЙСКИХ ОРУДИЙ - Яндекс.Патенты | Лафет — станок, на котором закрепляется ствол артиллерийского орудия. Предназначен для придания стволу вертикальных и горизонтальных углов (с помощью механизмов наводки), поглощения энергии отдачи при выстреле (противооткатными устройствами). |
Артиллерийские принадлежности
- 155-мм буксируемая гаубица М-198
- 5. СТВОЛЫ АРТИЛЛЕРИЙСКИХ ОРУДИЙ
- Лафет — Википедия
- Значение слова ЛАФЕТ
- XVIII–XV века до н. э.
АРТИЛЛЕРИЯ
Вооружённый караульный, выполняющий задачу по охране и обороне порученного ему поста. Фигура высшего пилотажа, при выполнении которой самолёт снижается по сильно вытянутой спирали, совершая вращение вокруг вертикальной оси. Прибор или приспособление для обеспечения наводки оружия на цель. Световой прибор, концентрирующий с помощью оптической системы световой поток в ограниченном телескопическом угле. Гибкое изделие, изготовленное из стальной проволоки, нитей, пряжи из волокон растительного, синтетического или минерального происхождения. Знак отличия, государственная награда для ношения на верхней одежде. Инженерные противотанковые заграждения, устанавливаемые из металла, железобетонных балок или брёвен, которые укладываются в виде стены одно на другое.
Подразделение, выполняющее задачи охранения войск на марше и на месте. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. Основное средство уничтожения и морального подавления противника в бою, стрельба из различных видов оружия на поражение цели. Обезвреживание или удаление отравляющих веществ с поверхности заражённых объектов и местности.
Во главе батареи стоят ее командир и политический руководитель политрук. Три батареи составляют обычно дивизион, а несколько дивизионов — от двух до четырех — объединяются в полк. Посмотрим же, как работает в бою основная огневая единица артиллерии — батарея. На закрытой позиции Вот к хутору Огнивка рис. Батарея эта вооружена 122-миллиметровыми гаубицами. На походе командир батареи получил от командира дивизиона задачу: подавить пулеметы противника на окраине деревни Заозерье.
Еще раньше, — едва раздались впереди первые ружейные выстрелы, — командир батареи уже вызвал к себе «огневой разъезд». Теперь же, получив задачу, командир батареи коротко приказал начальнику этого разъезда: «Сейчас 10 часов 20 минут. Выбрать огневую позицию в кустах за хутором Огнивка. Буссоль 45-00. Наименьший прицел — 40. Готовность — 10. Батарею встретите у юго-западной опушки кустов». Очевидно, вам не все понятно в этой короткой задаче. Во-первых, что это за «огневой разъезд»? Как выглядит артиллерийская буссоль, если на нее смотреть сверху и сбоку Так называется разъезд, который назначается специально для выбора огневой позиции батареи.
Его возглавляет старший на батарее командир огневого взвода. В состав разъезда входят: командир орудия, вожатый средств тяги, разведчик и так называемое «вычислительное отделение» без третьего вычислителя. Разъезд должен наметить место для каждого орудия, выбрать место для передков и пути подвоза боеприпасов, а затем уточнить положение огневой позиции на карте. Во-вторых, вы не поняли, что значит «буссоль 45-00». Разъезд будет выбирать не открытую позицию, как выбирали вы для своего орудия, а закрытую, то-есть такую, с которой противнику не были бы видны не только наши орудия, но даже блеск, пыль и дым при выстрелах, Рис. Куда будет направлено орудие по буссоли при различных ее установках На открытой позиции вам нетрудно было направить свое орудие в цель: совместить перекрестие панорамы с целью, — вот и все. А с закрытой позиции цели видно не будет: впереди будет видно только «укрытие» — роща, холм, деревня или какой-либо другой предмет, укрывающий батарею от взоров противника. Как же в этих условиях направить орудие в цель? На помощь приходит прибор под названием «буссоль». Артиллерийская буссоль — это просто-напросто большой компас рис.
Главное отличие буссоли от обычного компаса в том, что она укрепляется на треноге и имеет деления не в градусах, а в артиллерийских делениях угломера, то-есть в знакомых уже вам «тысячных».
Один из вариантов предполагает, что заготовку растачивают в направлении от казенной части к дульной. Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете казенной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с центром задней стойки и креплении заготовки в кольцевом люнете устанавливают заготовку в станке этим отклонением вниз.
Может выполняться вариант способа, при котором заготовку устанавливают в вертлюжном люнете дульной частью, предварительно измеряют отклонение оси канала от прямолинейности, находят положение наибольшего отклонения и при совмещении оси канала заготовки в дульном сечении с осью стебля расточной головки и креплении заготовки в патроне вертлюжной бабки у дульного торца устанавливают заготовку в станке этим отклонением вверх. Сущность предложенного способа правки поясняется следующим образом. Орудийный ствол устанавливается консольно в люльке пушки, при этом весовой прогиб ствола может быть близок по величине или превышать технологический допуск на отклонение оси канала от прямолинейности, измеряемое в горизонтальной плоскости.
Если заготовку ствола перед растачиванием упруго деформировать так, чтобы ее кривизна соответствовала кривизне установленного в пушке ствола под действием собственного веса, зафиксировать такое положение и расточить ствол в заневоленном состоянии, то после снятия со станка канал ствола будет зеркально отображать прогиб под действием весового прогиба, а при установке в пушку ось канала будет прямолинейной с точностью до технологических погрешностей изготовления, величина которых соответствует погрешностям изготовления по действующей технологии, принятой за прототип. Однако расточенный канал заготовки ствола из-за кривизны оказывается несоосным наружной поверхности, что может привести к появлению повышенной разностенности. Для исключения этого наружную поверхность ствольной заготовки точат, установив заготовку в центрах и роликовых люнетах токарного станка с учетом полученной кривизны оси канала.
Формулы, по которым в зависимости от величины отклонения оси канала от прямолинейности определяют положение на заготовке опорных поясков, установлены при анализе деформации системы и компьютерном моделировании технологического процесса. Содержание и количественные характеристики вариантов осуществления способа предложены на основе анализа результатов моделирования процесса изготовления. Установка ствольной заготовки для растачивания казенной частью в два патрона вертлюжной приводной бабки консольно с последующей выверкой и фиксацией заготовки люнетом в дульной части позволяет в наибольшей степени имитировать весовой прогиб готового ствола, однако в этом случае повышается нагрузка на подшипники вертлюжной бабки станка, что может привести к их ускоренному износу.
Установка заготовки для растачивания казенной частью в люнет и дульной частью в расположенный ближе к средней части заготовки патрон вертлюжной бабки станка с последующей фиксацией заготовки патроном вертлюжной бабки, расположенным у дульного торца, не повышает нагрузку на подшипники вертлюжной бабки по сравнению с известной технологией, однако нужный результат достигается только в определенном интервале параметров способа, если один из патронов вертлюжной бабки расположен у дульного торца заготовки, а другой на расстоянии от него, равном 15. Выбор положения заготовки перед растачиванием в зависимости от исходной непрямолинейности наружной поверхности канала позволяет обеспечить меньшее отклонение канала после растачивания от соосности с наружной поверхностью заготовки. В этом случае при последующем точении наружной поверхности она будет обрабатываться с более равномерным по окружности припуском и, в результате, заготовка будет меньше деформироваться из-за перераспределения при точении имеющихся внутренних механических напряжений.
Ограничение исходной непрямолинейности биение наружной поверхности не должно превышать четырех значений весовой непрямолинейности ствола в орудии получено следующим образом: в этом случае отклонение оси поверхности от прямолинейности не превышает половины биения, то есть удвоенного значения весового прогиба. Заготовку устанавливают так, что ее прогиб равен весовому прогибу, при этом в деформированном состоянии поверхность канала смещается от наружной поверхности не более чем на величину весового прогиба, причем то или иное направление знак отклонения равновероятны. В этом случае разносъем металла при точении наружной поверхности минимален и более стабильно качество изготовления деталей.
В термоупрочненной ствольной заготовке достаточно высоки внутренние механические напряжения и неравномерный съем металла приводит к их перераспределению и деформации детали. Если растачивать заготовки с большей непрямолинейностью, то закон распределения отклонений будет несимметричным, что приведет в производстве к большему разбросу показателей качества отклонения от прямолинейности, разностенности. Растачивание заготовки в направлении от казенной части к дульной предложено на основании того, что при растачивании в той или иной степени наблюдается увод оси канала.
Если начать растачивание с казенной части, то на казенном торце отверстие будет соосно с предварительно расточенным каналом, а на дульном торце будет наблюдаться увод отверстия. Для того, чтобы наружная поверхность получилась соосно внутренней, нужно предусмотреть достаточный припуск для точения. Увеличение припуска на точение казенной части заготовки приводит к увеличению толщины стенки и, в результате, к ухудшению условий термообработки, увеличению общих припусков на точение наружной поверхности, повышению веса заготовки, нагрузки на станок.
В то же время увеличить припуск на точение относительно тонкой дульной части ствола можно без ухудшения условий обработки. В патентно-технической литературе не обнаружены известные технические решения, имеющие признаки, сходные с признаками, отличающими заявленное решение от прототипа. Указанные признаки обеспечивают появление у заявленного объекта свойства исходной непрямолинейности канала, компенсирующей весовой прогиб ствола в орудии , не совпадающего со свойствами, проявляемыми отличительными признаками в известных решениях, и не равное сумме этих свойств.
Следовательно, заявленное техническое решение соответствует критериям «новизна» и «изобретательский уровень». Предложенный способ правки поясняется приводимым чертежом, на котором показано: а — установка заготовки ствола 1 для растачивания с креплением казенной части патронами 2 и 3 в приводной вертлюжной бабке горизонтально-расточного станка и дульной части в кольцевом люнете 4; б — установка заготовки ствола для растачивания с креплением дульной части в приводной вертлюжной бабке станка, казенной части — кольцевым люнетом; в — конфигурация свободной от нагрузки заготовки после растачивания канала; г — установка заготовки для точения наружной поверхности в токарный станок в центрах 5 и 6 по расточенному каналу и двух роликовых люнетах по предварительно обработанным равностенным опорным пояскам 7 и 8 ; д — конфигурация свободной от нагрузки заготовки после точения наружной поверхности; е — конфигурация ствола в пушке с деформацией под действием собственного веса. Осуществляют предложенный способ следующим образом.
Термообработанную ствольную заготовку 1 с каналом, расточенным на диаметр, меньший калибра ствола, устанавливают для растачивания на горизонтально-расточной станок, снабженный вертлюжной приводной бабкой с двумя четырехкулачковыми патронами 2 и 3 и кольцевым люнетом 4, например, станок РТ-401. Если перед установкой контролировалась прямолинейность внутренней или наружной в зависимости от технологических возможностей производства поверхности, то размечают положение наибольшего отклонения от прямолинейности от геометрической оси, соединяющей центры торцевых сечений. Устанавливают заготовку казенной частью в патроне 3 вертлюжной бабки, дульной частью в кольцевом люнете 4.
У дульной части на станине станка на штативах устанавливают два индикатора часового типа, у казенной части — один индикатор. Медленно вращают заготовку вокруг оси, измеряют биение канала у торцев и смещают кулачки патрона 3 и кулачки люнета 4 до получения наименьшего биения канала у торцев заготовки.
Поселок Соловьево к югу от Очеретино практически перешел под контроль русской армии, отступление ВСУ становится «глобальным трендом».
На фоне постоянного давления нашей армии по всей длине фронта украинские войска уже не могут свободно оперировать резервами, комплексно подготавливать новые соединения и блокировать прорыв полноценными ударами механизированных бригад. Надеемся, что такое положение дел сохранится и преумножится. Они были выкуплены из британской частной коллекции, куда, в свою очередь, попали из трофеев коалиционной армии во время войны против Ирака.
Направляется, вооружение предположительно не в новый музей, а на службу ВСУ. Отметим, что Украина не только активно использует музейные экспонаты для ведения боевых действий, но и при необходимости расконсервирует даже чернобыльскую технику, которая находилась много лет в отстойниках зараженного радиацией оружия. Помощь уже была Когда был подписан пакет американской помощи, одним из поводов для радости украинцев стала передача дальнобойных ракет ATACMS.
Однако выяснилось, по заявлениям представителя Пентагона, что они уже были отправлены ранее. Не будем задаваться вопросом, обманывает ли Пентагон Вашингтон или просто тактично умалчивает о некоторых передачах вверенной ему материальной части и имущества. Он заявляет, что Россия выпускает пять артснарядов на один украинский, а в ближайшие недели увеличит это соотношение до десяти к одному.
Сюда же и рассказы о том, что РФ модернизирует свою армию, увеличивает ее численность. Ну а заявление премьер-министра Великобритании Риши Сунака о том, что «Путин не остановится на польской границе», предназначено для поддержания нервно-истеричной атмосферы в ЕС. При этом самые необходимые для ВСУ европейские поставки артиллерийских снарядов 155-мм пока задерживаются по «многочисленным причинам».
Чехия, например, вместо 800 тыс боеприпасов смогла найти лишь 300 тыс, при этом подписала контракты только на 180 тыс единиц.
Лафет как боевой станок
«И залпы тысячи орудий слились в протяжный вой….» | Наши новости могут транслироваться, используя rss. |
Станок где укрепляется ствол артиллерийского орудия - | Как куются пушки? Радиальная ковка на больших кузнечных заводах. |
Артиллерийский станок, 5 букв
Кроссворд Эксперт | все предметы, с помощью которых производится заряжание, стрельба, разряжание и действие из орудий. |
Станок где укрепляется ствол артиллерийского орудия - | Эта страница с ответами Words Of Wonders Guru Станок, на котором закрепляется ствол артиллерийского орудия дает вам необходимую помощь, чтобы справиться со сложными пазлами. |
Для чего на некоторых артиллерийских орудиях прикреплены «штыки» | Рельсосверлильный станок РСС предназначен для сверления и одновременного упрочнения отверстий под стыковые болты и рельсовые соединители, а также снятия фасок с двух сторон отверстия в рельсах типа Р5 Смотрите видео онлайн «Рельсосверлильный станок РСС» на. |
Не юмор и не фотошоп: зачем в Красной Армии привязывали винтовку к стволу пушки? | Ответы на кроссворды. →. Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия, 5 букв. |
RU2148230C1 - Устройство для досылания выстрела артиллерийского орудия - Google Patents | Эта страница с ответами Words Of Wonders Guru Станок, на котором закрепляется ствол артиллерийского орудия дает вам необходимую помощь, чтобы справиться со сложными пазлами. |
Рельсосверлильный станок РСС
В цехе "Уралтрансмаша" счет идет на часы. Завод уже перешел на трехсменный режим работы. Все для того, чтобы как можно быстрее обеспечить войска нашими лучшими артиллерийскими системами. Развернуть 28 октября 2022, 10:45 Напомним, президент России Владимир Путин 25 октября призвал сделать современным, удобным и эффективным снаряжение для российских военнослужащих, принимающих участие в спецоперации. Глава государства заметил, что в этом вопросе необходимо ориентироваться на реальные потребности военных. На заседании Координационного совета по обеспечению потребностей ВС РФ премьер-министр РФ Михаил Мишустин призвал увеличить производство средств защиты для укомплектования мобилизованных россиян. Подпишитесь и получайте новости первыми Читайте также.
Затем наносили несколько слоев влажной смеси, аналогичной той, которую использовали в последних слоях модели. Каждый слой обязательно просушивали на воздухе.
А далее на них наносили слои из густой глины до тех пор, пока не получали кожух толщиной от 175 до 300 мм в зависимости от величины пушки. Затем извлекали модели цапф, а образовавшиеся отверстия заделывали глиной. Сверху на кожух для прочности накладывали железные обручи, продольные полосы и снова железные обручи. Места пересечения поперечных и продольных бандажей скреплялись проволокой. После этого форму просушивали на козлах, разжигая под ней огонь. Высушенную форму снимали с козел, выбивали из модели сердечник, который тянул за собой соломенный жгут, вследствие чего его можно было легко извлечь из модели, разматывая жгут. Оставшаяся глиняная рубашка самой модели от прогрева становилась хрупкой, и ее легко можно было удалить. Чтобы облегчить удаление рубашки, особенно из формы пушек малых калибров, на ней при изготовлении модели вырезали по винтовой линии паз глубиной до соломенного жгута, а затем его заливали канифолью или смолой.
Эта игра была разработана командой Fugo Games, в портфолио которой есть и другие игры. Более подробную информацию об остальных уровнях вы можете найти на домашней странице WOW Guru Тулум Уровень 2280 ответы.
Подъемный механизм elevating mechanism предназначен для наводки орудия в вертикальной плоскости, поворотный traversing mechanism — в горизонтальной плоскости. Подписывайтесь на наши социальные сети: Насколько публикация полезна? Нажмите на звезду, чтобы оценить! Отправить оценку Средняя оценка 4.
Количество оценок: 10 Оценок пока нет. Поставьте оценку первым. Это может быть интересно:.
Станок, на котором закрепляется ствол артиллерийского орудия WOW Guru Подсказки
станок, на котором устанавливается и закрепляется ствол артиллерийского орудия (лафет). Ответ на вопрос Часть артиллерийского орудия, на которой закрепляется ствол., в слове 5 букв: Лафет. На марше станины складываются и закрепляются под стволом, что делает орудие довольно компактным.
RU2148230C1 - Устройство для досылания выстрела артиллерийского орудия - Google Patents
На оси каретки O1 закреплен захват, который состоит из верхнего рычага 7 и нижнего рычага 8. На концах рычагов 7 и 8 установлены ролики 9. Рычаг 8 подпружинен относительно каретки 4. Для установки взаимного положения рычагов имеется регулировочный винт 10. Устройство работает следующим образом. После включения привода досылания 2 фиг. Упор 5 своим зубом начинает досылать выстрел 6.
При этом нижний рычаг 8 своим роликом 9 перемещается по дорожке "Б" штанги 3. При взаимодействии ролика 9 фиг. В конце хода каретки 4 фиг. После досылания клин 12 орудия поднимается вверх и разворачивает рычаги 7 и 8 в исходное положение, при этом ролик 9 рычага 8 отжимает подпружиненный упор 11 вниз. При полностью закрытом клине 12 привод досылания 2 переключается на реверс и каретка 4 возвращается в исходное положение. Таким образом, предлагаемое техническое решение позволяет уменьшить линейные габариты устройства и обеспечить плавное, безударное досылание выстрела в ствол орудия.
Источники информации 1. Боевая машина пехоты БМП-1. Техническое описание. Военное издательство министерства обороны СССР. Москва, 1972 г. Танк "Урал".
Техническое описание и инструкция по эксплуатации. Книга первая. Москва, 1975 г. Патент N 3938421 от 17.
Вопрос 1 из 20 Воздушный флот морского базирования гидротерапия гидроавиация гидростанция Слова из слов Подбор слов по буквам Рифма к слову Значение слов Определения слов Сочетаемость Ассоциации Предложения со словом Синонимы Антонимы Морфологический разбор Слова, с заданным количеством определённой буквы Слова, содержащие букву Слова, начинаются на букву Слова, заканчиваются на букву Немецко-русский словарь Англо-русский словарь Ответы на кроссворды Играть в слова! Время загрузки данной страницы 0.
Изготовление таких труб включает установку заготовок труб на горизонтально-расточном станке, растачивание канала и последующее обтачивание наружной поверхности. Известен также способ изготовления труб артиллерийских стволов, в котором растачивание заготовки производят после центрирования ее относительно оси станка в нескольких поперечных сечениях по предварительно выполненным опорным пояскам с постоянной по окружности толщиной стенки, расстояние между которыми определяют в зависимости от исходной непрямолинейности заготовки пат. Общий недостаток вышеописанных решений состоит в том, что такой способ не учитывает изгиб ствола под действием собственного веса после установки его в орудие, а также непрямолинейность оси канала заготовки, которая, после правки заготовки, имеет большую величину, и которая копируется при растачивании хоть и с некоторым уменьшением , в результате чего положение оси каналов труб, чаще всего, имеет перегибы оси канала, что вызывает уменьшение кучности стрельбы. Наиболее близким по технической сущности и достигаемому результату к предложенному способу является принятый за прототип способ механической обработки стволов артиллерийских орудий пат.
Недостатком вышеупомянутого способа является то, что такой способ также не учитывает непрямолинейность оси канала заготовки, которая имеет различную форму и большую величину, и которая копируется при растачивании хоть и с некоторым уменьшением , в результате чего положение оси каналов труб, чаще всего, имеет перегибы оси канала относительно ее геометрической оси, что вызывает уменьшение кучности стрельбы. Задачей разработки предложенного способа изготовления стволов артиллерийских орудий является получение технического результата — повышения качества, выражающееся в получении труб артиллерийских стволов с прямолинейной осью оси канала после установки их в орудии. Указанный результат достигается тем, что, осуществляя способ изготовления, при котором заготовку трубы ствола устанавливают в горизонтально-расточном станке, перед началом растачивания измеряют положение оси канала заготовки, определяют величину необходимого смещения оси растачиваемого отверстия относительно оси канала заготовки как разницу положения оси канала заготовки и положения оси весового прогиба данного типоразмера труб после установки их в орудие, определяют угол необходимого смещения оси растачиваемого отверстия относительно оси канала заготовки для совмещения плоскости растачиваемого отверстия с плоскостью нахождения максимальной величины отклонения от прямолинейности оси канала заготовки трубы и производят растачивание, опираясь направляющими расточной головки на поверхность канала заготовки и корректируя положение резцового блока расточной головки с учетом рассчитанной величины смещения оси растачиваемого отверстия относительно оси канала заготовки. Сущность предложенного способа поясняется следующим образом. Перед началом растачивания измеряют положение оси канала заготовки трубы без учета ее весового прогиба. По полученным результатам рассчитывают отклонение от прямолинейности оси канала измеренной заготовки в полярных координатах как модуль отклонения от прямолинейности и угол нахождения оси канала заготовки в каждом измеренном сечении относительно ее номинального положения, затем совмещают график модуля отклонения от прямолинейности оси канала заготовки с графиком положения оси весового прогиба данного типоразмера труб после установки их в орудие, и по разнице величин этих модулей определяют величину амплитуды необходимого смещения оси растачиваемого отверстия относительно оси канала заготовки, кроме этого совмещают плоскость положения оси весового прогиба данного типоразмера труб после установки их в орудие с плоскостью нахождения максимальной величины отклонения от прямолинейности оси канала заготовки и определяют величину необходимого угла смещения оси растачиваемого отверстия относительно плоскости нахождения максимальной величины отклонения от прямолинейности оси канала заготовки. После этого заготовку трубы устанавливают в горизонтально-расточном станке в положении, при котором производились измерения этой заготовки, пропускают через канал заготовки расточную головку со снятым резцовым блоком, устанавливают резцовый блок и производят растачивание, опираясь направляющими расточной головки на поверхности канала заготовки и смещая положение резцового блока относительно корпуса расточной головки с учетом рассчитанной амплитуды и требуемого угла смещения оси растачиваемого отверстия относительно плоскости нахождения максимальной величины отклонения от прямолинейности оси канала заготовки. В патентно-технической литературе не обнаружены известные технические решения, имеющие признаки, сходные с признаками, отличающими заявленное решение от прототипа.
Лафет ; эта крона и выдерживает первый толчок при выстреле. Расположение оси вращение Поворотной рамы спереди оказывается невыгодным в случае необходимости в большом горизонтальном обстреле; поэтому в таких случаях устраивают Поворотные рамы с центральным шворнем, как это сделано у рамы Б фиг. Здесь шворень В, проходя сквозь связь в центральной части рамы, пропущен в тумбу Г, находящуюся в центре круга, по которому и бегают 2 пары катков Поворотной рамы. Если у Вас есть изображение или дополняющая информация к статье, пришлите пожалуйста. Можно с помощью комментариев, персональных сообщений администратору или автору статьи!
Ствол артиллерийского орудия
И сама винтовка заряжена трассирующими патронами. Служит этот тренажёр для того, чтобы артиллеристы упражнялись в прицеливании и стреляли вместо артиллерийских снарядов - винтовочными патронами. Смысл - в экономии и безопасности. Когда курсант уже несколько раз умел уверенно и правильно послать в цель трассирующий патрон из винтовки - ему давали выпустить из большого калибра настоящий снаряд. Трассирующие патроны в данных ситуациях и нужны были для того, чтобы и курсант, и его наставник хорошо видели, куда полетел выстрел, и могли судить о результативности ведения огня. Разумеется, стволиковая стрельба — это вовсе не то же самое, что полноценный выстрел.
Однако, она является очень важной, и даже незаменимой частью подготовки артиллерийского расчета. Так как зачастую в образовательных целях достаточно всего лишь имитации полноценного выстрела. Мосинка привязанная к стволу. Я говорил именно об этом фото. Фото в свободном доступе.
Имитация требуется, в первую очередь, из соображений экономии. Здесь есть два важнейших основных момента. Первый из них - достаточно очевидный: артиллерийские снаряды, хотя и производятся на предприятиях ВПК сотнями тысяч, всё-таки стоят немалых денег. Второй момент — немного менее очевидный для людей, далёких от военного дела и артиллерии. Он состоит в том, что дороговизна боеприпасов даже меркнет на фоне дороговизны самого ствола артиллерийского орудия.
Каждый боевой выстрел приводит к его изнашиванию на несколько процентов.
Тэн с трудом воспламеняется и горит спокойно. При возгорании более 1 кг вещества взрывается. Тэн применяется для изготовления детонирующих шнуров, промежуточных детонаторов и вторичных зарядов в капсюлях-детонаторах; в сплавах с тротилом пентолит используется для снаряжения кумулятивных боеприпасов, а также для изготовления пластичных ВВ смеси бризантного ВВ с пластифицирующими добавками. При снаряжении бронебойных снарядов применяют тэн, флегматизированный парафином. Октоген — бесцветное кристаллическое вещество. По взрывчатым характеристикам и чувствительности октоген близок к гексогену. Температура плавления 278,5—280 град.
Применяется для снаряжения боеприпасов, нагревающихся при эксплуатации и боевом применении. Тетрил — кристаллическое вещество белого или светло-желтого цвета. Высокобризантное ВВ. Применяется для снаряжения промежуточных детонаторов, вторичных зарядов капсюлей-детонаторов и детонирующих шнуров. Пикриновая кислота тринитрофенол — светло-желтое кристаллическое вещество. Температура плавления 122,5 град. Запатентована в 1887 французом Тюрненом. Применялась в начале 20 в.
Пороха метательные взрывчатые вещества — многокомпонентные твердые взрывчатые смеси, способные к закономерному горению параллельными слоями без доступа кислорода извне с образованием главным образом газообразных продуктов, энергия которых используется для метания снарядов, движения ракет и в др. Горение пороха параллельными слоями позволяет регулировать скорость газообразования. Различают бездымный, дымный и смесевой пороха, прогрессивного и дегрессивного горения. Пороха, применяемые в ракетных двигателях, относятся к твердым ракетным топливам. Дымный порох — зерненная механическая смесь калиевой селитры, древесного угля и серы, обычно в соотношении 75:15:10. В настоящее время для стрельбы дымный порох не применяется. Он в три раза слабее бездымного пороха, сильно загрязняет твердыми остатками канал ствола, при сгорании образует дымное облако, демаскирующее огневую позицию и препятствующее наблюдению за целью или точкой наводки. Вследствие того, что дымный порох легко воспламенятся и имеет большую скорость горения он сгорает быстрее, чем бездымный порох , он используют в качестве воспламенителей бездымного пороха, в капсюльных втулках, для пороховых предохранителей, замедлителей и усилителей, во взрывателях, в огнепроводных шнурах и т.
Бездымный порох — порох на основе нитратов целлюлозы пироксилина, коллоксилина , пластифицированных растворителями. Бывает пироксилиновый, баллиститный, кордитный, беспламенный бездымные пороха. Впервые пироксилиновый порох получен во Франции П. Вьелем в 1884, баллистный — в Швеции А. Нобелем в 1888, кордитный — в Великобритании в 1890. Беспламенный порох содержит специальные добавки вазелин, сульфат калия, хлористый калий и др. Смесевой порох — твердая механическая или гетерогенная смесь окислителя, горючего, связующих веществ и различных добавок. К таким порохам относятся дымный порох и твердое ракетное топливо.
Порох прогрессивного горения — порох, у которого скорость газообразования увеличивается по мере сгорания за счет возрастания скорости горения или величины горящей поверхности пороховых зерен. Это достигается флегматизацией пороха, его бронировкой, выбором соответствующей формы пороховых элементов. Такой порох позволяет по сравнению с другими повысить начальную скорость снаряда при одинаковом максимальном давлении пороховых газов в стволе. Порох дегрессивного горения — порох, у которого скорость газообразования уменьшается по мере его сгорания за счет убывания поверхности горения например, пластинчатые и ленточные пороха. Применяется, когда требуется достигнуть быстрого сгорания пороха, например, в холостых выстрелах, минометных зарядах. Жидкие метательные вещества ЖМВ — химические соединения, способные к быстрой химической реакции, сопровождающейся выделением большого количества теплоты и образованием газов, но не детонирующие при горении, предназначенные для снаряжения метательных зарядов артиллерийских выстрелов. Различают однокомпонентные и двухкомпонентные ЖМВ. Согласно мнению ряда отечественных и иностранных специалистов использование жидких метательных веществ является одним из основных направлений совершенствования артиллерийских комплексов.
Расчеты показывают, что 155-мм гаубица с ЖМВ может иметь скорострельность до 16 выстрелов в минуту, то есть ее скорострельность будет определяться тепловым режимом ствола. ЖРВ позволит уменьшить максимальное давление в канале ствола, снизить уровень демаскирующих выстрел признаков, а также удешевить производство метательного заряда в 4 раза. В связи с тем, что ЖМВ менее чувствительны к ударным нагрузкам, чем пороха повысится живучесть артиллерийских систем. Предполагается, что в самоходных артиллерийских установках САУ , использующих ЖМВ, полезный объем будет использоваться более рационально. В настоящее время основные усилия сосредоточены на создании орудия с регенеративной системой подачи топлива, в котором ЖМВ поступает непосредственно в камору сгорания через дифференциальные зазоры, образующиеся при движении перемещающихся поршней. При этом регулирование количества подаваемого метательного вещества осуществляется изменением величины зазора. Также планируется создать орудие, в котором подача ЖМВ производилась бы по мере движения снаряда в канале ствола. В качестве варианта рецептуры ЖМВ рассматривается нитрат гидроокиси аммония.
В 1988 в США был создан 155-мм экспериментальный образец первое орудие с ЖМВ со стволом длиной 39 калибров на лафете 203,2-мм буксируемой гаубицы M115. Из данного орудия было произведено около 100 выстрелов. Второй образец, получивший наименование «Дефендер», был также смонтирован на лафете M115, но имел 155-мм ствол длиной 52 калибра и зарядную камору объемом 14,2 л. Пиротехнические составы — механические горючие смеси со слабо выраженными взрывчатыми свойствами, предназначены для снаряжения пиротехнических изделий пиропатроны, воспламенители, замедлители, предохранители, пирозамки и др. Основным видом превращения здесь является горение. Скорость горения пиротехнических составов очень мала. Пиротехнические составы состоят из горючих веществ, окислителей, связующих веществ и различных добавок. Применяются осветительные, фото-, трассирующие, сигнальные, зажигательные и дымовые пиротехнические составы.
Используются также для имитации разрывов снарядов, орудийных выстрелов, ядерных взрывов и др. Состоит из корпуса, снаряжения и взрывателя. По калибру делятся на снаряды малого 20—75 мм , среднего 76—155 мм в наземной, до 152 мм в морской и до 100 мм в зенитной артиллерии и крупного свыше указанных калибров. По отношению к калибру орудия различают калиберные, надкалиберные и подкалиберные снаряды. Калиберный снаряд — снаряд, имеющий диаметр центрирующих утолщений или корпуса, равный калибру орудия. Надкалиберный снаряд — снаряд, имеющий диаметр активной части больше калибра орудия, что увеличивает могущество снаряда. Применяется обычно для стрельбы из легких орудий на малые дистанции. Подкалиберный снаряд — снаряд, имеющий диаметр активной части меньше калибра орудия, для стрельбы из которого он предназначен.
Например, бронебойный подкалиберный снаряд. По конструкции различают активные и активно-реактивные снаряды. Активный снаряд — снаряд, который получает движение в канале ствола и требуемую начальную скорость за счет энергии порохового метательного заряда. Активно-реактивный снаряд — снаряд, который выстреливается из ствола орудия как активный снаряд, а затем на траектории получает дополнительную скорость за счет работы своего реактивного двигателя. Используется в основном для увеличения дальности стрельбы. Первыми на вооружение активно-реактивные снаряды приняли в Германии во время Второй мировой войны. Они предназначались для 150-мм тяжелой гаубицы обр. По способу стабилизации в полете различают вращающие и оперенные снаряды.
Вращающийся снаряд — снаряд, который стабилизируется в полете вращением вокруг своей оси симметрии. Вращательное движение придается путем ведения снаряда по нарезам канала ствола. Оперенный снаряд — снаряд, который имеет стабилизатор оперение для обеспечения устойчивого полета. По способности управления в полете различают неуправляемые и управляемые снаряды. Управляемый снаряд — обычно основного назначения, имеет на борту средства управления полетом. Предназначен для поражения важных, преимущественно подвижных, малоразмерных целей. Выстреливается из орудия по обычной схеме. К современным управляемым снарядам предъявляются следующие основные требования: реализация концепции «выстрелил — забыл», высокая боевая эффективность и надежность, возможность применения на современных основных боевых танках ОБТ без конструктивных изменений вооружения, универсальность, то есть возможность их использования для борьбы как с наземными так и воздушными например, вертолеты целями.
В настоящее время ведутся разработки самонаводящихся снарядов, действие которых основано на принципе «ударного ядра» например, американский XM943. Такие снаряды поражают бронированные цели сверху в наименее защищенную часть корпуса. Применяемый во взрывателе магнитный датчик определяет по напряженности магнитного поля наличие в цели достаточной массы стали для отличия ее от макетов танков, изготовленных из дерева и брезента. По назначению артиллерийские снаряды подразделяются на снаряды основного бетонобойные, бронебойно-фугасные, бронебойные, зажигательные, кумулятивные, кумулятивно-осколочные, осколочно-фугасные, осколочные, полубронебойные, фугасные , специального агитационные, дымовые, осветительные, пристрелочно-целеуказательные, противорадиолокационные и вспомогательного назначения. Бетонобойный снаряд — снаряд основного назначения ударного или фугасного действия. Предназначен для разрушения железобетонных и других долговременных сооружений, может применяться по бронированным целям. Имеет прочную головную часть, мощный разрывной заряд, контактный донный взрыватель замедленного действия. Мощность ударного и фугасного действия определяется высокой прочностью корпуса снаряда, количеством и могуществом ВВ.
Стрельба бетонобойными снарядами производится из орудий калибра более 150 мм. Бронебойно-фугасный снаряд — снаряд основного назначения фугасного действия, предназначен для поражения бронированных целей. Может также использоваться для разрушения оборонительных сооружений, что делает его многоцелевым универсальным. Состоит из стального тонкостенного корпуса, разрывного заряда из пластичного ВВ и донного взрывателя. При ударе в броню пластически деформируется головная часть и разрывной заряд, чем увеличивается площадь контакта последнего с целью. Разрывной заряд подрывается донным взрывателем, что обеспечивает взрыву определенную направленность. При взрыве снаряда сквозного пробития брони не происходит. В броне образуется волна сжатия с плоским фронтом.
Достигнув тыльной поверхности броневого листа, волна сжатия отражается от нее и возвращается в броневой лист как волна растяжения. В результате интерференции волн происходит откол брони с тыльной стороны. Масса отколовшихся кусков может достигать нескольких килограммов. Куски брони поражают экипаж и внутреннее оборудование танка. Кроме того, при взрыве снаряда образуется много осколков, способных нанести поражение живой силе, находящейся на танке или вблизи него. Эффективность действия бронебойно-фугасного снаряда существенно снижается при использовании экранированной брони и подбоя на тыльной поверхности брони. Кроме того, невысокая начальная скорость бронебойно-фугасных снарядов снижает вероятность поражения быстродвижущихся бронированных целей на реальных дальностях танкового боя. Бронебойный снаряд — снаряд основного назначения ударного действия, предназначенный для поражения бронированных целей.
В зависимости от конструктивных особенностей бронебойные снаряды бывают калиберные и подкалиберные, каморные с разрывным зарядом и сплошные без ВВ , тупоголовые и остроголовые, с бронебойными и баллистическими наконечниками. Все типы бронебойных снарядов, как правило, снабжаются трассерами для наблюдения за траекторией полета снарядов и определения места их падения. Основным боевым свойством бронебойных снарядов является бронепробиваемость толщина брони, пробиваемая снарядом на определенной дальности стрельбы. Она обеспечивается кинетической энергией снаряда в момент встречи с броней и высокой прочностью головной части корпуса снаряда. Высокая прочность необходима для того, чтобы бронебойный снаряд не разрушался при ударе о броню. Корпус снаряда или только его головная часть изготавливается из высокопрочных высоколегированных хромом, никелем, молибденом сортов сталей. Поражающее действие бронебойных снарядов за броней осуществляется осколками снаряда, брони и силой взрыва разрывного заряда. Отличия воздействия на броню бронебойных снарядов с острой и притупленной головной частью состоит в том, что первые пробивают броню «с ходу» то есть движутся в броне под углом встречи снаряда и брони.
В этом случае происходит значительная потеря энергии удара. Тупоголовые бронебойные снаряды при ударе «закусывают» броню. Они мгновенно нормализуются и пробивают броню под углами близкими к нормали. Для повышения боевых свойств снаряда используют баллистический и бронебойный наконечники снаряда. Баллистический наконечник предназначен для улучшения баллистической формы снаряда. Он представляет собой пустотелый остроконечный колпак, который навинчивается на притупленную головную часть снаряда, и обычно изготавливается из легких материалов с минимальной толщиной стенок. Бронебойный наконечник снаряда предназначен для уменьшения рикошетирования снаряда, частичного разрушения верхнего слоя брони цели и предохранения головной части снаряда от разрушения при пробивании брони. При попадании в бронированную цель такой наконечник разбивается и остается перед броней.
Он изготавливается из более вязкого металла, чем корпус снаряда. Впервые бронебойный наконечник снаряда был предложен российским адмиралом С. Макаровым в 1893 для борьбы с кораблями противника, защищенными цементированной броней. Каморный бронебойный снаряд имеет массивную головную часть и донный взрыватель с трассером. Взрыватель в донной части корпуса снаряда срабатывает с замедлением, для того чтобы обеспечить разрыв снаряда после пробивания брони. При ударе о броню в каморном бронебойном снаряде возникают очень большие инерционные усилия, способные вызвать преждевременный взрыв. Для предотвращения этого нежелательного явления каморные бронебойные снаряды снаряжаются флегматизированными ВВ — тротилом, тэном или гексогеном. Для придания снаряду зажигательной способности, в каморе снаряда помещают термит или алюминиевый порошок.
На наружной поверхности некоторых бронебойных снарядов сделаны острые канавки, т. При пробивании толстой брони подрезы-локализаторы сохраняют корпус снаряда при разрушении его головной части и предохраняют камору с ВВ от вскрытия в момент удара по броне. В острых подрезах концентрируются напряжения в металле, поэтому при ударе скалывание металла происходит по подрезам, а в глубину корпуса трещины не распространяются. Сплошной бронебойный снаряд состоит из прочного стального корпуса, баллистического наконечника и трассера. Проникновение снаряда в преграду происходит только за счет его кинетической энергии. Сплошные бронебойные снаряды применялись для стрельбы из противотанковых пушек калибра 31—125 мм. Бронебойные калиберные снаряды БКС имеют диаметр центрирующих утолщений или корпуса равный калибру орудия. Они применяются для стрельбы из пушек малых и средних калибров наземной артиллерии.
Бронебойный подкалиберный снаряд БПС , предназначен для поражения тяжело бронированных целей. Состоит из двух основных частей: активной жесткий неразрушающийся сердечник , имеющей диаметр менее калибра примерно в три раза , обеспечивающей пробитие брони, и пассивной поддона , выполненной по калибру пушки. ВВ снаряд не имеет. Сердечник обладает высокой прочностью и большой твердостью. По удельному весу он более чем в два раза превосходит стать. Он изготавливается из металлокерамических сплавов, представляющих собой механическую смесь карбидов вольфрама, молибдена, титана, тантала, ванадия с порошкообразными металлами кобальтом, никелем, хромом, железом. Сердечник является основным поражающим элементом БПС. Он пробивает в броне отверстие небольшого диаметра.
При этом выделяется большое количество тепла. Внутрь боевой машины расходящимся конусом летят осколки сердечника и брони, нагретые до высокой температуры. Эти осколки поражают экипаж, и внутреннее оборудование. Поддон выполнен по калибру пушки из мягкой стали, железа или алюминиевых сплавов. Он может быть неотделяющимся катушечной и обтекаемой формы и отделяющимся. У БПС с неотделяющимся поддоном при ударе снаряда в броню несущий элемент корпус , полностью разрушается, а сердечник, имеющий большой вес, по инерции продвигается вперед и, выйдя из осколков корпуса снаряда, пробивает в броне отверстие небольшого диаметра. Сердечник прикрывается сверху баллистическим наконечником. У БПС с отделяющимся поддоном, как видно из названия, сердечник для получения хороших баллистических характеристик, помещается в поддоне, который отделяется после выхода снаряда из канала ствола.
Отделение поддона, имеющего небольшой вес и плохую баллистическую форму, происходит под действием центробежной силы если пушка нарезная и силы сопротивления воздуха. Необходимо отметить, что отделяющийся поддон представляет опасность для своей пехоты. Подкалиберные снаряды пробивают броню, толщина которой в 2—3 раза больше калибра снаряда, а калиберные снаряды — лишь в 1,2—1,3 раза. Высокая бронепробиваемость достигается прежде всего за счет увеличения начальной скорости БПС. Кроме того, при общем уменьшении веса БПС заметно увеличивается вес его активной части. Помимо высокой бронепробиваемости БПС обладают высокой вероятностью попадания в цель до 0,9.
Но так как поршень со штоком неподвижны, то под давлением жидкости на уплотнительное устройство цилиндры накатника вместе со стволом и цилиндром тормоза отката возвратятся в первоначальное положение. Жидкость, находящаяся в цилиндре тормоза отката за поршнем, пойдет в переднюю часть цилиндра через имеющийся кольцевой зазор между веретеном и регулирующим кольцом. Клапан модератора под действием пружины клапана перекрывает полость модератора, и часть жидкости, которая попала в замодераторное пространство, пробрызгивается только через зазоры, образуемые канавками переменной глубины между внутренней поверхностью штока и наружной поверхностью ру- башки модератора. Сопротивление жидкости пробрызгиванию через изменяющиеся зазоры между штоком и рубашкой модератора обеспечивает торможение наката. Плавность наката достигается тем, что в конце наката канавки переменной глубины сходятся на нет. При интенсивной стрельбе жидкость в тормозе отката разогревается и объем ее увеличивается, что может вызвать недокаты ствола. Во избежании этого в тормозе отката имеется компенсатор, в который уходит избыток жидкости из замодераторного пространства через открытое отверстие в корпусе клапана и соединительные трубки, отжимая поршень компенсатора, находящегося под давлением пружин. При снижении темпа стрельбы и остывании жидкости в цилиндре тормоза отката будет происходить пополнение объема цилиндра тормоза жидкостью из компенсатора. Поршень компенсатора, находясь под постоянным давлением сжатых пружин, вытеснит избыток жидкости обратно в замодераторное пространство, а оттуда — в цилиндр тормоза отката. Жидкости, применяемые в ПОУ и их краткая характеристика В противооткатных устройствах 122 мм гаубицы Д-30 применяется гидравлическая жидкость "Стеол-М". Это незамерзающая прозрачная от желтого до зеленного цвета ядовитая жидкость. Качество жидкости проверяется по бумажному индикатору — крезолкрасной бумаге. Покраснение бумаги говорит о щелочном характере жидкости и допуске к эксплуатации. Бледно-грязный цвет жидкости показывает на кислотный характер жидкости и запрещает ее эксплуатацию. Употребление ее в пищу ведет к тяжелому отравлению и смерти человека. Личный состав об этом строго предупреждается под обязательную роспись в журнале инструктажа.
Давление пороховых газов, умноженное на площадь дна снаряда, представляет собой силу, приложенную к центру снаряда и направленную в сторону выстрела. Эта сила заставляет снаряд двигаться вперед. Сила, действующая на дно ствола, стремится вырвать дно или разорвать ствол в поперечном сечении. При достаточной прочности ствола эта сила производит откат орудия. Вследствие волнообразного движения газов в заснарядном пространстве давление газов на стенки ствола в различных точках неодинаково. Разделим внутреннюю поверхность ствола на небольшие участки. Будем считать давление в пределах каждого участка одинаковым. Умножим давление на каждом участке на площадь этого участка. Мы получим силы, направленные перпендикулярно к внутренней поверхности канала ствола. Эти силы стремятся разорвать ствол в продольном направлении. Таким образом, в результате действия всех этих сил при недостаточной прочности ствола может произойти поперечный или продольный разрыв его. Для того, чтобы ствол надежно сопротивлялся поперечному разрыву, нужно увеличить толщину его стенок, При этом, чем толще они будут, тем ствол будет прочней. Но достаточно ли этого для прочного сопротивления ствола продольному разрыву? Нет, недостаточно. Опытом установлено, что увеличение толщины стенок свыше одного калибра нецелесообразно, так как это утяжеляет ствол и ведет к нерациональному использованию металла. Для того, чтобы уяснить действие давления газов на поверхность стенок канала ствола, проделаем следующий опыт. Возьмем плоское резиновое кольцо рис. Опыт с резиновым кольцом. Если в канал кольца будем вдвигать деревянный конус, то легко заметим, что диаметры окружностей, прилегающих к каналу, увеличатся в значительно большей степени, чем диаметры окружностей, начерченных ближе к наружной поверхности. Если мы будем продолжать вдвигать конус, то сначала начнут рваться внутренние слои, а уже после них — наружные. Этот опыт наглядно показывает, что слои принимают не одинаковое участие в сопротивлении растяжению: внутренние — больше, наружные — меньше. При достаточной толщине кольца возможно, что внутренний слой разорвется, а наружный слой не разорвется. Ствол, в котором произойдет разрыв внутреннего слоя, уже не годится для дальнейшей стрельбы. Подобные явления происходят и в стенках ствола орудия. Таким образом, вопрос увеличения сопротивления ствола продольному разрыву не мог быть разрешен только путем увеличения толщины стенок ствола. Необходимо было создать такую конструкцию ствола, при которой все слои металла были бы равномерно напряжены, а напряжения, возникающие на его внутренней поверхности уменьшены. Этого можно достигнуть, составляя ствол из отдельных слоев. Такие стволы называются скрепленными. Процесс скрепления состоит в следующем: берут две трубы со стенками равной толщины рис. Идея скрепления ствола. Внутренний диаметр одной трубы несколько меньше наружного диаметра другой. Нагреем большую трубу до температуры 400—450 градусов, наденем ее на меньшую трубу и дадим остыть составной трубе- При остывании наружная труба будет стремиться принять свои первоначальные размеры, то есть она начнет сжиматься. Ее внутренний диаметр будет уменьшаться и сжимать внутреннюю трубу. Но так как внутренняя труба будет оказывать сопротивление, то наружная не примет своих первоначальных размеров. Таким образом, после охлаждения до нормальной температуры наружная труба окажется несколько растянутой, а внутренняя — сжатой. Такое состояние смежных слоев, где внутренний слой сжат наружным, называется взаимным натяжением. До выстрела в наружной трубе наиболее растянутыми будут внутренние слои, а наименее — наружные. Что касается внутренней трубы, то ее слои будут находиться в сжатом состоянии, при этом наружные слои будут менее сжаты, а внутренние — более сжаты. При выстреле под давлением пороховых газов внутренняя труба вначале приходит в нормальное состояние, а затем начинает растягиваться вместе с наружной трубой. С этого момента внутренняя и наружная трубы сильнее сопротивляются давлению пороховых газов. Ясно, что при этом в канале такого ствола может быть допущено большее давление, чем в сплошном стволе той же толщины. Такое расположение слоев металла позволяет увеличить допустимое давление в канале ствола по сравнению с нескрепленным стволом. Составив ствол орудия не из двух, а из четырех, пяти или более слоев, мы можем при заданном допускаемом давлении уменьшить вес ствола или при данном весе — увеличить допускаемое давление в канале ствола. Следовательно, при данной толщине ствола сопротивление его давлению пороховых газов растет с увеличением числа скрепляющих слоев; скрепленные стволы, имеющие такое же сопротивление, как и однослойные, будут иметь значительно меньшую толщину стенок, и из двух скрепленных стволов с одинаковой толщиной стенок будет больше сопротивляться давлению пороховых газов тот, который имеет большее число скрепляющих слоев. Вследствие того, что во время выстрела давление пороховых газов по длине ствола неодинаково, скрепление распространяется на ту часть ствола, в которой ожидается наибольшее давление. Начиная с сечения ствола, в котором должно находиться дно снаряда в момент конца горения порохового заряда, и далее до дула число скрепляющих слоев можно уменьшить. Скрепление орудийных стволов может быть произведено при помощи колец, проволоки, кожуха, путем самоскрепления автофретирование и смешанным способом. Увеличение прочности ствола не устраняет все же быстрого износа поверхности канала ствола. Износ поверхности канала ствола влечет за собой потерю боевых качеств всего орудия, хотя остальные механизмы и агрегаты его еще совершенно не изношены. Для того, чтобы отремонтировать или сменить ствол, необходимо целиком все орудие отправлять на завод, и, таким образом, орудие надолго выбывает из строя. Здесь возникает важный и интересный вопрос: какова же общая продолжительность жизни орудия? После определенного числа выстрелов ствол приходит в состояние, при котором дальнейшее его боевое использование невозможно. Для орудий крупных калибров это состояние наступает уже после 150—200 выстрелов, а для орудий средних и малых калибров — после 10—15 тысяч выстрелов. Кроме того, необходимо иметь в виду, что переплавка стволов, изготовленных из дорогостоящей стали, невыгодна экономически. Поэтому возникла мысль обновлять орудия, заменяя не весь ствол, а лишь тонкий внутренний слой металла. Для осуществления этой операции растачивают канал ствола. Вместо расточенной части вставляют тонкостенную трубу, называемую лейнером. Впервые эта идея была осуществлена в 8-дюймовой и 9-дюймовой русских гаубицах, которые участвовали в русско-турецкой войне 1877—1878 гг. В современных орудиях применяются два вида лейнеров: скрепленные лейнеры и свободные лейнеры. Скрепленные лейнеры обычно вставляются с очень малым натяжением. В этом случае натяжение создается не столько для скрепления, сколько для обеспечения плотного соприкосновения наружной поверхности лейнера с внутренней поверхностью ствола. Смену скрепленных лейнеров нельзя производить на огневой позиции; для этого орудие нужно отправлять в мастерскую. Для того, чтобы лейнер можно было заменить на огневой позиции, его обычно вставляют в ствол с зазором рис. Ствол со свободным лейнером. Наружный диаметр свободного лейнера должен быть меньше внутреннего диаметра ствола. При этом образуется зазор, равный 0,1—0,3 миллиметра. При выстреле лейнер прижимается плотно к внутренней поверхности ствола, который при этом тоже сопротивляется давлению пороховых газов. После выстрела зазор между свободным лейнером и стволом должен быть равен первоначальному зазору. Поэтому свободные лейнеры изготавливаются всегда из высококачественных легированных сталей. Лейнеры изготавливаются цилиндрической и конической формы. Цилиндрические лейнеры могут быть вставлены в ствол и с дульной части, и с казенной. Конические лейнеры вставляются в ствол только с казенной части. От перемещения в стволе лейнер удерживается специальными приспособлениями. Так, например, для того, чтобы цилиндрический лейнер, вставленный в ствол с дульной части, не вращался, ставится шпонка, одна часть которой находится в теле ствола, а другая в лейнере. От продольного перемещения назад лейнер удерживается кольцевым уступом ствола в казенной части, а от перемещения вперед — дульной гайкой и т. Кроме лейнеров, в современных артиллерийских орудиях широко применяются так называемые свободные трубы рис. Ствол со свободной трубой. Свободная труба, в отличие от свободного лейнера, имеет более толстые стенки и вставляется в ствол с большим зазором. Свободную трубу вставляют в ствол с казенной части до упора в кольцевой уступ ствола, затем ее зажимают казенником. Таким образом, исключается возможность перемещения ее в продольном направлении. Вращение трубы в стволе предотвращается шпонкой. Применение свободной трубы дает возможность использовать менее дорогую сталь, вследствие большей толщины ее стенок; кроме того, не требуется большой точности обработки наружной поверхности трубы. Основным недостатком свободной трубы по сравнению со свободным лейнером можно считать ее большой вес, затрудняющий перевозку запасных труб. Следовательно, по характеру устройства стволы делятся на нескрепленные, скрепленные, стволы со свободным лейнером и стволы со свободной трубой. По наружному устройству ствол обычно состоит из казенника, цилиндрической и конической частей. Для соединения с лафетом стволы старых систем снабжались цапфами. В современных артиллерийских орудиях устройство частей, служащих для соединения ствола с лафетом, зависит от конструкции и расположения противооткатных устройств. Говоря о канале ствола, мы имели в виду пока лишь цилиндрическую его форму. Но в настоящее время можно встретить орудия, стволы которых имеют канал конической формы рис. Ствол с коническим каналом. Кроме того, известны опыты по применению стволов с полигональными многоугольными каналами. В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола. Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд. Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы. Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола. Эти методы широко применялись при модернизации артиллерийских орудий. Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду. Для стрельбы из таких стволов применяются специальные снаряды с мягкой оболочкой; диаметр такого снаряда по мере приближения к дульной части уменьшается. За счет чего же увеличивается начальная скорость снаряда при стрельбе из орудия, ствол которого имеет конический канал? Возьмем для примера ствол, калибр которого в казенной части равен 75 миллиметрам, а в дульной — 55 миллиметрам. При стрельбе из такого ствола применяется заряд, соответствующий калибру казенной части, в результате чего давление пороховых газов в начальный момент будет равно давлению газов в стволе 75-миллиметрового орудия. По мере продвижения снаряда по каналу ствола его поперечный размер площадь поперечного сечения будет уменьшаться и он приобретет большее ускорение. Но стрельба из такого орудия эффективна лишь на небольшие расстояния, так как легкий снаряд в результате большого сопротивления воздуха быстро теряет свою скорость. Конические стволы обычно состоят из трубы с цилиндрическим нарезным каналом и насадки с гладкими коническим и цилиндрическим участками, что облегчает их производство и улучшает качество рис. Ствол с цилиндро-коническим каналом. Насадка соединяется с трубой при помощи винтовой нарезки. Применение конического гладкостенного участка менее выгодно в отношении увеличения могущества орудия, чем применение нарезных цилиндрических каналов. Затвор Мы уже установили, что ствол современного орудия представляет собой трубу. Отверстие в дульной части остается всегда открытым. Отверстие в казенной части должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Это закрывание производится затвором. Затворами снабжаются стволы орудий, заряжающихся с казенной части. Во время выстрела они принимают на себя давление пороховых газов. Поэтому затвор должен плотно закрывать канал ствола, чтобы не допускать прорыва газов наружу. Кроме того, затвор должен надежно запирать канал ствола, то есть в момент выстрела затвор не должен самопроизвольно открываться. Надежно запирая канал ствола при выстреле, затвор должен просто и легко открываться после выстрела для нового заряжания орудия и легко и плотно закрываться после заряжания. При этом открывание и закрывание затвора должно производиться или простым движением руки без затраты большого усилия, или автоматически. В орудиях крупного калибра для открывания и закрывания затворов используется энергия специальных двигателей, так как затворы имеют очень большой вес. Затвор предназначен не только для того, чтобы закрывать ствол. Он снабжен механизмами для производства выстрела и для выбрасывания гильзы после выстрела. Типы затворов весьма разнообразны. Наиболее широко применяются клиновые и поршневые затворы рис. Типы затворов: а — клиновой затвор с горизонтальным клиновым гнездом; б — клиновой затвор с вертикальным клиновым гнездом; в — поршневой затвор. Клиновой затвор имеет форму четырехгранной призмы. Передняя грань такой призмы перпендикулярна оси канала ствола, а задняя опорная грань наклонена по отношению к передней. Это делается для того, чтобы облегчить открывание и закрывание затвора и обеспечить наиболее плотное закрывание ствола. Клиновым гнездом называется сквозная прорезь в затворной части орудия. Форма гнезда в казеннике соответствует форме клина. При выстреле клин опирается на грани пазов клинового гнезда. В зависимости от своего направления клиновое гнездо называется горизонтальным или вертикальным. В первом случае клин выдвигается в сторону, а во втором случае он движется сверху вниз. Горизонтальное движение клина выгодно, так как в этом случае усилие на открывание и закрывание распределяется равномерно, но при этом требуется место для выхода клина в сторону. У вертикально движущегося клина усилие на рукоятку очень неравномерно и при большом весе клина может оказаться непосильным для человека, поэтому у таких затворов вводятся специальные механизмы в виде пружин, которые взводятся при открывании затвора и уменьшают энергию падения клина, а при закрывании облегчают его подъем. При закрывании клин вдвигается в гнездо и скользит в нем по направляющим выступам, параллельным задней грани; передняя грань при этом, перемещаясь параллельно самой себе, приближается к заднему срезу ствола и досылает патрон до места. При открывании наклонные грани выступов позволяют легко выдвинуть клин и открыть канал даже при сильном нажатии дна гильзы на переднюю грань клина. При выстреле давление пороховых газов на переднюю грань клина через заднюю грань передается заклиновой части казенника. Растягивающее усилие может быть разложено на две составляющие: одна, направленная перпендикулярно задней грани, стремится оторвать заклиновую часть казенника, другая, направленная вдоль наклонной грани, вниз или вбок, стремится выбросить клин из его гнезда см. Чем больше угол наклона задней грани, тем усилие, стремящееся выбросить клин из его гнезда, больше. В современных орудиях этот угол близок к нулю, следовательно, близка к нулю и сила, действующая вдоль наклонной грани. Отрыву заклиновой части казенника препятствует сам казенник, а выбрасыванию клина из гнезда противодействует сила трения. Благодаря наличию клинового гнезда с пазами уменьшается длина затворной части орудия, что, несомненно, выгодно. Однако эта конструкция менее прочна, так как щеки гнезда, не связанные сзади, могут разойтись. Такой тип клинового гнезда применяется преимущественно в орудиях малого калибра. Применение клинового гнезда с фигурными пазами исключает возможность расхождения щек. В современной артиллерии клиновые затворы, как правило, применяются в орудиях раздельного гильзового и патронного заряжания. В этих случаях обтюрация и предохранение от прорыва газов обеспечивается самой гильзой, которая, расширяясь под давлением пороховых газов, плотно прижимается наружной поверхностью к стенкам каморы, в результате чего устраняется прорыв газов наружу. Поэтому применение клинового затвора при раздельном гильзовом и патронном заряжании не требует применения каких-либо специальных обтюрирующих приспособлений. В старых системах клиновой затвор применялся в орудиях картузного заряжания.
Скульптура России. XVI век. Из истории создания памятника. Царь-пушка.
Военкор RT Александр Симонов показал эксклюзивные кадры с Купянского направления, где работает артиллерийский расчёт военного с позывным Гольф. Стержень для канала ствола пушки делали так же, как и ее модель, с той разницей, что сердечником для него служил железный прут; вместо соломенного жгута брали пеньковую веревку, а шаблон, по которому вытачивали стержень, имел конфигурацию внутреннего канала. Ответ на вопрос "Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия ", 5 (пять) букв: лафет. Лафе́т (нем. Lafette, фр. l'affut), Колода или Станок — специальное приспособление, опора (станок), на котором закрепляется ствол орудия с затвором. Орудие "Мальвы" калибром 152 мм позаимствовано у гусеничной САУ "Мста-С", многократно подтвердившей свою эффективность.
КАК УСТРОЕНО ОРУДИЕ
Мы здесь, чтобы помочь, и опубликовали Words Of Wonders Guru Станок, на котором закрепляется ствол артиллерийского орудия, чтобы вы могли быстро перейти на более сложный уровень и продолжить изучение. Станок, на котором закрепляется ствол артиллерийского орудия: Ответ на этот вопрос:.
А эта техника большая, заметная. Только подъехал к передовой и все — моментально получил из миномета. Опробовал при штурме Марьинки.
Пушки у этой зенитки скорострельные - 1000 выстрелов в минуту! Отлично зашли, как штурмовые орудия. Как артиллерия переднего края. У противника в соседних зданиях шансов не было.
А мы стреляли с пятиэтажки. И так в Марьинке срезали четыре многоэтажных опорника. Все их заняли. Модифицированную ЗУ-23-2 Иван попробовал в деле при штурме Марьинки.
Фото: Личный архив - Получается, стреляли с рук из зенитного орудия? Там же отдача бешеная! Иначе, если тело примет на себя отдачу пяти выстрелов, это будет все равно что боксер пять раз тебя ударил в грудь. Просто отправишься в больницу.
Я лично стрелял: 230 выстрелов без последствий. Как именно? Раскрывать не буду, пусть останется военной тайной. Но у нас на самом переднем крае, где у штурмовых групп обычно лишь автоматы, пулеметы и гранатометы, появилось орудие, пробивающее кирпичную стену насквозь!
Я нашу установку называю «крепостной пулемет». Тоже хотят такую штуку? Штурмовики сказали: «это невозможно», «мы не найдем психов, которые смогут это повторить». Итог - пока стрелять из «крепостного пулемёта» может только моя команда.
Заложил мешками окна, установил пулемет и вел огонь по нашим бойцам. Тогда мы пустили в ход нашу ЗУ-шку… Снаряды залетали прямо через стены! Стрельба из "крепостного пулемета" даётся непросто. Фото: Личный архив - Даже бетонная стена не преграда?
Вопрос 1 из 20 Воздушный флот морского базирования гидротерапия гидроавиация гидростанция Слова из слов Подбор слов по буквам Рифма к слову Значение слов Определения слов Сочетаемость Ассоциации Предложения со словом Синонимы Антонимы Морфологический разбор Слова, с заданным количеством определённой буквы Слова, содержащие букву Слова, начинаются на букву Слова, заканчиваются на букву Немецко-русский словарь Англо-русский словарь Ответы на кроссворды Играть в слова! Время загрузки данной страницы 0.
Вес — 39 312 кг. Четыре декоративных ядра весом 1,97 тонны каждое Ствол пушки на передней части украшен рельефами с изображением царя Фёдора Ивановича, сидящего верхом на коне, и надписью: «Божиею милостию царь и великий князь Фёдор Иванович государь и самодержец всея великая Россия». Надпись с правой стороны: «Повелением благоверного и христолюбивого царя и великого князя Федора Ивановича государя самодержца всея великия Россия при его благочестивой и христолюбивой царице великой княгине Ирине».
Надпись на левой стороне: «Слита бысть сия пушка в преименитом граде Москве лета 7094 , в третье лето государства его. Делал пушку пушечный литец Андрей Чохов Новый лафет с орнаментом для Царь-пушки был создан по эскизу работы архитектора А. Брюллова и инженера Павла де Витте. Лафет - специальное приспособление, на котором закрепляется ствол пушки. Интересные факты.
Царь-пушка — это артиллерийское орудие периода Русского Царства между 1547 и 1721 годами.