Группа компаний (ГК) «Лазеры и аппаратура», расположенная в Зеленограде, начала серийное производство оригинального оборудования – лазерных технологических комплексов со специализированным программным обеспечением. Компания «Лазеры и аппаратура» первой в России разработала и запустила в серийное производство высокоточные лазерные установки для микроэлектроники. В компании «Лазеры и аппаратура» создали серийный пятикоординатный многоосевой лазерный станок для высокопроизводительной обработки, сложноструктурной резки и сварки деталей. На стенде компании «Лазерный Центр» уникальные технологии и оборудование для лазерной обработки, маркираторы, микрообработка, импортозамещение.
У ВАШЕЙ КОМПАНИИ ЕСТЬ ЗАДАЧИ В СФЕРЕ 3D-ТЕХНОЛОГИЙ? МЫ ГОТОВЫ ПОМОЧЬ В ИХ РЕАЛИЗАЦИИ
- Лазерные технологические комплексы вывели в серию на заводе в Зеленограде
- Предприятие «Лазеры и аппаратура» создало лазерный станок для высокоточной обработки деталей
- Серийное производство умных лазерных машин запустили в Зеленограде
- В Сарове запустили самую мощную в мире лазерную установку | Пикабу
Лазер – последние новости
В 2024 году компания планирует нарастить объем производства еще в 1,5 раза. При этом предприятие постепенно расширяет товарную линейку. В прошлом году созданы четыре новые базовые модели. Из них минимум 25 будут пятикоординатными многоосевыми обрабатывающими центрами». Анна Цыганцова, исполнительный директор предприятия Кто сделал Компания «Лазеры и аппаратура» выпускает промышленное оборудование с 1998 года.
Сообщалось, что к термоядерной мишени будет подводиться импульсной энергии в полтора раза больше, чем на американской лазерной установке NIF, используемой в программе по поддержанию боеготовности американских ядерных арсеналов.
Основная проблема, до сих пор мешающая зажечь термоядерную мишень в лаборатории, заключается в том, что очень маленькое количество вещества нужно сжать до крайне высоких плотностей, говорил ранее Гаранин. Оболочка капсулы, содержащей термоядерное "топливо", должна двигаться сферически симметрично, отклонения от сферического сжатия недопустимы, пояснял ученый. Эксперименты, проведенные на установке NIF, показали, что ее система облучения не может обеспечить необходимую однородность облучения центральной капсулы. В апреле 2019 года саровский ядерный центр сообщил о завершении сборки так называемой камеры взаимодействия — центрального элемента установки УФЛ-2М.
Мы создавали станки, ориентируясь на самые серьезные задачи и требования, которые предъявляет в первую очередь авиационное двигателестроение. Компания уже много лет работает с задачами такого типа. Появление станка сейчас особенно актуально, в связи с его востребованностью на рынке, поэтому мы сразу закладывали возможность масштабирования производства», — отметила генеральный директор предприятия Анна Цыганцова. Последние обновления:.
Она также служит подтверждением надежности продукции и позволяет тщательнее отсортировать бракованный товар. Специалисты компании "Лазеры и аппаратура" разработали установку для маркировки пластин, которая оборудована системой автоматической погрузки изделия в зону обработки. Это решение будет актуально для производства микроэлектроники. За час лазерная установка может обрабатывать более 100 полупроводниковых пластин из кремния, карбида кремния, арсенида галлия и фосфида галлия", — рассказал Владислав Овчинский.
Предприятие «Лазеры и аппаратура» создало лазерный станок для высокоточной обработки деталей
Его специально собрала под нужды заказчика российская компания. Такой станок в среднем стоит около миллиона рублей. Дешевле и быстрее, чем заказывать за рубежом. Но, чтобы в будущем еще и обходиться без иностранных комплектующих, инженеры разработали и запатентовали собственную трубку-излучатель с увеличенным ресурсом и качеством излучения. В Москве открылась выставка лазерного оборудования «Фотоника-2022». Средство массовой информации, Сетевое издание - Интернет-портал "Общественное телевидение России".
Главный редактор: Игнатенко В.
Похоже, вы используете устаревший браузер, для корректной работы скачайте свежую версию 14 декабря 2022, 07:06 Производитель в Москве создал установку для маркировки в микроэлектронной промышленности В компании "Лазеры и аппаратура" специалисты создали лазерную установку, которая может обрабатывать более 100 полупроводниковых пластин из кремния, карбида кремния, арсенида галлия и фосфида галлия МОСКВА, 14 декабря. Специалисты московской компании "Лазеры и аппаратура" разработали установку для лазерной маркировки и микрообработки полупроводниковых пластин, которые служат основой для создания микросхем. Об этом в среду журналистам сообщил руководитель столичного департамента инвестиционной и промышленной политики Владислав Овчинский.
Она также служит подтверждением надежности продукции и позволяет тщательнее отсортировать бракованный товар.
В год предприятие может выпускать до пяти таких машин». Лазерная машина при помощи луча спекает порошковые полимеры в прочное изделие и после этого обрабатывает его. Система машинного зрения, используемая в разработке, распознаёт и анализирует контур обрабатываемой детали, что позволяет создавать продукцию с максимальной точностью. МЛ7 уже используется на предприятиях машиностроения, двигателестроения, в автомобильной, аэрокосмической и железнодорожной отраслях.
В сфере разработки и совершенствования технологии оптической керамики ученые СКФУ зарегистрировали восемь патентов, новую технологию планирует использовать индустриальный партнер вуза. Идеи, предложенные учеными, могут получить широкое применение в промышленности, обработке материалов, системах связи, в том числе космической, при создании медицинских лазеров. Комментарий Дмитрий Беспалов, ректор Северо-Кавказского федерального университета: - Разработки ученых СКФУ в области перспективных материалов для микроэлектроники, оптики и фотоники имеют большое значение для развития отечественных лазерных технологий. Они позволяют не только решать задачи импортозамещения, но и планомерно выходить на мировые рынки. Уверен, что предложенные учеными университета технологии вызовут интерес у производителей. Справка "РГ" Лазер - устройство, которое излучает пучок света в результате процесса оптического усиления. Существуют разнообразные типы лазеров, включая газовые, волоконные, твердотельные, диодные, эксимерные, на красителях. Во всех - один и тот же базовый набор компонентов.
Содержание
- Продукты (4)
- «Металлообработка – 2023»: итоги
- Регистрация
- Российская компания запускает производство нового оборудования для промышленной 3D-печати / Хабр
- Лазер – последние новости
- Выставка «Фотоника. Мир лазеров и оптики-2024» открылась в Экспоцентре
ООО НПЦ «Лазеры и аппаратура ТМ»
Проект аппаратуры для межспутниковой связи, который сейчас обсуждают ВНИИЭФ и «Роскосмос», носит название «НИР-лазер». последние новости по теме на сайте АБН24. Каталог оборудования для флебологических центров, отделений сосудистой хирургии, а также многопрофильных клиник.
Лазер – последние новости
Московская компания в 2022 году увеличила производство лазерных установок почти в три раза | Устройства используются в составе радиостанций, радиодальномеров и радиовысотомеров, в аппаратуре шифрования сигналов, маршрутизаторах доступа, бортовом оборудовании летательных аппаратов и радиолокационных станциях. |
На выставке Фотоника 2024. В мире лазеров. Впечатления и фото | «Действительно, мы видим рост спроса на лазерное оборудование мощностью более 12 кВт со стороны российских потребителей. |
Московский производитель выпустил 42 лазерных станка в 2023 году
Ультрафиолетовый лазер имеет высокую точность и мощность излучения, им можно обрабатывать материалы, которые не поддаются инфракрасным устройствам. Ведущий российский производитель промышленного оборудования "Лазеры и аппаратура" специализируется на разработках и производстве лазерных станков для промышленных предприятий. Компания, локализовавшая на территории особой экономической зоны (ОЭЗ) «Технополис Москва» производство лазерных систем и оборудования, разработала четыре новых лазерных станка.
Выставка «Фотоника. Мир лазеров и оптики-2024» открылась в Экспоцентре
Рассказывает исполнительный директор «Лазеры и аппаратура» Анна Цыганцова и главный конструктор «Лазеры и аппаратура» Владимир Черноволов. Компания «Лазеры и аппаратура» отмечает рост спроса на свою лазерную технику, и в сентябре 2023 года она расширила производственные мощности на 30%. Московская ГК «Лазеры и аппаратура» впервые в России наладила выпуск лазерных станков для высокоточной микрообработки печатных плат и полупроводников.
На АЭХК испытали мобильный лазерный комплекс производства ТРИНИТИ
Они позволяют создавать элементы на гибкой подложке, поддерживают высокую мобильность электронов и обещают быть недорогими при производстве. Также они рассматриваются как кандидаты в светодиоды. Главная задача, которая стояла перед учёными, заключалась в обеспечении подвода тока беспрецедентной плотности на малом участке подложки. Исследователи смогли найти решение в виде чередования прозрачных и непрозрачных слоёв металлизации на сапфировой подложке.
Целью исследователей не является разработка сверхъярких экранов для смартфонов или другой электроники. Они ищут путь к созданию полупроводниковых лазеров на основе перовскита, и проделанная работа подводит их к этому. Это уже шаг в область создания тонкоплёночных инжекционных полупроводниковых лазеров из перовскита, что становится ключевой вехой на пути к созданию лазера для покорения новых высот в проецировании изображений, зондировании окружающей среды, медицинской диагностике и за её пределами.
В текущем году эта операция была повторена трижды и каждый раз с превышением энергии выхода над затраченной. Повторяемость стала лучшим доказательством того, что учёные находятся на правильном пути и добьются ещё большего успеха в будущем. Источник изображения: LLNL Сегодня наиболее перспективными термоядерными реакторами считаются токамаки — реакторы с камерой в виде пончиков.
Это предопределило выбор проекта для строительства первого масштабного экспериментального термоядерного реактора ИТЭР во Франции. Но есть и другие способы запустить термоядерную реакцию. Например, с помощью лазеров, если их энергию в достаточной мере сконцентрировать на топливе.
В конечном итоге нам надо заставить атомы водорода преодолеть кулоновское отталкивание и сблизиться для начала взаимодействия. Выбранные для этого методы и энергии остаются на выбор экспериментаторов. Это может быть гравитация, температура или излучение.
Лоуренса LLNL использует 192 лазера, направленных на мишень с топливом. Топливная таблетка размером меньше перчинки помещается в специальный сосуд — хольраум. Лазеры ударяют в стенки хольраума и возбуждают в них рентгеновское излучение.
Топливо находится в оптическом центре рентгеновских и лазерных лучей. Концентрация энергии в сочетании с ударными и инерционными явлениями достигает такого значения, что ядра в топливе начинают сливаться и выделять энергию. Для извлечения из всего этого практической пользы получаемая на выходе энергия синтеза должны быть выше уровня энергии, затраченной на зажигание.
Впервые этого удалось добиться в декабре 2022 года. На мишень упало 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж. В то же время необходимо понимать, что на накачку лазеров и поддержку всего оборудования установки ушло на пару порядков больше энергии.
Установка лишь показала, что положительный выход возможен на уровне реакции. Установка NIF Опыт был повторен 30 июля этого года. Значение энергии на выходе достигло 3,5 МДж по другим данным 3,88 МДж.
Это доказало, что декабрьский результат не был случайностью. Затем учёные ещё раз повторили реакцию в октябре и ноябре. Можно даже сказать, что термояд стал для них рутиной.
Однако в каждом случае происходит набор данных по течению реакции и настройкам установки, что даёт ценный опыт для практического улучшения как установки, так и процесса. В конечном итоге к бесконечной и чистой термоядерной энергии можно будет прийти и по этой дороге, а не только по пути токамаков. За счёт инновации появилась возможность интегрировать прозрачные магнитные материалы в оптические схемы.
Ранее это считалось весьма сложной задачей. Новый процесс получения прозрачного магнитного материала. Источник изображения: Taichi Goto Исследователи из Университета Тохоку в Сендае Япония и Технологического университета Тойохаси в одноименном японском городе разработали новый метод создания прозрачных магнитных материалов с помощью лазерного нагрева.
Это считается значительным достижением в области оптических технологий и представляет собой новый подход к интеграции магнитооптических материалов в оптические устройства. Таким образом, миниатюризация оптических устройств связи становится возможной. Магнитооптические изоляторы необходимы для стабильной оптической связи и выступают в качестве управляющих элементов, которые могут перемещать световые сигналы в одном направлении, но не в другом.
Это позволяет обеспечить стабильную симплексную связь. Поскольку такая интеграция может быть достигнута только с помощью высокотемпературных процессов, решение этой проблемы долгое время считалось сложной задачей. Профессор Гото и его коллеги решили эту проблему с помощью лазерной закалки.
Это метод, при котором определенные участки материала нагреваются лазером очень избирательно. Такой нагрев позволяет осуществлять точный контроль места нагрева, поскольку нагреваются только выбранные участки, не затрагивая окружающие области. Кроме того, чтобы избежать химического воздействия окружающего воздуха на соответствующий материал, команда разработала новое устройство, которое нагревает материалы в вакууме с помощью лазера.
Это позволит точно нагревать очень маленькие участки размером около 60 микрометров без изменения структуры окружающего материала. Профессор Гото и его команда ожидают, что «прозрачный магнитный материал, полученный с помощью этого метода, значительно улучшит разработку компактных магнитооптических изоляторов, которые необходимы для стабильной оптической связи». Новый метод также открывает «возможности для разработки мощных миниатюрных лазеров, дисплеев высокого разрешения и небольших оптических устройств», — резюмирует профессор.
Дальность передачи в 80 раз превысила расстояние между Землёй и Луной и составила 31 млн км. Скорость передачи оказалась заметно выше пропускных интернет-каналов на Земле. Видео по лучу загрузилось быстрее, чем его смогли получить в центре управления за несколько сот километров от приёмника.
Экспериментальная лазерная установка связи не будет передавать на Землю какие-либо данные с научных приборов станции «Психея» Psyche. Видео высокого разрешения с котом одного из инженеров проекта было стилизовано под «космический» интерфейс с имитацией жизненных показателей кота по кличке Тейтерс, орбитальных траекторий станции и планет и другими фишками. Закодированный в лазерном луче сигнал принимался установкой, смонтированной на телескопе Паломарской обсерватории Калифорнийского технологического института в округе Сан-Диего, Калифорния.
До Земли сигнал путешествовал в космосе 101 секунду. На передачу видео в центр NASA в Южной Калифорнии потребовалось больше времени, чем сигнал шёл в открытом пространстве. Первый раз станция «Психея» установила лазерную связь с Землёй 14 ноября.
Тогда она и центр управления обменялись техническими сигналами на расстоянии 16 млн км. А 11 декабря со станции на Землю впервые по лазерному каналу передали потоковое видео с максимальной скоростью передачи.
На наших веб-сайтах или веб-сервисах мы используем различные типы «cookies» небольшие текстовые файлы, которые размещаются на Вашем устройстве. Перечень используемых нами файлов cookie, описание целей их использования и дополнительная информация о соответствующих файлах cookie представлена в Инструменте управления файлами cookie, размещенных на соответствующих веб-сайтах и в веб-сервисах нашей компании либо в представленных в них текстах согласий или договоров.
В сфере разработки и совершенствования технологии оптической керамики ученые СКФУ зарегистрировали восемь патентов, новую технологию планирует использовать индустриальный партнер вуза. Идеи, предложенные учеными, могут получить широкое применение в промышленности, обработке материалов, системах связи, в том числе космической, при создании медицинских лазеров. Комментарий Дмитрий Беспалов, ректор Северо-Кавказского федерального университета: - Разработки ученых СКФУ в области перспективных материалов для микроэлектроники, оптики и фотоники имеют большое значение для развития отечественных лазерных технологий. Они позволяют не только решать задачи импортозамещения, но и планомерно выходить на мировые рынки. Уверен, что предложенные учеными университета технологии вызовут интерес у производителей. Справка "РГ" Лазер - устройство, которое излучает пучок света в результате процесса оптического усиления. Существуют разнообразные типы лазеров, включая газовые, волоконные, твердотельные, диодные, эксимерные, на красителях. Во всех - один и тот же базовый набор компонентов.
Уверен, новая разработка будет востребована на динамично развивающемся рынке аддитивных технологий», — подчеркнул заместитель директора отделения «Оптических и информационных технологий», руководитель проекта и главный разработчик АО «НИИ НПО «ЛУЧ» Илья Шарапов. Так, уже с 2020 года в РусАТ поставлялись двухосевые сканаторы. На данный момент основной фокус внимания направлен на трехосевые сканаторы, необходимые для производства отечественных 3D-принтеров с максимальной долей импортозамещения. С 2024 года ожидается начало выпуска разработанной в РусАТ линейки серийных отечественных 3D-принтеров, работающих по технологии селективного лазерного сплавления. Для справки: Международная специализированная выставка лазерной, оптической и оптоэлектронной техники «Фотоника.
ОТКРОЙ #МОСПРОМ ОНЛАЙН. Выпуск о ГК "Лазеры и аппаратура"
Группа компаний «Лазеры и аппаратура» производит лазерные машины для микрообработки материалов электронной промышленности. В департаменте инвестиционной и промышленной политики Москвы (ДИПП) сообщили, что столичная группа компаний "Лазеры и аппаратура" в прошлом году выпустила почти втрое больше лазерных установок, чем годом ранее. Московская компания-производитель лазерной техники «Лазеры и аппаратура» впервые в стране создала и начала серийное производство станков высокоточной микрообработки ультрафиолетовым лазером. Специалисты московской компании "Лазеры и аппаратура" разработали установку для лазерной маркировки и микрообработки полупроводниковых пластин, которые служат основой для создания микросхем.