Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях. Момент взрыва водородной бомбы в акватории Тихого океана.
Атомная бомба и ядерная бомба: два разных понятия
- Содержание
- Описание водородной бомбы
- Термоядерное оружие — Википедия
- Термоядерный заряд. Отличие водородной бомбы от атомной: список различий, история создания
- Испытания термоядерной бомбы
- Об Атомном оружиии
В чем разница между атомной и ядерной бомбой?
Помимо того, что многие люди погибают от взрыва и радиации, они также могут столкнуться с долгосрочными заболеваниями и мутациями на генетическом уровне. Гуманитарные последствия такого использования оружия также включают эвакуацию и вынужденное перемещение населения, разрушение медицинских и экологических систем, а также потерю доступа к пище и воде. Все это приводит к глубокому гуманитарному кризису и длительному восстановлению после конфликта. Последствия использования водородной бомбы и ядерного оружия Разрушение инфраструктуры Разрушение городов и населенных пунктов Высвобождение радиоактивных частиц и загрязнение окружающей среды Человеческие потери и травмированные люди Долгосрочные заболевания и мутации на генетическом уровне Эвакуация и вынужденное перемещение населения Разрушение медицинских и экологических систем Потеря доступа к пище и воде Гуманитарный кризис и длительное восстановление Особенности конструкции и состава водородной бомбы. Основным компонентом водородной бомбы является тритий — радиоактивный изотоп водорода. Тритий представляет собой тяжелый изотоп водорода, содержащий один протон и два нейтрона в ядре. Он является отличным источником нейтронов, которые играют важную роль в процессе синтеза ядра.
Ключевым этапом водородной бомбы является термоядерный синтез. В процессе синтеза ядра, три тяжелых ядра дейтерия изотоп водорода, состоящий из одного протона и одного нейтрона соединяются и образуют новое ядро гелия. При этом высвобождается колоссальное количество энергии. Для создания условий для термоядерного синтеза, внутри водородной бомбы применяется ядерный взрыв. Взрыв атомной бомбы, также называемой «воспламенителем», создает достаточно высокую температуру и давление, чтобы запустить реакцию термоядерного синтеза. В процессе термоядерного синтеза образуется не только энергия, но и большое количество высвобождающихся нейтронов.
Нейтроны, вылетающие из реакции, могут использоваться для вызывания еще одной цепной реакции деления ядер — это принцип, называемый саморазмножением или термоядерной лавинообразностью. В итоге, особенности конструкции и состава водородной бомбы обеспечивают ей значительно большую разрушительную мощность по сравнению с атомной бомбой. Она способна вызывать огромные взрывы и радиационные последствия, что делает ее одним из самых опасных видов оружия в мире. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться.
Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания.
Сколько ядерного оружия в США? В 1945 году США впервые в истории испытали ядерное оружие, став первой ядерной державой. Также США являются единственным государством, которое применяло ядерное оружие в боевых условиях, сбросив бомбы на японские города Хиросиму и Нагасаки. По данным SIPRI, к началу 2022 года США обладали крупнейшим арсеналом ядерного оружия на боевом дежурстве — 1774 боеголовки на ракетах и базах оперативных сил. США обладают полноценной ядерной триадой с воздушным, сухопутным и морским компонентом. Эксплуатируемая с 1970-х годов ракета может нести ядерные заряды W78 и W87. Основой воздушного компонента остаются бомбардировщики B-52H и B-2 Spirit, способные нести термоядерные бомбы B61 и B83. В октябре стало известно, что в США планируют отказаться от бомб B83 из-за растущих расходов на техническое обслуживание, а бомбардировщик B-2 хотят заменить перспективным B-21 Raider, который покажут в декабре. Сколько ядерного оружия в России?
Это был чисто исследовательский эксперимент по изучению термоядерного горения дейтерия. Устройство представляло собой ядерный заряд в виде тора 2,6м. Выход энергии от синтеза в этом устройстве очень невелик по сравнению с выходом энергии от деления ядер урана. В нем в качестве термоядерного топлива использова- лась смесь дейтерия с тритием, охлажденная до жидкого состояния, и находящаяся внутри ядра из обогащенного урана. Устройство создавалось для испытания принципа увеличения мощности атомного заряда за счет дополнительных нейтронов возникающих в реакции синтеза. Эти нейтроны, попадая в зону реакции деления, увеличивали их интенсивность увеличивалась доля ращепившихся ядер урана а следовательно и силу взрыва. Для ускорения разработок в июле 1952г. Лоуренса в Калифорнии. Это было первое устройство, созданное по принципу Теллера-Улама. Весило оно около 80т.
Термоядерное горю- чее дейтерий — тритий находилось в жидком состоянии при температуре, близкой к абсолютному нулю в дьюаровском сосуде по центру которого проходил плутониевый стр- ежень. Сам сосуд окружал корпус-толкатель из природного урана, массой более 5т. Целиком сборка помещалась в огромную стальную оболочку, 2м. Эксперимент стал промежуточным шагом амери- канских физиков на пути к созданию транспортабельного водородного оружия. В этом плане впереди оказались советские ученые, использовавшие дейтерид Li6 уже в первой советской термоядерная бомбе испытанной в августе 1953г. Американский же завод по производ- ству Li6 в Ок-Ридже был пущен в эксплуатацию только к середине 1953г. После операции «Ivy Mike» оба ядерных центра в Лос- Аламосе и Калифорнии приступили к спешной разработке более компактных зарядов с использованием дейтерида лития, которые возможно было бы применять в боевых усло- виях. В 1954г. Однако для скорейшего оснащения вооруженных сил новым ору- жием три типа устройств, были сразу, без испытаний, изготовлены малой серией по 5 изделий. Одним из них стла бомба EC-16 ее испытание под именем «Jughead» планиро- валось провести в ходе операции «Castle».
Это была транспортабельная версия криогенной системы «Mike» масса бомбы 19т. Но после первых успеш- ных испытаний устройств с дейтеридом лития EC-16 моментально устарела и даже не испытывалась. Такое горючие применялось в США впервые поэтому мощность взрыва сильно превысила ожидаемую в 4-8Мт. Причина неожиданно высокой мощности состояла в Li7 который по ожиданиям должен был быть достаточно инертным, но в действительности при поглощении быстрых нейтронов атом Li7 тоже делился на тритий и гелий. Этот «незапланированный» тритий и обеспечил 2-х крат- ное усиление мощности. Кратер от взрыва получился 2км. Масса устройства составляла 10. Успешный результат первого испытаня привел к отказу от криогенных проектов «Jughead» EC-16 и «Ramrod» криогенного близнеца устройства «Morgenstern». Из-за дефицита обогащенного Li6 в следующем испытани «Castle Romeo» исполь- зовался заряд из природного 7. Термоядерное устройство под именем «Runt I» было взорвано 26 Марта 1954г.
Одновременно это было контрольное испытание термоядерной бомбы получившей обозначение EC-17. Мощность взрыва составила 11Мт. Как и в случае с «Bravo», выделившаяся мощность намного превысила ожидаемые 1. Масса устройства - 18т. Энерговыделение — 6,9 Мт. Взрыв оставил на дне лагуны кратер 100м. Масса устройства — 12,5 т. Испытание было неудачным. Вместо планировавшейся 1Мт. Это произошло из-за того, что нейтронный поток от триггера достиг второй ступени, пред- варительно разогрев ее и помешав эффективному обжатию.
Остальные изделия, испытан- ные в «Castle», содержали бор-10, служащий хорошим поглотителем нейтронов и снижа- ющим эффект предварительного разогрева термоядерного топлива. Это дало прибавку мощности в 2. Мощность взрыва составила 13. Масса «Runt II» 17,8т. Вклю- чение в график испытания этого заряда произошло из-за чрезвычайного успеха «Castle Romeo» и исключения испытаний устройств «Ramrod» и «Jughead». По сравнению с весом остальных зарядов, эта бомба выглядит совсем небольшой масса - 2. Первона- чально она разрабатывалось как чисто атомная бомба с мощностью в диапазоне сотен килотонн в которой применялось радиационное обжатие одного атомного заряда другим. Идея была сохранена но в проект добавили термоядерное горючее для увеличения мощ- ности. Проект выиграл в весе, но применение в нем дорогого и отсутствующего на тот момент в должных количествах материала - высокообогащенного лития сдерживало его производство до 1955г. Таким образом на вооружение США уже в 1954г поступили в ограниченном коли- честве первые термоядерные бомбы.
Это были огромные и тяжелые мастодонты ЕС-14 «Alarm Clock» масса 14т. Эти заряды изготовлены сериями по 5 шт. Термоядерная бомба Mk. Взять ее в полет мог только B-36. Для ее эксплуатации требовались специальные машины, средства и приспособления. Подве- сить ее в самолет могли лишь на одной авиабазе, что было крайне неудобно и снижало гибкость применения этого оружия. Поэтому все пять Mk. После операции «Castle» было развернуто серийное производство новых термоя- дерных зарядов, начавших поступать на вооружение в 1955г. Серийная версия «Zombie» «Castle Nectar» - Mk. В 1955- 1957гг.
В 1955 — 56гг. Наследник «Castle Yankee» - Mk. В 1954-55 гг. В 1956г. Энерговыделение составило 3. Важное отличие этого заряда от испытанных ранее то, что он был сразу конструктивно оформлен в виде авиабомбы и впервые в США было произведено бом- бометание термоядерного устройства с самолета. Самая мощная американская бомба была разработана по программе B-41. Работы начались в 1955г. Прототипы бомбы TX-41, ис- пытывался в тестах "Sycamore", "Poplar" и "Pine" операции "Hardtack" на полигоне в Тихом океане, между 31 маем и 27 июлем 1958г. В результете была создана самая мощная американская термоядерная бомба Mk.
Она имела ширину 1,3м. За период 1960-62гг. Этот трехступенчатый термоядерный заряд производился в двух вариантах. Среди всех американских проектов, в этом был достигнут наибольший удельный энерговыход: 5. В 1979г. Теллер сделал неожиданное заяв- ление «…первую конструкцию водородной бомбы создал Дик Гарвин». В интервью, посвященном той же теме, Гарвин вспоминал что в 1951г. Рэй Киддер, один из основоположников атомного оружия прокомментировал это заявление так: «Всегда существовало противоре- чие подобного типа: у кого возникла идея создания водородной бомбы и кто ее создал. Теперь все сказано. Это исключительно правдоподобно и, смею заметить, точно».
Однако среди ученых нет единодушия в отношении вклада 23-хлетнего в ту пору Гарвина в разработку термоядерной бомбы. Но он был не единственным нашим источником и после 1950г. С ней, в строжайшей тайне, знакомился только Курчатов. Никто из физиков кроме него об этой информации не знал. Со стороны это выглядело как гениальное озарение Но к идее использования термоядерного синтеза для создания бомбы советские ученые похоже пришли самостоятельно. В 1946г. Гуревич, Я. Зельдович, И. Померанчук и Ю. Харитон передали Курчатову совместное предложение в форме открытого отчёта.
Суть их предложения заключалась в использовании атомного взрыва в качестве детона- тора для обеспечения взрывной реакции в дейтерии. Гуревич позднее назвал факт незасектеченности этого отчета «... Далее события развивались следующим образом. В июне 1948г. Тамма была создана специальная группа, в которую был включен А. Сахаров в задачу которой входило исследование возможности создания водородной бомбы. При этом ей поручалась проверка и уточнение тех расчётов, которые проводились в московской группе Я. Зель- довича в Институте химической физики. Надо сказать, что в тот период группа Я. Зель- довича разрабатывала проект «труба».
Уже в конце 1949г. Сахаров предложил новую модель водородной бомбы. Это была гетерогенная конструкция из чередующихся слоев расщепляющегося материала и слоев топлива синтеза дейтерия в смеси с тритием. Схема получила наименование «слойка» или схема Сахарова-Гинзбурга непонятно каким образом «слойку» внедрялись жидкие дейтерий и тритий. Эта модель имела некоторые недостатки - водородный компонент бомбы был незначителен, что ограничивало мощность взрыва. Эта мощность могла быть максимум в двадцать-сорок раз выше мощности обычной плутониевой бомбы. Кроме того только тритий был очень дорог и для его производства требовалось много времени. По предложению В. Гинзбурга в качестве источника дейтерия и трития был использован литий, имевший к тому же дополнительные преимущества -твёрдое агрегатное состояние и дешевизну. В феврале 1950г.
Таким образом у нас параллельно развивались два направления - «труба» и «слойка». В первую очередь должно было быть создано изделие РДС-6с весом до 5т. Был установлен срок изготовления первого экземпляра изделия РДС-6с - 1954г. К 1 мая 1952г. Это была именно перемещаемая бомба, а не стационарное устройство, как у американцев. Заряд имел несколько больший вес и те же габариты, что и первая советская атомная бомба, испытанная в 1949г. Испытание решено было провести в стационарных условиях на стальной башне высотой 40м. Мощность взрыва была эквивалентна 400Кт. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750Кт. Выделяемая мощность распределялась следующим образом 40 кт.
Феоктистов вспоминает: «В 1953г. Конечно, мы уже тогда слышали об испытании «Майк», но... Бомба имела два существенных недостатка, обусловленные наличием трития - высокая стоимость и ограниченный до полугода срок годности. В дальнейщем от трития отказались, что привело к некоторому снижению мощности. Испытание нового заряда было проведено 6 ноября 1955г. Причем впервые водорордная бомба была сброшена с самолета. В начале 1954г. Малышева по «трубе». Было принято решение о полной бесперспективности этого направления в США к такому же выводу пришли еще в 1950г.
Для термоядерной бомбы характерна более совершенная детонация. За счет этого взрыв получается сильнее. Детонация такого оружия включает ряд этапов. Вначале происходит детонация атомного устройства, что приводит к появлению температуры, составляющей несколько миллионов градусов. Это помогает получить так много энергии, что два ядра способны соединиться. Вторая стадия получила название синтеза. Также отличия заключаются в параметрах мощности. По этому показателю водородная разновидность в сотни тысяч раз выше атомной. Взрывную силу второй считают в килотоннах. При этом мощность водородного устройства считается в мегатоннах. В тротиловом эквиваленте это соответствует миллиону тонн. Атомная и водородная бомбы — это известные разновидности ядерного оружия. При этом многие люди считают, что это одно и то же. На самом деле данные устройства характеризуются целым рядом отличий.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
Отдельно следует упомянуть, что сама радиация оказывает отрицательное влияние на здоровье людей. При прохождении радиоактивного излучения через тело человека или при попадании в организм зараженных веществ энергия волн и частиц передается тканям, после - клеткам. Из-за этого атомы и молекулы в составе организма приходят в возбуждение, нарушается деятельность клеток или происходит их гибель. Последствия могут быть различными в зависимости от дозы радиации и продолжительности воздействия. Страны с ядерным оружием Принято считать, что в настоящее время в мире существует девять стран, имеющих ядерное вооружение.
Согласно расчетам SIPRI на 2017 год, в общей сложности государства имеют примерно 15 тысяч ядерных боеголовок. Страны с ядерным оружием Фото: pxhere. Наибольшая доля вооружения присутствует у Америки и России. Ядерными державами официально признаны страны, подписавшие Договор о нераспространении ядерного оружия от 1968 года.
Оставшиеся четыре государства располагают соответствующим вооружением, но не присоединялись к договору о нераспространении. Согласно информации из СМИ, Северная Корея вышла из договора, а Израиль не признавал наличие ядерного оружия, но считается, что оно есть. В США предполагают, что Иран продолжает работу над созданием атомной бомбы, несмотря на отказ от военного использования ядерной энергии. Чем отличается ядерная бомба от атомной?
Ранее в СМИ появлялись сведения, что Северная Корея объявила о проведении испытания усовершенствованной водородной бомбы, которая известна как термоядерная. Отмечается, что между атомной и водородной бомбами есть существенное различие. Отличается процесс детонации. Взрывная сила атомного оружия такого, которое было сброшено на Хиросиму и Нагасаки - итог внезапного высвобождения энергии вследствие расщепления ядра тяжелого химического элемента.
Спустя несколько лет после того, как в США была создана первая атомная бомба, американцами было разработано другое оружие. За основу был взят тот же принцип действия, но процесс детонации был усовершенствован. Оружие позднее получило наименование термоядерной бомбы. Отмечается, что мощность термоядерной бомбы способна превысить мощность атомного оружия во много раз.
Какие бывают ядерные взрывы? В зависимости от нахождения центра взрыва он может быть космическим, атмосферным, наземным или подземным. Он может произойти над поверхностью воды или под ней. Космический взрыв происходит на высоте более 100 км.
Атмосферный высотный взрыв происходит на высоте более 10-15 км, чаще - на высоте 40-100 км, когда практически отсутствует ударная волна. Высоким воздушным считается взрыв на высоте более 1 километра. К низким воздушным относят высоту 350-1000 м. При наземном взрыве вспышка касается земной поверхности - от глубины 30 м до высоты в 350 м.
Наземный взрыв может быть с образованием воронки или контактным.
Атомная ядерная и водородная она же термоядерная бомбы — это два сокрушительных типа оружия массового поражения, похожие по названию, но разные в принципе действия. В чем между ними отличие, и какая бомба смертоноснее?
Каков принцип действия атомной бомбы? Атомная бомба признается сравнительно примитивным ядерным оружием, в основе которого заложена идея деления тяжелого радиоактивного химического элемента на два легких. Реакция распада этих веществ достигается путем подрыва обычной взрывчатки.
Детонация приводит к раскалыванию ядра атома на две части и высвобождению свободных нейтронов. Эти нейтроны бомбардируют соседние атомы, также раскалывая их на части и порождая цепную реакцию.
Протоны положительно заряжены, электроны — отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд.
Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой — сильным ядерным взаимодействием. Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент.
Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Большинство атомных ядер стабильны, но некоторые из них неустойчивы радиоактивны. Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом.
Бета-распад: нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии — гамма-луч. Именно последний тип распада используется в ядерной бомбе.
Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию, которая высвобождает колоссальное количество энергии. Из чего делают ядерные бомбы? Их могут делать из урана-235 и плутония-239. Наиболее распространенный 238U не поддерживает цепную реакцию: на это способен лишь 235U.
Поэтому уран приходится искусственно обогащать. Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235U. Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию — но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается.
Зато его можно получить, бомбардируя нейтронами 238U. Как измеряется их мощность? Она измеряется в килотоннах кт и мегатоннах Мт. Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.
Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн. Кто создал ядерное оружие?
Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу — законченное устройство, пригодное к практическому военному применению [7]. Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная « царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля.
Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый [8]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила [9] ; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала.
Основная статья: История создания схемы Теллера — Улама Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года [10] , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы.
Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Взрыв «Джордж» В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» англ. Operation Greenhouse , в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности.
Какая бомба мощнее, атомная или водородная?
Стереотипы о ядерном оружии | Пикабу | Новость декабря — успешные испытания Северной Кореей водородной бомбы. |
Что опаснее водородная или ядерная бомба. Разница между атомной и водородной бомбой | это два различных типа ядерных боеприпасов, которые имеют разные принципы работы и поразительные характеристики. |
Какая бомба мощнее: ядерная или водородная | В чем разница между водородными бомбами и атомными? |
Чем отличается атомная бомба от водородной | Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно. |
Термоядерная бомба и ядерная отличия
Термоядерная бомба: устройство. первая термоядерная бомба. испытание термоядерной бомбы. Водородная или термоядерная бомба работает на синтезе слиянии ядер дейтерия Н3 выделяется огромное количество м термоядерной бомбы является плутониевая бомба. используют ядерное деление.
Атомный и ядерный взрыв в чем разница. Чем отличаются атомная, ядерная и водородная бомбы
Очевидец запечатлел взрыв объемно-детонирующей авиабомбы ОДАБ-500. Внутри боеприпаса — жидкое горючее, которое сразу после удара о землю превращается в облако воспламеняющейся газовоздушной смеси. А потом его поджигают вторым зарядом. Температура внутри горения образуется дичайшая", — рассказал эксперт Кобринский. К термобарическим относятся и снаряды для тяжелой огнеметной системы "Солнцепек". Недаром украинские боевики боятся ее в прямом смысле как огня. Объемный взрыв огромной мощности буквально испепеляет все вокруг. Но наряду с достоинствами у термобарических боеприпасов есть серьезные недостатки. Эти бомбы и снаряды нельзя применять при сильном ветре, который просто рассеет аэрозольное облако, или в дождь.
Но в хорошую погоду при соответствующих, так сказать, условиях — это вторая бомба после термоядерных боеголовок", — сообщил историк Кобринский. Американская "мать всех бомб": что о ней известно От создания фугасных авиабомб после появления объемно-детонирующих не стали отказываться. Один из самых мощных фугасов в мире с тротиловым эквивалентом 10 тонн. Этот боеприпас был разработан во время вьетнамской войны. На архивных кадрах видно, как бомба отделяется от носителя и на парашюте спускается на землю. Затем происходит мощный взрыв, уничтожающий деревья и кустарники в радиусе десятков метров, но при этом не оставляющий воронки. Patrick Nichols "Вот эти боеприпасы были разработаны для того, чтобы, сбрасывая их на джунгли, просто за счет воздушного подрыва, они просто обеспечивали достаточно ровную вертолетную площадку без кратера, без каких-то разрушений, на которую можно было посадить вертолет, забрать там группу, забрать раненых, привезти боеприпасы, что-то еще", — рассказал военный эксперт Денисенцев. Эта бомба использовалась в Ираке в операции "Буря в пустыне" и в Афганистане.
Из-за крупных габаритов носителями таких бомб были не бомбардировщики, а транспортные самолеты С-130. Отсек военно-транспортных самолетов, например, МС-130, он как раз вот для этой цели хорошо подходит", — сообщил военный эксперт Денисенцев. Журналисты недаром прозвали ее "матерью всех бомб": размеры впечатляют. Длина 9 с лишним метров, диаметр — больше метра.
В процессе взрыва, дейтерид лития-6 распадается на дейтерий и тритий, а те соединяются с ядром гелия. Получается, фактически неограниченная мощность взрыва. Примером такого взрыва можно считать - Солнце, ведь по сути это самый продолжительный термоядерный взрыв.
Есть ядерное оружие.
Это оружие, основанное на ядерных реакциях. Ядерные бомбы подразделяются на: - атомные их иногда называют просто "ядерные" ; - водородные их называют еще "термоядерные" ; - нейтронные. Атомная бомба - это бомба, в которой происходит реакция ядерного деления. Атом тяжелого изотопа, к примеру, плутония-239, делится на более легкие химические элементы с выделением колоссальной энергии. Существует критическая масса плутония-239. Грубо говоря, кусок плутония массой больше этого значения не может существовать - он сразу дает цепную реакцию, то есть взрыв.
Следующими шагами будут заказ хостинга и создание сайта. Второй шаг - заказ хостинга из предлагаемых тарифных планов.
Также вы можете заказать у нас установку выделенного сервера. Шаг третий - создание сайта.
Что опаснее водородная или ядерная бомба. Разница между атомной и водородной бомбой
Если в урановой бомбе идет реакция деления, то в водородной реакция слияния — в этом суть того, чем отличается водородная бомба от атомной. путем ядерного синтеза. Бомба атомная — синоним бомбы ядерной, бомба водородная — термоядерной. Атомной бомбой называется бомба, где используется деление изотопов урана или плутония. То есть, тяжелый атом распадается на более легкие атомы, и выделяется большое количество энергии. Атомная бомба — это один из видов ядерного оружия, которое базируется на процессе деления атомных ядер. Атомная и водородная бомба относятся к ядерному оружию, но принцип действия у них разный.
Принцип работы водородной бомбы
Чем отличается американская "мать всех бомб" от российского "отца". Термоядерная бомба основана на реакции ядерного синтеза. Термоядерное оружие (водородная бомба) — вид ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия).
Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы.
Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Деление, синтез, деление супербомба. На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка».
В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности.
Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва — это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла.
Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли.
Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека. Общее описание [ ] Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при обычных условиях, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7.
В 1903 году Резерфорд и Фредерик Содди опубликовали закон радиоактивного распада. В 1921 г. Отто Ган фактически открывает ядерную изомерию. В 1932 г. Джеймс Чедвик открыл нейтрон, а Карл Д. Андерсон — позитрон.
В том же 1932 году в США Эрнест Лоуренс запустил первый циклотрон, а в Англии Эрнест Уолтон и Джон Кокрофт впервые расщепили ядро атома: они разрушили ядро лития, обстреливая его на ускорителе протонами. В 1934 г. Фредерик Жолио-Кюри открыл искусственную радиоактивность, а Энрико Ферми разработал методику замедления нейтронов. В 1936 г. В 1938 г. Отто Ган, Фриц Штрассман и Лиза Мейтнер открывают расщепление ядра урана при поглощении им нейтронов.
С этого и начинается разработка ядерного оружия. В 1939 г. Фредерик Жолио-Кюри запатентовал конструкцию урановой бомбы. В 1940 г. Флёров и К. Петржак, работая в ЛФТИ, открыли спонтанное деление ядра урана.
В июне 1940 г. Весной 1941 г. Ферми завершил разработку теории цепной ядерной реакции. Первый квартал 1942 г. В июне 1942 г. Ферми и Г.
Андерсоном в ходе опытов был получен коэффициент размножения нейтронов больше единицы, что открыло путь к созданию ядерного реактора. В августе 1945 г. Атомные бомбардировки Хиросимы и Нагасаки. Послевоенное совершенствование ядерного оружия[ ] Июль 1946 г. США проводят операцию «Перекрёстки» на атолле Бикини: 4-й и 5-й атомные взрывы в истории человечества. Весной 1948 г.
Наконец, нейтронные бомбы предназначены для испускания большого количества нейтронного излучения при минимальных взрывах и тепловых эффектах, что делает их потенциально полезными для военных целей. Однако разработка и развертывание ядерного оружия имеют серьезные этические, политические и экологические последствия. Использование атомных бомб в Хиросиме и Нагасаки во время Второй мировой войны привело к гибели сотен тысяч людей и оставило долгосрочные последствия для здоровья из-за радиационного облучения. Продолжающееся обладание ядерными арсеналами и их модернизация несколькими странами сопряжены со значительным риском случайного или преднамеренного применения, что приведет к глобальным разрушениям и человеческим жертвам. Кроме того, при производстве, испытаниях и хранении ядерного оружия образуется большое количество радиоактивных отходов, что представляет долгосрочную угрозу для здоровья населения и окружающей среды. Ядерное оружие также отвлекает ресурсы от социального и экономического развития, усугубляя нищету, неравенство и конфликты. Поэтому крайне важно, чтобы международное сообщество работало над достижением цели ядерного разоружения и нераспространения, чтобы уменьшить риск ядерной катастрофы и содействовать построению более мирного и устойчивого мира. В заключение, атомная, водородная и нейтронная бомбы — это все виды ядерного оружия, различающиеся по своей взрывной силе, механизму детонации и радиационному воздействию. Это оружие имеет серьезные этические, политические и экологические последствия и представляет серьезную угрозу глобальной безопасности и стабильности. Международному сообществу необходимо работать сообща для достижения цели ядерного разоружения и нераспространения, предотвращения применения и распространения ядерного оружия и содействия построению более безопасного мира для всех.
В состав воздушного компонента ядерной триады России входят стратегические бомбардировщики-ракетоносцы Ту-160 и Ту-95МС. Эти самолеты могут нести крылатые ракеты с термоядерным зарядом Х-102 и Х-55. Также Военно-морской флот России получил подлодку «Белгород», которая станет носителем стратегических беспилотных подводных аппаратов с ядерным зарядом «Посейдон». Сколько ядерного оружия у Франции?
Также носителями ядерного оружия являются четыре АПЛ типа «Триумфан», оснащенные баллистическими ракетами M51. Версия M51. Сколько ядерного оружия в Великобритании? Соединенное Королевство остается единственной ядерной державой, на территории которой не происходило ядерного взрыва.
К 2022 году в ядерном арсенале Великобритании остается 225 боеголовок.
Что произойдет после взрыва ядерной бомбы?
Считается, что атомные бомбы имеют тонну TNT до 500 000 тонн тротила, поэтому мы можем грубо оценить, насколько опасна водородная бомба. Атомные бомбы задерживаются взрывом от детонационного устройства TNT. Это приводит к тому, что радиоактивные элементы Уран-235 и Плутоний-239 сталкиваются друг с другом в большом количестве энергии. Это приводит к цепной реакции, когда больше атомов разрушается, и энергия высвобождается. С другой стороны, водородная бомба начинается с фактического присутствия атомной бомбы.
Радиоактивные элементы соединены плотно вместе так же, как ядерное деление, вызывающее ядерный синтез. По продукту атомная бомба производит высокорадиоактивные частицы после того, как энергия была выпущена, когда радиоактивные частицы водородной бомбы запускаются после взрыва. Мы с уверенностью можем представить себе масштабы разрушений как для атомной бомбы, так и для водородной бомбы, просто напомнив о бомбардировке Хиросимы и Нагасаки в 1945 году. На сегодняшний день никаких записей о бомбах ядерного слияния, используемых для военных действий, не было, хотя правительственные программы обороны провели значительные исследования в таких возможности производства.
Чтобы суммировать разницу между атомной и водородной бомбой, ниже приводятся: 1. Водородная бомба считается «модернизированной» версией атомной бомбы 2.
Основная схема для современных бомб более сложна, и включает в себя металлический цилиндр, в котором находится стержень из дейтрида лития с плутониевым сердечником, окружённый слоем пластмассы. Сбоку от цилиндра находится атомная бомба-"триггер", причём дейтрид лития прикрыт металлической крышкой. Взрыв бомбы приводит к испарению пластмассы, давление которой сжимает дейтрид лития в 1000 раз, а плутониевый стержень примерно вчетверо.
Сжатие и нагрев инициируют термоядерную реакцию, а плутониевый стержень играет роль "запальной свечи", продуцируя нейтроны для превращения лития в тритий. Металлический корпус может быть из вольфрама, и не добавляет ни энергии взрыву, ни радиоактивного заражения, а может быть из необогащённого или слабообогащённого урана, что увеличивает мощность взрыва и создаёт мощное заражение "грязная бомба" - впрочем, так именуют и радиологическую бомбу, в которой реакции деления или синтеза нет, а просто разбрасываются обычным химическим взрывом изотопы. Можно также использовать кобальт, что породит крайне радиоактивный изотоп Кобальт-60.
К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термо ядерная бомба.
Но об этих идущих на вооружение боевых системах в открытой печати не сообщалось. В августе-декабре 1962 года, включая самые тревожные дни Карибского кризиса, "грибной сезон" продолжился.
Всего в СССР, включая Семипалатинский полигон, в период с 20 октября по 5 ноября 1962 года было проведено пятнадцать ядерных взрывов. А завершилась программа таких испытаний декабрьской серией из 11 термоядерных бомб и боеголовок мегатонного класса, взорванных над мысом Сухой Нос у западного побережья Новой Земли. Причем 18, 24 и 25 декабря проводили по два испытания в день, а 23-го было проведено три... В 1961-1963 годах США провели как минимум 125 ядерных испытаний Справедливости ради отметим, что Соединенные Штаты за период 1961-1963 годов провели на трех своих полигонах в Неваде, на острове Рождества и острове Джонстона как минимум 125 ядерных испытаний в атмосфере и под водой. Советский Союз в 1963 году ядерных испытаний не проводил. А серия мощных взрывов над Новой Землей в конце декабря 1962 года вообще стала последним для нашей страны эпизодом ядерных испытаний в открытых средах: с 1964 года в СССР проводились только подземные испытания. Так что Никита Хрущев ничуть не лукавил, когда заявил в Берлине, что в Советском Союзе в интересах всего социалистического содружества создано, испытано и поставлено на боевое дежурство, передано в войска оружие невиданной силы - "и пусть только господа-империалисты сунутся". Первые американские "штучки": урановый "Малыш", жертвой которого 06. Фото: Соцсети Многие эксперты солидарны в том, что нарочито громкое, демонстративное заявление советского лидера в Берлине имело целью подтолкнуть американцев к переговорам и заключению обязывающих соглашений.
А чтобы так ставить вопрос - о переговорах между Москвой и Вашингтоном на равных, - надо было как минимум обеспечить фактический паритет СССР и США в ядерных вооружениях.