Новости радиация в японии

Благодаря тихоокеанским течениям Россию сброс японской радиации затронул и в ближайшем будущем затронет не очень сильно. Япония начала сброс второй партии воды с аварийной АЭС «Фукусима-1». Япония сегодня планирует начать сливать в океан более миллиона тонн радиоактивной воды из реакторов АЭС «Фукусима», которая 12 лет назад серьезно пострадала в результате сильнейшего землетрясения и цунами.

Япония сбросит в Тихий океан 1 млн тонн воды с места аварии на АЭС "Фукусима"

Япония планирует сбросить в Тихий океан сточные воды с аварийной атомной электростанции «Фукусима-1». Но даже официальные показатели радиационного фона около «Фукусимы» таковы, что причин для беспокойства должно быть немало. Утечка семи тонн радиоактивной воды произошла на АЭС «Михама» в японской префектуре Фукуи. 28 февраля уровень радиации в мэрии Намиэ составлял 0,07 микрозиверт в час, что мало отличается от остальной Японии. Утечка воды с радиоактивными элементами произошла на третьем реакторе АЭС "Михама" в префектуре Фукуи, передает РИА Новости со ссылкой на агентство Киодо.

Сброс радиоактивной воды с "Фукусимы"

  • Последствия «Фукусимы»: куда улетело весеннее облако радиации?
  • Внутри красной зоны Фукусимы: 13 лет после ядерной катастрофы в Японии. (31 фото)
  • Чем опасен для России сброс воды с «Фукусимы-1» в океан
  • Утечка радиоактивной воды 7 февраля 2024 году
  • 2. Жертвы и пострадавшие

Утечка 7 тонн радиоактивной воды произошла на АЭС "Михама" в Японии

Загрязнению подверглись прежде всего прибрежные воды: концентрация радиоактивных веществ в воде на расстоянии 30 км от АЭС оказалась в 1000 раз меньше, чем вблизи неё [139] [140]. В результате аварии население Японии подверглось дополнительному облучению. Средняя эффективная доза эвакуированного населения в зависимости от времени нахождения в зоне отчуждения составила 6…10 мЗв за первый год после аварии. Жители префектуры Фукусима получили дозы в среднем ниже 4 мЗв, а облучение большей части населения Японии оказалось сопоставимо с облучением от природного фона или гораздо ниже его [142]. Переоблучение этих шести сотрудников в основном было обусловлено вдыханием радиоактивного йода-131 [146].

При этом четыре сотрудника носили пылезащитные респираторы вместо респираторов с активированным углём из-за нехватки последних в первые дни аварии [147]. За время аварии не было зарегистрировано ни одного случая острой лучевой болезни. В дальнейшем, по оценкам МАГАТЭ и ВОЗ , прирост онкологических заболеваний, обусловленный аварией, будет чрезвычайно мал, а число радиационно-индуцированных заболеваний составит малую долю от числа спонтанных раков [148]. Министерство здравоохранения, труда и благосостояния Японии совместно с TEPCO реализовало программу медицинской поддержки аварийных работников.

Все сотрудники, в том числе и те, кто сменил работу, проходят регулярные медицинские осмотры с целью выявления профессиональных заболеваний. Министерство сформировало набор критериев, по которым возникшая болезнь может быть расценена как последствие аварийного облучения хотя невозможно достоверно отличить радиационно-индуцированный рак от спонтанного. В этом случае пострадавшие имеют право на получение страховых выплат. К началу 2023 года таким образом официально было подтверждено четыре случая лейкемии , два случая рака щитовидной железы , два случая рака глотки и один случай рака лёгких , приведший к смерти человека в 2018 году.

Эта смерть является первой, отнесённой на счёт аварии [149]. По мнению комиссии, нельзя полностью исключить изменения биомаркеров в отдельных биотах , особенно в сильнозагрязнённых районах в первые два месяца аварии, однако нарушения в масштабах популяций маловероятны [150]. В 2011 году группа японских исследователей обнаружила физиологические и генетические аномалии у нескольких бабочек вида Zizeeria maha, принадлежащего к семейству голубянок , которое наиболее распространено в Японии. Некоторым особям, проживающим на территории префектуры Фукусима, нанесён вред в виде уменьшения площади крыльев и деформации глаз [151].

Расследование и его выводы[ править править код ] С целью раскрытия обстоятельств и причин катастрофы было опубликовано множество работ. В самой Японии независимо друг от друга было проведено четыре масштабных расследования [153] , результаты которых были представлены в 2012 году. Это отчёты владельца АЭС Токийской электроэнергетической компании TEPCO , комиссии кабинета министров, парламентской комиссии и так называемой независимой комиссии [154]. Последняя была создана по инициативе главного редактора газеты « Асахи симбун » Фунабаси Ёити; возглавил комиссию Коити Китадзава, бывший глава Японского агентства по науке и технологиям [155].

Доклад был подготовлен с привлечением международных экспертов [156]. Хотя непосредственной причиной аварии были названы разрушительное землетрясение и цунами, однако, по мнению правительственной комиссии, недостатки в противоаварийных мероприятиях привели к полной неготовности станции к удару стихии и определили масштабы катастрофы [157]. Первоначально TEPCO утверждала, что возможность цунами такого масштаба лежала за границей области разумных предположений [158]. Однако в окончательном отчёте было признано, что «оценка цунами в итоге оказалась неудовлетворительной, и коренной причиной аварии является недостаточная подготовка к воздействию цунами» [159].

Парламентская комиссия прямо назвала катастрофу «рукотворной» в том смысле, что, хотя недостатки в безопасности АЭС, особенно в отношении стихийных бедствий, были выявлены ещё до 2011 года, ни TEPCO, ни регулирующие органы, ни профильное министерство не сделали ничего, чтобы устранить их [160]. Независимая комиссия обратила внимание на «миф о безопасности», господствовавший во всей атомной отрасли Японии. В самой индустрии, в регулирующем ведомстве и в сознании местных властей не допускалась мысль о том, что АЭС могут представлять серьёзную опасность. Это привело к тому, что тяжёлые аварии на станциях не рассматривались как вероятные и никакая подготовка к ним не велась [162].

Стойкость АЭС к стихийным бедствиям[ править править код ] Фукусима-дайити стала одной из первых АЭС, сооружённых в Японии, в период, когда сейсмология ещё находилась на раннем этапе своего развития [163]. Оценка вероятности крупных стихийных бедствий , выдерживать натиск которых была обязана станция, проводилась на основе исторических свидетельств об имевших место землетрясениях и цунами за период порядка четырёхсот лет [164]. Согласно собранным данным префектура Фукусима являлась одним из наименее сейсмически активных регионов Японии [165]. Определение возможных нагрузок на конструкции и оборудование АЭС основывалось на землетрясениях с магнитудой около семи [166] , а максимальная высота возможного цунами принималась равной 3,1 метра [167].

Первоначальная высота побережья, выбранного для строительства АЭС, составляла 30—35 метров над уровнем моря. Исходя из стремления снизить сейсмические нагрузки на оборудование, уровень промышленной площадки станции был понижен до отметки в 10 метров, при этом часть прибрежного насосного оборудования оказалась лишь на 4 метра выше уровня воды [167]. Это также позволяло сэкономить на эксплуатации систем охлаждения АЭС, забиравших морскую воду, даже несмотря на то, что потребовалась значительная выборка грунта при строительстве [168]. Описываемый подход к оценке рисков был характерен для периода 60-х и 70-х годов XX века.

Хотя при этом также было принято создавать запас безопасности, увеличивая магнитуду землетрясения либо располагая его предполагаемый эпицентр ближе к площадке станции, в проекте АЭС Фукусима-дайити этого сделано не было, и оценка сейсмических воздействий и связанных с ними цунами базировалась исключительно на исторических данных [169] [170]. Случаи серьёзных землетрясений магнитудой 9 в регионах со сходным тектоническим строением Чилийское и Аляскинское землетрясения также не были приняты во внимание [171] [172]. Начиная с 1990-х годов в международной практике при оценке вероятности землетрясений стали учитываться и геотектонические характеристики региона, показывающие потенциальную возможность сейсмической активности. Тогда же было установлено, что крупные землетрясения могут происходить в среднем раз в 10 000 лет, и исторических свидетельств за меньшие периоды не всегда оказывается достаточно для оценки риска [169] [173].

В атомном законодательстве Японии отсутствовали требования, обязывавшие владельцев АЭС проводить периодическую переоценку безопасности и соответствующую модернизацию станций с учётом результатов новых исследований, и до начала 2000-х переоценка рисков, связанных с землетрясениями и цунами, не проводилась [5]. После Великого землетрясения Хансин-Авадзи 1995 года озабоченность в обществе в отношении готовности инженерных сооружений к землетрясениям значительно возросла [174]. В числе прочего это заставило надзорное ведомство Японии, пусть и со значительной задержкой, обновить свои руководящие документы, касающиеся оценки сейсмостойкости АЭС. После выхода в 2006 году обновлённых норм Агентство по ядерной и промышленной безопасности потребовало у эксплуатирующих организаций подтвердить соответствие АЭС новым требованиям [175].

При переоценке рисков были использованы как новейшие данные по имевшим место землетрясениям, так и данные о потенциально сейсмогенных тектонических структурах [176]. Расчётные нагрузки от землетрясений на оборудование станции были существенно увеличены, но и они в ряде случаев оказались ниже тех, что испытала АЭС в 2011 году [177]. Со времени строительства станции и до 2002 года никаких переоценок, связанных с опасностью цунами для АЭС Фукусима-дайити, сделано не было. Регулирующее ведомство Японии никогда не выдвигало законодательных требований, касающихся пересмотра опасности от цунами [178] , хоть и признавалось, что вероятность затопления не может быть полностью исключена [179].

Деятельность TEPCO в этом направлении была большей частью спровоцирована появлением стандартов в области численных методов расчёта высоты волн цунами, предложенных Японским обществом инженеров-строителей [180]. Основной недостаток методики заключался в ограниченном выборе эпицентров землетрясений — источников цунами, перечень которых был основан на исторических данных, в результате чего источники магнитудой выше восьми в зоне Японского жёлоба напротив побережья Фукусимы не рассматривались [182]. В 2000-х годах в TEPCO поступала информация, заставлявшая усомниться в правильности принятых оценок высоты цунами. Так, в июле 2002 года Центральным органом по содействию в сейсмологических исследованиях HERP было высказано предположение о возможности крупного землетрясения в любом месте на протяжении Японского жёлоба [183].

Позже, в 2009 году, новое исследование землетрясения Дзёган-Санрику , произошедшего в 869 году, показало, что вызванное им цунами могло затронуть зону расположения АЭС Фукусима-дайити [184]. TEPCO использовала эти источники в пробных расчётах, которые показали возможность возникновения волн цунами высотой 8 метров [185] от источника, аналогичного землетрясению Дзёган-Санрику, и более 15 метров от источника, предложенного HERP [186] В компании с большим скептицизмом отнеслись к полученным результатам, так как они были получены не по общепринятой методологии [187] , поэтому опасность катастрофических стихийных бедствий, значительно превышающих проектные предположения, не рассматривалась руководством TEPCO всерьёз [188]. В последующем вице-президент TEPCO Сакаэ Муто объяснил позицию компании так: «Я посчитал, что реализация мероприятий по защите от стихийных бедствий не требует спешки, так как такие катастрофы происходят реже, чем раз в сто лет. Эксплуатация реактора длится меньше» [184].

В результате TEPCO обратилась к Японскому обществу инженеров-строителей для дальнейшего анализа, и в 2011 году эта работа всё ещё велась. Никаких промежуточных мер по защите АЭС от подобных экстремальных воздействий не было принято [189]. Великое восточно-японское землетрясение превзошло даже максимальные оценки. Протяжённость вызвавшего землетрясение разлома была настолько велика, что спровоцировала сразу несколько волн цунами, которые, достигнув АЭС, усилили друг друга.

Подобная ситуация никогда не анализировалась до событий 2011 года [190]. Согласно карте, в зоне АЭС высота волн цунами могла составить 5,72 метра при высоте защитных сооружений АЭС 4,91 метра. Руководство JAPC не стало ставить под сомнение данные, предоставленные префектурой, вместо этого перед станцией была возведена новая защитная дамба высотой 6,11 метра. Во время землетрясения 2011 года фактическая высота волн составила 5,4 метра [191].

Готовность АЭС к обесточиванию[ править править код ] Вероятность потери внешнего электроснабжения была учтена в проекте станции, которая на этот случай имела 13 дизельных электрогенераторов с запасом топлива на двое суток работы [192] и комплекты батарей постоянного тока. Данные системы были успешно включены в работу после землетрясения, которое, по-видимому, не оказало значительного влияния на их функции. Однако расположение большей части оборудования в подвальных помещениях привело к тому, что после затопления площадки волной цунами резервное электроснабжение станции было практически полностью потеряно. Из-за разрушений от землетрясения и цунами внешнее электроснабжение было восстановлено лишь через 9 суток после начала аварии [109].

Законодательство в области ядерной безопасности Японии в принципе не требовало от эксплуатирующей организации рассматривать случаи длительного, многочасового обесточивания станции. В 1991—1993 годах, вслед за выходом в США «Отчёта по оценке аварий с потерей электроснабжения на атомных станциях» [194] , Комиссия по ядерной безопасности Японии инициировала рассмотрение аналогичного вопроса в отношении подведомственных АЭС. Обсуждение проводилось в закрытом режиме и с привлечением операторов АЭС в качестве консультантов. В результате был сделан вывод о том, что несмотря на весьма серьёзные последствия многочасового обесточивания, сама вероятность такого обесточивания, длящегося дольше 30 минут [192] , чрезвычайно низка благодаря высокой надёжности электрических сетей Японии и резервного оборудования АЭС.

Никаких изменений в руководящие документы внесено не было. Впоследствии глава Комиссии по ядерной безопасности Харуки Мадарамэ на заседании Парламентской комиссии по расследованию аварии принёс свои извинения по поводу подобной организации работы ядерного регулятора [195]. В самой TEPCO осознавали уязвимость системы внешнего электроснабжения от воздействия землетрясений, но не спешили с принятием соответствующих мер. К 2020 году в компании планировали модернизировать подстанцию Син-Фукусима и линии электропередач от неё к АЭС Фукусима-1 в соответствии с требованиями сейсмостойкости, а также увеличить запас топлива дизель-генераторов для обеспечения их автономной работы в течение более чем семи дней.

К моменту аварии эти мероприятия реализованы не были [196]. Таким образом, полное обесточивание станции включая отказ резервных источников , существенно повлиявшее на развитие событий при аварии, никак не было учтено при оценке её безопасности, что, однако, по заявлению МАГАТЭ, характерно для большинства эксплуатируемых в настоящее время АЭС [197]. Прямые затраты[ править править код ] Прямые затраты на ликвидацию последствий аварии включают в себя стоимость работ по демонтажу АЭС и дезактивации загрязнённых территорий, а также компенсационные выплаты населению и коммерческим компаниям. В 2013 году эти затраты оценивались в 11 триллионов иен, позднее, в 2016 году, прогноз был увеличен до 22 триллионов иен [198] [199] [200].

В 2019 году токийское аналитическое агентство «Японский центр экономических исследований» представило свою оценку прогнозируемых затрат на ликвидацию последствий аварии, в которой итоговые суммы оказались значительно выше официальных. По оценкам агентства, стоимость всех работ составит от 35 до 81 триллиона иен, в зависимости от выбранного способа утилизации накопленных объёмов радиоактивной воды. Затраты на компенсационные выплаты пострадавшим были оценены в 10 триллионов иен против 8 триллионов, одобренных Министерством экономики, торговли и промышленности [201] [202]. Фактически к началу 2020 года населению и коммерческим компаниям, пострадавшим от эвакуации и отчуждения земель, были выплачены компенсации на сумму в более чем 9 триллионов иен [203].

По статистике, семья из четырёх человек в среднем получила около 90 миллионов иен, из которых 49,1 млн за недвижимость, 10,9 млн за потерянный доход и 30 млн иен в качестве компенсации морального ущерба. Эти деньги не облагаются налогом [204]. Указанные затраты значительно превышали возможности TEPCO и поставили компанию под угрозу банкротства. В 2011 году для финансовой поддержки TEPCO и, соответственно, её способности осуществлять компенсационные выплаты пострадавшим был создан специальный фонд, бюджет которого основан на средствах государства налоговых поступлениях.

Предусматривается, что TEPCO и другие владеющие АЭС компании в конечном итоге возместят государству эти расходы посредством регулярных платежей, что, однако, приведёт к некоторому повышению стоимости электроэнергии для потребителей. Для минимизации затрат компания подверглась реструктуризации , сокращению штата и урезанию заработной платы сотрудникам и надбавок управляющим [205] [206] [207] [208]. После аварии Демократическая партия Японии предложила стратегию по полному отказу от АЭС к 2040 году. По оценкам Министерства экономики, торговли и промышленности , замещение атомной энергетики тепловой привёло бы к увеличению затрат на генерацию электроэнергии на 38 млрд долларов в год.

Перезапуск АЭС стал возможен только после переоценки их безопасности, в особенности по отношению к внешним воздействиям, в ходе так называемых «стресс-тестов».

Справедливо возмущаясь планами японцев о сбросе зараженной воды в Японское море, соседи по региону, однако, понимают, что помешать этому невозможно. Дело в том, что сегодня, как и 12 лет назад, когда взорвалась АЭС, атомщики в ежедневном режиме сливают пропущенные через реакторы 100 тонн воды в огромный резервуарный парк, расположенный вокруг развалин станции.

Очень скоро в этих цистернах, где уже скопилось 1,3 млн. Поэтому японцы и приняли решение: после очистки от большинства радиоактивных частиц воду начать сбрасывать в Тихий океан. Как сообщило агентство Kyodo , в понедельник компания Tokyo Electric Power, которая является оператором аварийной «Фукусимы», завершила рытье туннеля длиной более 1000 м, предназначенного для сброса в океан очищенной от радиации воды с АЭС.

Почти все радиоактивные частицы будут удалены из сточных вод до их высвобождения, за исключением изотопа водорода, трития, который, по словам японских экспертов, представляет «относительно низкий риск для здоровья человека». Международное агентство по атомной энергии МАГАТЭ также считает, что хорошо отфильтрованную воду можно слить в Тихий океан без ущерба для экологии. Такой подход все больше настораживает соседей Японии — 10 государств южной части Тихого океана, которые десятилетиями страдали от последствий ядерных испытаний США на Маршалловых островах.

Отвечая на вопрос журналистов об обеспокоенности тихоокеанских стран, представитель японского МИД сказал, что, будучи единственной страной, которая пострадала от атомных бомбардировок во время Второй мировой войны, Япония «понимает опасения людей по поводу радиационного облучения». Тем не менее, сброс состоится. The New York Times привела слова Мотарилавоа Хильды Лини, видного политика и экологической активистки из Вануату: «Если это так безопасно, как заявляют японцы, залейте тогда этой водой Токио или Париж, но, ради бога, сохраните наш Тихий океан как безъядерную зону».

Ранее Россия и Китай выступили с совместным заявлением, в котором выразили «серьезные опасения», связанные с планами Японии сбросить в океан радиоактивную воду.

Ему пришлось принять на себя 17 зиверт радиации. Это воздействие радиации не испытано ни одним человеком за всю документальную историю. Восемь Зиверов считаются смертельной дозой. История Хисаши Оучи Увы, Хисаши пострадал больше всех. Масато и Ютука также получили смертельные дозы в 10 зивертов и 3 раза по три зиверта соответственно. Все они были незамедлительно доставлены в больницу Мито. Удивительно, что количество лейкоцитов в его теле было очень низким, разрушив всю иммунную систему, а смертельная радиация также разрушила его ДНК.

Благодаря радиации он попал в хромосомы его клеток. Эти чертежи содержат всю генетическую информацию. Каждая пара хромосом имеет свой номер и может быть размещена по порядку. Часть хромосом Хисаахи была разрушена, а некоторые из них приклеились друг к другу. Расположить хромосомы Хисаши в нужном месте было невозможно. Они были разделены на части и некоторые из них приклеились друг к другу. Хромосомы разрушались, и это означало, что после этого не будет образовываться новых клеток. Также были обнаружены радиационные повреждения на поверхности тела Хисаши.

На его тело были наложены хирургические ленты. Но все чаще и чаще снимали кожу вместе со снятой лентой. Однако в конце концов, они уже не могли использовать хирургическую ленту. Хисаши Оучи, который пострадал от радиации. С тела Хисаши часто снимали кожу. Здоровые клетки кожи быстро размножаются, и новые клетки заменяют старые. Но в облученной коже Хисаши новых клеток больше не появлялось. В нем была старая кожа.

Это была сильная боль в коже и битва с инфекцией. Новые клетки кожи Хисаши отпадали, но старые клетки кожи восполняли нехватку. Значит, вся его кожа покрылась шерстью. Он также почувствовал задержку жидкости в легких, и он начал испытывать затруднения при дыхании. Как влияет ядерное излучение на человеческий организм? Внутри клетки нашего тела находятся микроскопические тельца, которые называются хромосомами и отвечают за функцию клеток нашего тела. Хромосомы состоят из двух больших молекулярных цепочек или цепей дезоксирибонуклииновой кислоты ДНК. Излучение от ядерного взрыва воздействует на атомы нашего тела, удаляя их.

Это нарушает атомные связи в ДНК, разрушая их.

Хисаши теперь мог существовать язык не повернется назвать это состояние жизнью только за счет аппарата жизнеобеспечения. Врачи не унимались, им было интересно выжать из его состояния по-максимуму, чтобы в будущем использовать полученный опыт для помощи пострадавшим от радиационного облучения. Хисаши Оучи умер из-за отказа большего количества органов 21 декабря 1999 года после 83 дней в больнице. Законно ли подвергать человека таким пыткам, к тому же, когда он сам умоляет закончить его страдания? К сожалению, как раз с точки врения закона — да. Но борьбу за жизнь Оучи врачи превратили в один большой эксперимент, нацеленный на получение новых знаний в области методов лечения людей, столкнувшихся с сильным облучением радиацией. Случай Оучи вошел в историю как проявление нечеловеческой жестокости с единственной целью — научные исследования.

Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.

Тритиевый эксперимент: российские ученые готовы помочь очистить воду с «Фукусимы‑1»

В японской префектуре Ибараки (остров Хонсю) зафиксировали радиационное загрязнение на объекте по разработке преобразования плутония. Тогда Япония подтвердила смерть первого работника «Фукусимы-1» от радиационного облучения. Жители префектуры Фукусима получили дозы в среднем ниже 4 мЗв, а облучение большей части населения Японии оказалось сопоставимо с облучением от природного фона или гораздо ниже его[142]. Тогда Япония подтвердила смерть первого работника «Фукусимы-1» от радиационного облучения.

Землетрясение в Японии повредило атомную электростанцию. Есть ли угроза загрязнения?

Александр Ленин Япония начала сброс радиоактивной воды с аварийной атомной станции "Фукусима-1", передает телерадиокомпания NHK. Официальный Токио утверждает, что процедура не нанесет вреда окружающей среде. Предварительно вода с атомной станции "Фукусма-1" прошла очистку от радионуклидов, за исключением трития, чтобы разбавить ее морской водой перед сбросом в океан. Это позволило снизить содержание трития на одну единицу объема воды до уровня в 40 раз ниже установленных норм. Сброс осуществляется по трубам на расстоянии 1 километра от станции. Ожидается, что на первом этапе в течение семнадцати дней в океан будет слито около 7,8 тысячи тонн воды.

О том, что было на самом деле очень хорошо описывает газета «Золотой Рог». В России нет стандартов уровня радиации для ввозимых товаров. Получается, что таможенники, замеряя уровень радиации, сравнивают уровень на причале и возле машины. Если уровень фона возле машины чуть превышает уровень на причале, то авто объявляются "фонящими". К сожалению, большинство СМИ в погоне за рейтингом позволяют себе такие заголовки с соответствующим содержанием , как: «В Россию начали попадать радиоактивные авто из Японии», или «Радиоактивные авто из Японии только начало». СМИ во всём мире заинтересованы в собственном рейтинге, поскольку зависят от спонсоров, рекламодателей, читателей, подписчиков и т. Сенсация — это хороший способ привлечь внимание и поднять рейтинг. Поддержать внимание возможно громкими заголовками, которые чаще всего оказываются излишне раздутыми. То есть, каждый автомобиль, предназначенный для экспорта тщательно, исследуется проверяется на наличие опасных радионуклидов.

Недавно для удаления радиоактивных отходов начали использовать роботов с дистанционным управлением, они могут переносить на себе камеры и дозиметры, чтобы измерить уровень радиации Конфликт из-за загрязненной воды, почему это так серьезно? Хидеюки Бан, соучредитель Гражданского информационного центра по ядерной безопасности, хочет создать подземное захоронение очищенной воды из реакторов. Также он предлагает захоронить три реактора на несколько десятилетий — как в Чернобыле — чтобы дождаться снижения уровня радиоактивности. Работать на территории бывшей АЭС станет безопаснее. Помимо топлива, еще остро стоит вопрос с водой. Во время цунами реактор вышел из строя и его нужно было охладить: для этого в активную зону закачали воду. С каждым днем объем хранимой радиоактивной воды увеличивается на 170 тонн. Эту воду нужно очистить и каким-то образом утилизировать. Ранее «Хайтек» писал подробнее о том, что в Японии собираются делать с водой из электростанции. Сейчас воду перекачивают и обрабатывают — частично перерабатывают в охлаждающую воду. Остальная часть хранится в 1 000 огромных резервуаров, которые находятся на заводе. Правительство объявило, что планирует выпустить это воду после очистки примерно в 1 км от берега.

Вода стала загрязненной после того, как ее использовали для охлаждения трех ядерных реакторов, которые расплавились после того, как на АЭС в Фукусиме обрушилось мощное цунами в марте 2011 года. Волны отключили резервное электроснабжение электростанций и вынудили эвакуировать 160 тысяч человек в результате самой страшной ядерной аварии в мире со времен Чернобыля. Как отмечает The Guardian, используемая для удаления большинства вредных веществ технология не в состоянии отфильтровать тритий, радиоактивный изотоп водорода, который считается относительно безвредным, поскольку, по данным Tepco, он испускает очень слабый уровень радиации и не накапливается в организме человека. Критики сброса говорят, что отсутствие долгосрочных данных означает невозможность с уверенностью сказать, что тритий не представляет угрозы для здоровья человека или морской среды. Экозащитники заявила, что радиологические риски не были полностью оценены и что биологическое воздействие трития, углерода-14, стронция-90 и йода-129, которые будут выброшены в результате слива воды, "было проигнорировано". В преддверии публикации в четверг Tepco заявила, что первая партия сбрасываемой воды будет содержать около 190 беккерелей трития на литр, что значительно ниже установленного Всемирной организацией здравоохранения лимита на питьевую воду в 10 000 беккерелей на литр. Вода будет выпускаться в океан с максимальной скоростью 500 тысяч литров в день. Японские официальные лица уверяют, что вода, которую разбавляют морской водой перед закачкой в Тихий океан по подводному туннелю, безопасна. Но заверения в безопасности пищевых продуктов не смогли убедить Китай.

Что известно о ситуации на АЭС "Фукусима-1"

В японской префектуре Ибараки (остров Хонсю) зафиксировали радиационное загрязнение на объекте по разработке преобразования плутония. В Японии на атомной электростанции «Михама» случилась утечка 7 тонн радиоактивной жидкости. В четверг, 24 августа, Япония планирует сбросить в Тихий океан более миллиона тонн очищенной радиоактивной воды с атомной электростанции «Фукусима-1», серьезно пострадавшей в результате землетрясения и последовавшего за ним цунами в марте 2011 года. Страна и мир - 24 августа 2023 - Новости Новосибирска - Страна и мир - 24 августа 2023 - Новости Новосибирска - По данным агентства, в настоящее время доза радиации составляет 400 мЗв в час.

2. Жертвы и пострадавшие

  • Чем опасен для России сброс воды с «Фукусимы-1» в океан
  • «Мало не покажется»: чем грозит России и миру сброс отходов с «Фукусимы-1»
  • Япония начала сброс воды с АЭС "Фукусима-1". Реакция других стран
  • На Японской АЭС Михама произошла утечка радиоактивной воды
  • Стал известен уровень радиации в океане после сброса воды с Фукусимы

Последствия «Фукусимы»: куда улетело весеннее облако радиации?

Радиация распространялась: из-за этого началась эвакуация почти 160 тыс. жителей Японии. Утечка семи тонн воды с радиоактивными элементами произошла на третьем реакторе атомной электростанции (АЭС) «Михама» в Японии в префектуре Фукуи. Япония сегодня планирует начать сливать в океан более миллиона тонн радиоактивной воды из реакторов АЭС «Фукусима», которая 12 лет назад серьезно пострадала в результате сильнейшего землетрясения и цунами.

В Японии произошла утечка радиоактивной воды на третьем реакторе АЭС «Михама»

28 февраля уровень радиации в мэрии Намиэ составлял 0,07 микрозиверт в час, что мало отличается от остальной Японии. 10 лет назад в Японии произошла катастрофа на атомной станции Фукусима. Главная» Новости» Что случилось в японии на днях взрыв новости. В марте этого года на АЭС «Фукусима-1» в Японии было обнаружено, что некоторые контейнеры, в которых хранились радиоактивные отходы, подверглись. Япония планирует сбросить в Тихий океан сточные воды с аварийной атомной электростанции «Фукусима-1».

Похожие новости:

Оцените статью
Добавить комментарий