Новости сколько кадров видит человек в секунду

Итак, сколько кадров в секунду может увидеть человеческий глаз?

Самая быстрая в мире камера делает 5 триллионов снимков в секунду

Мониторы с частотой 144, 240, 360 Гц: дают ли они реальные преимущества? | Сколько кадров в секунду видит человек, теперь вам известно.
Сколько видит ФПС человеческий глаз? 30 кадров в секунду? 60 кадров в секунду? Если вы когда-нибудь обсуждали частоту кадров, у когнитивных исследователей, с которыми мы разговаривали, есть для вас несколько сложных ответов.

Частота кадров видеонаблюдения

В играх и на веб-сайтах с большим количеством анимации это даже более заметно. Многие не могут воспроизводить анимацию на постоянном, делящемся без остатка фреймрейте. Вместо этого частота смены кадров у них сильно изменяется по разным причинам, таким как независимая друг от друга работа отдельных графических слоёв, обработка ввода пользовательских данных и так далее. Вас это может шокировать, но анимация с максимальной частотой 30 FPS выглядит гораздо, гораздо лучше, чем та же анимация с частотой, которая изменяется от 40 до 50 FPS. Необязательно мне верить на слово; посмотрите своими глазами. Вот эффектная демонстрация микроджиттера микростаттера. Борьба с джиттером При преобразовании: «телекинопроектор» « Телекинопроектор » — метод преобразования изображения на киноплёнке в видеосигнал. Дорогие профессиональные конвертеры вроде тех, что используются на телевидении, осущестьвляют эту операцию в основном с помощью процесса, который называется управление вектором движения motion vector steering.

Он способен создавать очень убедительные новые кадры для заполнения промежутков. В то же время по-прежнему широко используются два других метода. Так что если вы когда-нибудь гадали, почему «Охотники за привидениями» в Европе на пару минут короче, то вот ответ. Хотя метод работает на удивление хорошо для видео, он ужасно отражается на звуке. Почти на полтона хуже. Возьмём реальный пример крупного провала. Но поскольку Blu-Ray идёт на 24 FPS, им пришлось выполнять обратное преобразование видео, так что они снова его замедлили.

Конечно, с самого начала плохой идеей было выполнять такое двойное преобразование, из-за потерь, но что ещё хуже, после замедления видео для соответствия частоте кадров Blu-Ray они забыли изменить обратно тон на звуковой дорожке, так что все актёры в фильме внезапно стали звучать сверхдепрессивно, разговаривая на полтона ниже. Да, это реальная история и да, она очень оскорбила фанатов, было много слёз, много плохих копий и много потерянных денег после большого отзыва дисков. Мораль истории: изменение скорости — не самая лучшая идея. Если только вы по-настоящему не любите бурундучков, это будет не лучшим вариантом. Вместо этого используется процесс под названием 3:2 pulldown среди прочих , который стал самым популярным методом преобразования. В рамках этого процесса берут 4 оригинальных кадра и преобразуют их в 10 чересстрочных полукадров или 5 полных кадров. Вот иллюстрация, которая описывает процесс.

На чересстрочном дисплее то есть ЭЛТ видеополя посредине отображаются в тандеме, каждый в чересстрочном варианте, поэтому они состоят из каждой второй строки пикселей. Оригинальный кадр A разбивается на два полукадра, оба из которых отображаются на экране. Следующий кадр B тоже разбивается, но нечётное видеополе отображается дважды, так что этот кадр распределяется по трём полукадрам. И, в сумме, мы получаем 10 распределённых по видеополям полукадров из 4 оригинальных полных кадров. Это работает достаточно хорошо при показе на чересстрочном экране таком как ЭЛТ-телевизор примерно с 60 видеополями в секунду практически полукадрами , поскольку полукадры никогда не показываются вместе. Но такой сигнал выглядит ужасно на дисплеях, которые не поддерживают полукадры и должны составить вместе 30 полных кадров, как в самом правом столбце на иллюстрации вверху. Причина провала в том, что каждый третий и четвёртый кадры слепляются из двух разных кадров оригинала, что приводит к тому, что я называю «Франкенфрейм».

Это особенно ужасно выглядит на быстром движении, когда имеются значительные отличия между соседними кадрами. Так что pulldown выглядит изящно, но это тоже не универсальное решение. Тогда что? Неужели нет идеального варианта? Как выясняется, он таки есть, и решение обманчиво простое! При показе: G-Sync, Freesync и ограничение максимальной частоты кадров Вместо того, чтобы бороться с фиксированной частотой обновления, конечно, гораздо лучше использовать переменную частоту обновления, которая всегда синхронизирована с фреймрейтом. G-Sync — модуль, встроенный в мониторы, он позволяет им синхронизироваться с выдачей GPU вместо того чтобы заставлять GPU синхронизироваться с монитором, а Freesync достигает той же цели без модуля.

Это действительно революционные технологии, которые устраняют необходимость в «телекинопроекторе», а весь контент с переменным фреймрейтом, вроде игр и веб-анимаций, выглядит намного более плавным. К сожалению, и G-Sync, и Freesync — относительно новые технологии и ещё недостаточно широко распространились, так что если вы как веб-разработчик делаете анимации для веб-сайтов или приложений и не можете себе позволить использовать полноценные 60 FPS, то лучше всего будет ограничить максимальный фреймрейт, чтобы он без остатка делился на частоту обновления — практически во всех случаях наилучшим ограничением будет 30 FPS. Заключение и последующие действия Так как достичь пристойного баланса с учётом всех желаемых эффектов — минимального размытия в движении, минимального мерцания, постоянной частоты кадров, хорошего отображения движения и хорошей совместимости со всеми дисплеями — без особого обременения GPU и дисплея? Да, сверхбольшие фреймрейты могут снизить размытие в движении, но большой ценой. Ответ ясен и после чтения этой статьи вы должны его знать: 60 FPS. Теперь, когда вы умнее, приложите все усилия, чтобы запустить весь анимированный контент со скоростью 60 кадров в секунду. Если у вас есть время только для одной статьи, то выберите отличную статью Пола Льюиса The Runtime Performance Checklist.

Воспроизводите весь контент на 60 FPS и не извиняйтесь за «эффект мыльной оперы».

Это помогает придать фильму невероятную плавность. Частота 60 кадров в секунду используется нечасто, так как занимает много места. Она может занимать как минимум вдвое больше, чем 30 кадров в секунду, поэтому во многих фильмах такая частота кадров не используется. Однако более высокая частота кадров помогает в некоторых видах постановок. Размытость движения возникает, когда в кадре есть движение, но оно происходит слишком быстро между кадрами, поэтому выглядит размытым. Удвоение частоты кадров уменьшает эту размытость, что, в свою очередь, обеспечивает четкость и чистоту изображения. Это также полезно при съемке быстро движущихся видов спорта.

Если вы смотрите NASCAR, бейсбол или другие спортивные соревнования, то в некоторых ракурсах камеры движение выглядит размытым. Опять же, это происходит потому, что движение слишком быстрое для 30 кадров в секунду. Однако при 60 кадрах в секунду это изображение было бы сглажено. Частота кадров замедленного и замедленного видео Замедленная съемка Говоря о спортивных событиях, видели ли вы суперзамедленную съемку бейсбольного удара битой? Видео выглядит почти слишком четким и плавным. Это связано с тем, что при планировании замедленной съемки используется больше кадров в секунду. В таких суперзамедленных съемках может быть 120 или даже 240 кадров в секунду. При замедленной съемке кадр снимается в режиме реального времени.

Затем его необходимо замедлить, чтобы получить эффект "замедленной съемки". Если обычный кадр с частотой 30 кадров в секунду замедлить, он будет выглядеть странно, почти скачкообразно. Возможно, вы видели фильм, в котором кадр снят в замедленном режиме, но он вовсе не плавный. Это скачкообразно и даже немного дезориентирует. Обычно все замедленные кадры предварительно накладываются на карту во время пре-продакшна. Однако если режиссер решил, что ему нужна замедленная съемка, а монтажер замедляет обычный кадр с частотой 30 или 24 кадров в секунду, он будет выглядеть именно так. Чтобы кадр не отличался от остального фильма, его записывают со скоростью 120 или 240 или около того кадров в секунду. Имейте это в виду, если вы планируете делать замедленную съемку для своего фильма.

Чем больше кадров в секунду вы записываете, тем лучше это будет выглядеть при последующей обработке. Сцена замедленного действия На другой стороне - таймлапс.

Однако Питер Джексон со своим «Хоббитом» собрался опередить режиссёра «Титаника» — уже в конце этого года мы сможем посмотреть картину по роману Толкиена с 48 полноценными кадрами в секунду. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери.

Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы. Что происходит, когда мы видим 25 кадр? Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта.

На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует. На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить. В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько.

Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения. Комфортное число FPS для игр и кино В чем отличие между fps в играх и кадрами в кино В кино, в отличии от видеоигр используется постоянная частота кадров, которая неизменна на протяжении всего фильма. Исключение могут составлять сцены с замедленной, либо ускоренной съемкой, которые, как правило, занимают очень малую часть времени.

Из-за сохраняющейся периодичности зрение и мозг адаптируются, тем самым на время утрачивая способность, воспринимать происходящее в виде отдельных кадров, фрагментов. В видеоиграх все немного иначе. Постоянная чистота кадров невозможна, потому как все игровые локации «места» и сцены генерируются «создаются» в реальном времени. Помимо этого, различные локации обладают разным количеством объектов, качеством детализации.

Кино снято в 2D, то есть обладает только шириной и высотой, а видеоигры предстают перед нашими глазами, в том виде, в котором мы видим, то есть в 3D. В видеоиграх за обработку изображения отвечают два основных компонента — видеокарта для обработки графики и процессор для расчётов. Игровой мир, неспособен загрузиться полностью сразу. Он подгружается частями, исходя из действий и передвижений игрока.

Следовательно, количество объектов меняется в большую или меньшую сторону, что постоянно изменяет используемую мощность и нагрузку на компоненты. Вследствие чего, постоянно изменяется и частота кадров. Фиксированного значения не существует, возможны только рамки, между которыми происходят изменения. Существует минимальное, максимальное и среднее значение, которое будет отличаться в зависимости от игры и сцены.

По причине постоянно изменяющегося количества кадров, мозг неспособен адаптироваться, что позволяет замечать даже незначительные изменения. В данном случае работает правило, чем больше, тем лучше, так как среднее значение может иметь к примеру пределы от 27к. Из чего следует, что 27 будет мало, а 40 и более достаточно для комфортного восприятия. Как проводят исследования?

Механизм восприятия видео человеком Глаз человека начинает идентифицировать смену неподвижных картинок в секунду как прерывистое движение, когда их число достигает 12. Если значение FPS мало, то анимация выглядит неровной, а если слишком велико — возникает эффект гиперреалистичности. Придумываем надежный пароль Одним из главных компонентов создания реалистичного видео является размытие движения. Когда мы наблюдает за объектами вокруг нас, то при их быстром перемещении упускаем детализацию.

Иными словами, нам не хватает времени для восприятия полной визуальной информации и теряется острота зрения. В кино такой эффект получают размытием, которое происходит естественным образом при смене кадров. Но если уровень FPS слишком высок, то данный эффект пропадает, и наблюдатель видит гиперреалистичную картинку. Это мешает ему поверить в происходящее на экране.

Какие способности имеет зрение Стоит рассмотреть строение человеческого глаза. Колбочки и палочки — составляющие фоторецепторов, так называемой системы восприятия. Благодаря им можно различать цвета и оттенки, воспринимать изображения. Сложность нахождения максимального fps framers per second заключается в расположении этих рецепторов.

У людей количество фпс на периферии зрительной системы увеличено. Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение.

Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс. Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду.

Однако это вовсе не предел, так как известны случаи, где фпс было 220.

Но человеческое зрение и восприятие — это странная и сложная вещь, и работает она не совсем так, как кажется. Аспекты зрения Первое, что нужно понять, — это то, что мы воспринимаем различные аспекты зрения по-разному. Обнаружение движения — это не то же самое, что обнаружение света. Другое дело, что разные части глаза работают по-разному. Центр вашего зрения хорош в одних вещах, периферия в других.

И еще одно: существуют естественные физические ограничения тому, что мы можем воспринимать. Свету, проходящему через роговицу, требуется время, чтобы стать информацией, на основании которой мозг может действовать, а наш мозг может обрабатывать эту информацию только с определенной скоростью. Делонг-ассистент профессора психологии в Колледже Святого Иосифа в Ренсселере, и большинство его исследований посвящено зрительным системам. Это потому, что зрительное восприятие можно тренировать, а экшн — игры особенно хороши для тренировки зрения. Настолько хорошо, что игры используются в зрительной терапии. Поэтому, прежде чем вы рассердитесь на исследователей, которые говорят о том, какую частоту кадров вы можете и не можете воспринимать, похлопайте себя по плечу: если вы играете в экшн-игры, вы, вероятно, более восприимчивы к частоте кадров, чем средний человек.

Восприятие движения А теперь перейдем к некоторым числам. Первое, о чем следует подумать, — это частота мерцания.

T-CUP: самая быстрая в мире камера снимает 10 триллионов кадров в секунду

Но если вы хотите снять более кинематографический ролик, выберите 24 кадра в секунду. Для интервью или документальных фильмов же 30 FPS — то, что надо. Но есть и обратная сторона — видеоролики с такой частотой занимают много места в памяти устройства. Более высокая частота кадров в основном используется для боевиков и динамичных спортивных состязаний, так как при этом возникает меньше размытия при движении.

Размытие при движение происходит, когда записываемое изображение изменяется во время записи однократной экспозиции из-за быстрого движения или длинной выдержки. Избавиться от размытия достаточно просто — нужно лишь увеличить частоту кадров, и картинка станет намного четче. Процесс создания таких роликов достаточно прост — они снимаются с очень высокой частотой кадров, а затем замедляются, что и создает эффект замедленного движения.

Поскольку за одну секунду снимается больше кадров, записывается всё действие, которое отлично выглядит в замедленном режиме. Если вы хотите записать какой-либо ролик в slow motion например, удар по футбольному мячу , то нужно использовать более высокую частоту кадров. Однако имейте в виду, что затем предстоит использовать видеоредактор, такой как Adobe Premiere Pro, чтобы замедлить клип и получить желаемый эффект.

Если вы снимаете на смартфон с режимом замедленной съемки например, на iPhone , то он записывает ролик со скоростью 120 или 240 кадров в секунду и автоматически замедляет его. Именно поэтому замедленные видео на iPhone выглядят так хорошо — они были сняты с очень высокой частотой кадров и затем замедлены. Влияет ли частота кадров на размер файла видео?

Частота кадров, с которой вы снимаете видео, существенно влияет на размер файла.

Ответ очень прост: никак! Чтобы ощутить преимущество плавной картинки ваш фреймрейт должен быть не ниже, чем герцовка монитора. То есть, если монитор на 144 Гц, а в игре у вас 60 FPS, полученный результат будет эквивалентен работе 60-герцового дисплея. То же самое работает в обратную сторону. Если значение FPS выше, чем герцовка монитора, то это не даст дополнительной плавности. Безусловно, в повышенной частоте кадров есть преимущества. Например, вы получите более отзывчивое управление и будете иметь некий запас для особо динамичных и тяжелых сцен в играх, в результате которых фреймрейт сильно проседает. Но если говорить исключительно о плавности, помните: частота кадров должна быть выше частоты опроса монитора. Игровой монитор: как не переплатить за то, что вам нужно Дает ли частота 144 и более герц преимущество в играх?

В теории — да. Чем выше герцовка, тем более актуальные кадры относительно происходящего в игре вы видите. При использовании 60-герцового монитора отставание текущего кадра от актуальных игровых обстоятельств составляет 16 миллисекунд. Кажется, что это ничтожно малое значение. Но давайте вспомним, что время отклика игровых мониторов составляет всего 1 миллисекунду. Время отклика хороших игровых мышей и клавиатур такое же.

Сообщается, что новая камера может фиксировать события, происходящие в пределах фемтосекунд — квадриллионных долей секунды. В одной секунде их примерно столько же, сколько секунд в 32 миллионах лет. Она может фиксировать, например, ударные волны, проходящие через материю или живые клетки. Съемка сверхбыстрых явлений поможет в физике, биологии, химии, материаловедении и инженерии. SCARF работает, сначала излучая ультракороткий импульс лазерного света, который проходит через отображаемое событие или объект.

Это грубый подсчёт, зависит от многих параметров, но для примера. Для кассовых камер, проходных, дорог, шлагбаумов, казино, важных и государственных объектов частоту кадров можно не уменьшать, чтобы сохранить максимум информации. Но для большинства других локаций, где картинка в большем времени статична, можно применить такой подход. Снизив частоту кадров с 25, до 6-10, можно практически в 2 раза сэкономить место и увеличить запись к примеру с 10 до 20 дней, в зависимости от количества камер, качества записи и объёма жёстких дисков. Мы рекомендуем использовать этот параметр для наших клиентов. На записи разницы практически не видно, качество камер мы не уменьшаем, а всего лишь меняем запись с 25 фотографий в секунду, до 8-12. Далее можно посмотреть пример и разницу в записи: И общее видео с 25 кадров до 1: Поэтому если у вас стоит уже система видеонаблюдения, в настройках вы можете снизить этот параметр, для увеличения записи архива, не теряя в качестве.

Сколько кадров в секунду реально видит человеческий глаз?

Мифы про FPS и зрение человека, в которые уже можно не верить Удивительно, но нет конкретного количества кадров в секунду, которое может видеть человеческий глаз, тем не менее, FPS воспринимаемое глазом не безгранично, и есть определенное ограничение в количестве кадров, которое видит человек.
Создана самая быстрая камера в мире, делающая 156,3 триллиона кадров в секунду Ответ на вопрос, сколько человеческий глаз видит кадров в секунду, такой – сколько угодно.
Выявлена суперспособность некоторых людей видеть больше изображений каждую секунду Возможности зрения и то, сколько кадров в секунду видит человек, до сих пор не полностью изучены.

Сколько кадров в секунду видит человеческий глаз?

В цифровом кинематографе частота кадров также принята во всем мире равной 24 кадра в секунду как наиболее соответствующая эстетике профессионального художественного кино и не требующая неприемлемых объёмов данных. Инженеры из Национального научно-исследовательского института Университета Квебека в Канаде создали сверхбыструю камеру, которая может делать снимки со скоростью до 156,3 триллиона кадров в секунду. Сколько кадров в секунду видит человек глазами.

Частота кадров видеонаблюдения

Vsync изменяет частоту изъятия кадров из буфера вышеупомянутого процесса, чтобы изображение никогда не изменялось посередине экрана. Следовательно, если новый кадр ещё не готов для отрисовки на следующем обновлении экрана, то экран просто возьмёт предыдущий кадр и заново отрисует его. К сожалению, это ведёт к следующей проблеме. Новая проблема: джиттер Хотя наши кадры больше не разрываются, воспроизведение всё равно далеко не плавное. На этот раз причина в проблеме, которая настолько серьёзна, что каждая индустрия даёт ей свои названия: джаддер, джиттер , статтер, джанк или хитчинг, дрожание и сцепка.

Давайте остановимся на термине «джиттер». Джиттер происходит, когда анимация воспроизводитеся на другой частоте кадров по сравнению с той, на которой её снимали или предполагали воспроизводить. К сожалению, именно это происходит при попытке отобразить, например, контент 24 FPS на экране, который обновляется 60 раз в секунду. Время от времени, поскольку 60 не делится на 24 без остатка, приходится один кадр показывать дважды если не использовать более продвинутые преобразования , что портит плавные эффекты, такие как панорамирование камеры.

В играх и на веб-сайтах с большим количеством анимации это даже более заметно. Многие не могут воспроизводить анимацию на постоянном, делящемся без остатка фреймрейте. Вместо этого частота смены кадров у них сильно изменяется по разным причинам, таким как независимая друг от друга работа отдельных графических слоёв, обработка ввода пользовательских данных и так далее. Вас это может шокировать, но анимация с максимальной частотой 30 FPS выглядит гораздо, гораздо лучше, чем та же анимация с частотой, которая изменяется от 40 до 50 FPS.

Необязательно мне верить на слово; посмотрите своими глазами. Вот эффектная демонстрация микроджиттера микростаттера. Борьба с джиттером При преобразовании: «телекинопроектор» « Телекинопроектор » — метод преобразования изображения на киноплёнке в видеосигнал. Дорогие профессиональные конвертеры вроде тех, что используются на телевидении, осущестьвляют эту операцию в основном с помощью процесса, который называется управление вектором движения motion vector steering.

Он способен создавать очень убедительные новые кадры для заполнения промежутков. В то же время по-прежнему широко используются два других метода. Так что если вы когда-нибудь гадали, почему «Охотники за привидениями» в Европе на пару минут короче, то вот ответ. Хотя метод работает на удивление хорошо для видео, он ужасно отражается на звуке.

Почти на полтона хуже. Возьмём реальный пример крупного провала. Но поскольку Blu-Ray идёт на 24 FPS, им пришлось выполнять обратное преобразование видео, так что они снова его замедлили. Конечно, с самого начала плохой идеей было выполнять такое двойное преобразование, из-за потерь, но что ещё хуже, после замедления видео для соответствия частоте кадров Blu-Ray они забыли изменить обратно тон на звуковой дорожке, так что все актёры в фильме внезапно стали звучать сверхдепрессивно, разговаривая на полтона ниже.

Да, это реальная история и да, она очень оскорбила фанатов, было много слёз, много плохих копий и много потерянных денег после большого отзыва дисков. Мораль истории: изменение скорости — не самая лучшая идея. Если только вы по-настоящему не любите бурундучков, это будет не лучшим вариантом. Вместо этого используется процесс под названием 3:2 pulldown среди прочих , который стал самым популярным методом преобразования.

В рамках этого процесса берут 4 оригинальных кадра и преобразуют их в 10 чересстрочных полукадров или 5 полных кадров. Вот иллюстрация, которая описывает процесс. На чересстрочном дисплее то есть ЭЛТ видеополя посредине отображаются в тандеме, каждый в чересстрочном варианте, поэтому они состоят из каждой второй строки пикселей. Оригинальный кадр A разбивается на два полукадра, оба из которых отображаются на экране.

Следующий кадр B тоже разбивается, но нечётное видеополе отображается дважды, так что этот кадр распределяется по трём полукадрам. И, в сумме, мы получаем 10 распределённых по видеополям полукадров из 4 оригинальных полных кадров. Это работает достаточно хорошо при показе на чересстрочном экране таком как ЭЛТ-телевизор примерно с 60 видеополями в секунду практически полукадрами , поскольку полукадры никогда не показываются вместе. Но такой сигнал выглядит ужасно на дисплеях, которые не поддерживают полукадры и должны составить вместе 30 полных кадров, как в самом правом столбце на иллюстрации вверху.

Причина провала в том, что каждый третий и четвёртый кадры слепляются из двух разных кадров оригинала, что приводит к тому, что я называю «Франкенфрейм». Это особенно ужасно выглядит на быстром движении, когда имеются значительные отличия между соседними кадрами. Так что pulldown выглядит изящно, но это тоже не универсальное решение. Тогда что?

Неужели нет идеального варианта? Как выясняется, он таки есть, и решение обманчиво простое! При показе: G-Sync, Freesync и ограничение максимальной частоты кадров Вместо того, чтобы бороться с фиксированной частотой обновления, конечно, гораздо лучше использовать переменную частоту обновления, которая всегда синхронизирована с фреймрейтом.

А если сфокусировать взгляд на движущемся инопланетянине, то белые линии волшебным образом исчезают. С сайта Blur Busters: «Из-за движения ваших глаз вертикальные линии при каждом обновлении кадра размываются в более толстые линии, заполняя чёрные пустоты. Дисплеи с малым послесвечием такие как ЭЛТ или LightBoost устраняют подобный motion blur, так что этот тест выглядит иначе на таких дисплеях».

На самом деле эффект отслеживания взглядом различных объектов никогда невозможно полностью предотвратить, и часто он является такой большой проблемой в кинематографе и продакшне, что есть специальные люди, чья единственная работа — предсказывать, что именно будет отслеживать взгляд зрителя в кадре, и гарантировать, что ничто другое ему не помешает. Во втором эксперименте ребята из Blur Busters пытаются воссоздать эффект ЖК-дисплея по сравнению с экраном с малым послесвечием, просто вставляя чёрные кадры между кадрами дисплея — удивительно, но это работает. Как показано ранее, motion blur может стать либо благословением, либо проклятием — он жертвует резкостью ради плавности, а добавляемое вашими глазами размытие всегда нежелательно. Так почему же motion blur — настолько большая проблема для ЖК-дисплеев по сравнению с ЭЛТ, где подобных вопросов не возникает? Вот объяснение того, что происходит, если краткосрочный кадр полученный за короткое время задерживается на экране дольше, чем ожидалось. Она удивительно точна и актуальна для статьи 15-летней давности: При адресации пикселя он загружается с определённым значением и остаётся с этим значением светового выхода до следующей адресации.

С точки зрения рисования изображения это неправильно. Конкретный экземпляр оригинальной сцены действителен только в конкретное мгновение. После этого мгновения объекты сцены должны быть перемещены в другие места. Некорректно удерживать изображения объектов в неподвижных позициях, пока не придёт следующий образец. Иначе выходит, что объект как будто внезапно перепрыгивает в совершенно другое место. И его вывод: Ваш взгляд будет пытаться плавно следовать за передвижениями интересующего объекта, а дисплей будет удерживать его в неподвижном состоянии весь кадр.

Результатом неизбежно станет размытое изображение движущегося объекта. Вот как! Получается, что нам нужно сделать — так это засветить изображение на сетчатку, а затем позволить глазу вместе с мозгом выполнить интерполяцию движения. Дополнительно: так в какой степени наш мозг выполняет интерполяцию, на самом деле? Никто не знает точно, но определённо есть много ситуаций, где мозг помогает создать финальное изображение того, что ему показывают. Взять хотя бы для примера этот тест на слепое пятно : оказывается, существует слепое пятно в том месте, где оптический нерв присоединяется к сетчатке.

По идее, пятно должно быть чёрным, но на самом деле мозг заполняет его интерполированным изображением с окружающего пространства. Кадры и обновления экрана не смешиваются и не совпадают! Как было упомянуто ранее, существуют проблемы, если фреймрейт и частота обновления экрана не синхронизированы, то есть когда частота обновления не делится без остатка на фреймрейт. Проблема: разрыв экрана Что происходит, когда ваша игра или приложение начинают рисовать новый кадр на экране, а дисплей находится посередине цикла обновления? Это буквально разрывает кадр на части: Вот что происходит за сценой. Затем монитор считывает этот фрейм и начинает его отображать здесь вам нужна двойная буферизация, чтобы всегда одно изображение отдавалось, а одно составлялось.

Разрыв происходит, когда буфер, который в данный момент выводится на экран сверху вниз, заменяется следующим кадром, который выдаёт видеокарта. В результате получается, что верхняя часть вашего экрана получена из одного кадра, а нижняя часть — из другого. Примечание: если быть точным, разрыв экрана может произойти, даже если частота обновления и фреймрейт совпадают! У них должна совпадать и фаза, и частота. Разрыв экрана в действии. Из Википедии Это явно не то, что нам нужно.

К счастью, есть решение! Решение: Vsync Разрыв экрана можно устранить с помощью Vsync, сокращённо от «вертикальная синхронизация». Это аппаратная или программная функция, которая гарантирует, что разрыва не произойдёт — что ваше программное обеспечение может отрисовать новый кадр только тогда, когда закончено предыдущее обновление экрана. Vsync изменяет частоту изъятия кадров из буфера вышеупомянутого процесса, чтобы изображение никогда не изменялось посередине экрана. Следовательно, если новый кадр ещё не готов для отрисовки на следующем обновлении экрана, то экран просто возьмёт предыдущий кадр и заново отрисует его. К сожалению, это ведёт к следующей проблеме.

Новая проблема: джиттер Хотя наши кадры больше не разрываются, воспроизведение всё равно далеко не плавное. На этот раз причина в проблеме, которая настолько серьёзна, что каждая индустрия даёт ей свои названия: джаддер, джиттер , статтер, джанк или хитчинг, дрожание и сцепка. Давайте остановимся на термине «джиттер». Джиттер происходит, когда анимация воспроизводитеся на другой частоте кадров по сравнению с той, на которой её снимали или предполагали воспроизводить. К сожалению, именно это происходит при попытке отобразить, например, контент 24 FPS на экране, который обновляется 60 раз в секунду.

Благодаря им можно различать цвета и оттенки, воспринимать изображения. Сложность нахождения максимального fps framers per second заключается в расположении этих рецепторов.

У людей количество фпс на периферии зрительной системы увеличено. Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс.

Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду. Однако это вовсе не предел, так как известны случаи, где фпс было 220.

Съемка сверхбыстрых явлений поможет в физике, биологии, химии, материаловедении и инженерии. SCARF работает, сначала излучая ультракороткий импульс лазерного света, который проходит через отображаемое событие или объект. Если представить свет в виде радуги, то сначала событие будет зафиксировано красными длинами волн, затем оранжевыми, желтыми и далее по спектру до фиолетового. Поскольку событие происходит так быстро, к тому времени, когда каждый последующий «цвет» достигает его, оно выглядит по-другому, позволяя импульсу уловить все изменения за невероятно короткий период времени. Затем этот световой импульс проходит через множество компонентов, которые фокусируют, отражают, дифрагируют и кодируют его, пока он, наконец, не достигает датчика камеры.

Плавнее, еще плавнее: о 24 кадрах в секунду и выше

Частота кадров – это количество кадров (снимков), отснятых видеокамерой за секунду. Фильмы в основном крутили со скоростью от 16 до 24 кадров в секунду. Ирландские исследователи обнаружили «прирожденных геймеров» — тех, кто способен увидеть в секунду большее количество кадров. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем.

Сколько FPS видит человеческий глаз

Сколько кадров способен уловить человеческий глаз? Вопрос, сколько кадров секунду видит глаз примерно из той же серии, что и сколько цветов видит глаз. Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз). Сколько кадров в секунду видит глаз человека? Почему на ТВ используют 24 кадра. Итак, сколько кадров в секунду может увидеть человеческий глаз? @Dosson, люди могут видеть до 250 кадров в секунду.

T-CUP: самая быстрая в мире камера снимает 10 триллионов кадров в секунду

Авторы видео объясняют, что камера обнаруживает только сам свет, а затем они наложили на кадры изображение бутылки. Тем не менее, результат впечатляет: они зафиксировали движущийся свет со скоростью 10 трлн кадров в секунду. Читать далее:.

Чем выше это число, тем плавнее и реалистичнее выглядит видео или игра. Например, при 30 FPS на экране за секунду сменяется 30 кадров. А при 60 FPS - уже 60 кадров. FPS напрямую влияет на плавность отображаемого видеоряда.

Чем он выше, тем меньше "рывков" и "дерганий" будет в динамичных сценах. Высокий FPS особенно важен в компьютерных играх и фильмах, где много быстрых движений камеры или объектов. Например, шутеры или гоночные симуляторы требуют FPS не ниже 60, чтобы геймплей был комфортным. А для кинематографических фильмов достаточно стандарта в 24 кадра в секунду. Как устроен человеческий глаз Чтобы понять, какое количество FPS способен различать человек, стоит разобраться, как устроен наш глаз. В сетчатке глаза есть два типа фоторецепторов: Палочки - чувствительны к яркости, отвечают за черно-белое изображение. Колбочки - чувствительны к цвету, отвечают за цветное изображение.

Эти рецепторы преобразуют свет в нервные импульсы, которые затем поступают в мозг. У палочек и колбочек есть важное свойство - инертность. Это время, которое требуется рецептору, чтобы воспринять изображение и отправить сигнал в мозг. Чем ниже инертность, тем быстрее глаз успевает "переключаться" между кадрами и тем выше эффективный FPS. Инертность палочек составляет около 20 мс, а колбочек - около 50 мс. То есть палочки реагируют примерно в 2 раза быстрее. Также палочки и колбочки распределены по сетчатке неравномерно: В центре - примерно одинаково палочек и колбочек По краям - только палочки При работе за компьютером или просмотре фильмов используется в основном центральная область сетчатки.

О рекламодателе Пожаловаться Зачем нужны мониторы 144 Гц и выше, если человеческий глаз видит лишь 24 кадра в секунду? Разбираем популярный миф. История про 24 кадра берёт начало в кинематографе, где видео с частотой 24 FPS считается эталоном, при котором картинка воспринимается максимально естественно.

Кто такие «элитные спортсмены» В литературе и в повседневной жизни все чаще встречается понятие «элитный спорт». Оно интерпретируется данное понятие по-разному: иногда люди подразумевают спорт высших достижений, то есть элитные спортсмены — это те, у кого есть высшие награды; иногда же элитным спортом называют те виды спорта, которыми занимаются высшие слои общества теннис, гольф и т.

Как мы воспринимаем окружающий мир Скорость, с которой наш мозг может различать различные визуальные сигналы, называется временным разрешением и влияет на ту скорость, с которой мы способны реагировать на изменения в окружающей среде. Исследования на людях также показали, что эта черта имеет тенденцию к снижению с возрастом и временно исчезает после интенсивных физических нагрузок.

Сколько FPS видит человек? Сколько FPS нужно для игр?

Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду. Что лучше — стабильные 30 кадров в секунду на консолях или же неустойчивые 60 кадров на ПК, которые иногда падают до 40 кадров, а то и до 20?

Похожие новости:

Оцените статью
Добавить комментарий