Скачать школьные презентации PowerPoint бесплатно | Портал бесплатных презентаций Цель: Обобщить знания по теме «Действия с обыкновенными дробями». Закрепить и усовершенствовать навыки выполнения действий с обыкновенными дробями. Презентация на тему Дроби к уроку по математике. На нашем сайте презентаций вы можете бесплатно ознакомиться с полной версией презентации "Презентация по теме "Десятичные дроби и проценты"".
Правильные и неправильные дроби 5 класс презентация
Проект посвящен практическому применению обыкновенных дробей в различных сферах жизни, включая математику, повседневные задачи и профессиональную деятельность. Обыкновенные дроби играют важную роль в решении задач, проведении вычислений и конвертации между различными формами дробей, что находит применение в разнообразных практических ситуациях. Тип: Популярно-научный проект Идея проекта: Идея проекта заключается в показе широкого спектра ситуаций, где применение обыкновенных дробей играет важную роль в решении задач и повседневных сценариях. Цель проекта: Цель проекта - раскрыть разнообразные области применения обыкновенных дробей в повседневной жизни и профессиональной деятельности. Проблема: Проект решает проблему понимания значимости и широкого применения обыкновенных дробей в жизни людей, а также укрепляет навыки работы с дробями. Целевая аудитория: Школьники, студенты, преподаватели, специалисты в различных областях Задачи проекта: 1.
Исследовать различные сферы жизни, в которых используются обыкновенные дроби.
А по—египетски эта задача решалась так. Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб — на 8 частей всего 17 разрезов.
Слайд 13 Дроби в Древнем Риме. Слайд 14 Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс.
Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги.
При этом, конечно, речь шла не о взвешивании пути или книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. Всего применялось 18 различных названий дробей.
Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас. При делении 1001 асса на 100 один римский математик сначала получил 10 ассов, потом раздробил асе на унции и т.
Но от остатка он не избавился.
Cлайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Cлайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа.
Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Cлайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами.
Cлайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь. Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты. Cлайд 15 Нахождение дроби от числа Чтобы найти дробь от числа, нужно умножить число на эту дробь.
Cлайд 16 Деление обыкновенных дробей Чтобы разделить одну дробь на другую, надо делимое умножить на дробь, обратную делителю. Если среди данных чисел имеются смешанные числа, то нужно сначала смешанное число превратить в неправильную дробь, только потом нужно выполнить деление. Если делимое и делитель — натуральное число, то нужно натуральное число записать в виде дроби со знаменателем 1, затем приступить к выполнению деления.
Вычитание обыкновенных дробей. Вычитание смешанных чисел. Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел. Умножение дробей. Взаимно обратные числа.
Переместительное, сочетательное и распределительное свойства умножения дробей. Переместительное свойство умножения дробей. Нахождение дроби от числа. Деление обыкновенных дробей. Нахождение числа по его дроби. История дроби. Слайд 3 Деление и обыкновенные дроби Для измерения различных величин длины, времени, массы вводим новые числа, которые называются дробными. Части равные между собой, называют долями.
Дробь, записанную с помощью натуральных чисел и дробной черты, называют обыкновенной дробью. Число под чертой показывает, на сколько равных частей разделена единица 1 целое , его называют знаменателем дроби. Число над чертой показывает, сколько таких долей взято, его называют числителем. Слайд 4 Основное свойство дроби и сокращение Поскольку обыкновенную дробь рассматривают как частное, то согласно свойству частного: при умножении или делении и делимого, и делителя на одно и то же число, частное не изменится. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Это свойство называют основным свойством дроби. Преобразование обыкновенной дроби, используя основное её свойство, то есть деление и числителя, и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби.
КАРЛ ГАУСС
Эта презентация создана для помощи ученикам и учителям в подготовке к уроку по теме Дроби. История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И. презентация по Алгебре абсолютно бесплатно. Презентация)Барабанная дробь в дверь застала Винни Пуха в момент попытки попить чая с медом, последним делиться как-то не хотелось ни с кем.
Презентация "Все действия с дробями"
Чем отличаются дробные числа от натуральных? Слайд 5 Дробные числа появились у разных народов в древние времена вскоре после натуральных чисел. Появление дробей связывается с необходимостью решать задачи, где нужно было производить деление на равные части. Слайд 6 Необходимость в дробях возникла на ранней ступени развития человечества. Так, по-видимому, дележ десятка плодов между большим числом участников охоты заставлял людей обращаться к дробям. Слайд 7 Во всём мире понятие дроби возникло из процесса дробления целого на равные части.
Русский термин «дробь» происходит от арабского термина с тем же значением: ломать, раздроблять.
Слайд 7-12 Дроби. Чтение и запись дробей: Слайд 7: Как из долей получаются дроби? Дано определение дроби. Если нажать на дольки, то появится их математическая запись. Слайд 8: Найти соответствие между закрашенными частями фигуры и дробью.
Проверка осуществляется с помощью триггера. Слайд 9-10: Запись дробей. Задания требуют ранее полученных знаний. Проверка на обоих слайдах с помощью триггеров. Слайд 11-12: Чтение дробей. Применяется триггер.
Слайд 13-15: Правильные и неправильные дроби.
Приведение обыкновенных дробей к наименьшему общему знаменателю. Сравнивание обыкновенных дробей. Сложение обыкновенных чисел. Сложение смешанных чисел. Вычитание обыкновенных дробей. Вычитание смешанных чисел.
Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел. Умножение дробей. Взаимно обратные числа. Переместительное, сочетательное и распределительное свойства умножения дробей. Переместительное свойство умножения дробей. Нахождение дроби от числа. Деление обыкновенных дробей.
Нахождение числа по его дроби. История дроби. Слайд 3 Деление и обыкновенные дроби Для измерения различных величин длины, времени, массы вводим новые числа, которые называются дробными. Части равные между собой, называют долями. Дробь, записанную с помощью натуральных чисел и дробной черты, называют обыкновенной дробью. Число под чертой показывает, на сколько равных частей разделена единица 1 целое , его называют знаменателем дроби. Число над чертой показывает, сколько таких долей взято, его называют числителем.
Как умножить десятичную дробь на 10, 100, 1000? Как умножить десятичную дробь на 0,1; 0,01; 0,001? Сформулируйте правило умножения десятичных дробей. Что надо сделать при умножении на десятичную дробь, если в произведении меньше цифр, чем надо отделить запятой? Обыкновенная дробь — хлопаете Натуральное число — поднимите руки вверх. Хвоя сосны Вы можете 158,6 Зверобой 16,362 Земляника лесная Медуница лекарственная 4,48 Крапива 0,74 Подорожник 1,44 1,08 Узнай, какое растение леса - клад витаминов.
Презентация на тему «Десятичные и обыкновенные дроби»
Старался сделать видео не слишком большим, получилось меньше часа, чуть больше школьного урока. В видео нет голой теории, зато разобраны 5 задач и 8 примеров, которые затрагивают все темы 5 класса. По ходу решения задач объясняю нужную теорию. Как и обещал, видео доступны только ВКонтакте и только по подписке за символические 300 рублей в месяц — цена одного обеда в столовой. Можно посмотреть сколько угодно видео сколько угодно раз. Потом ещё будет 6 класс, 7 класс и другие видео по разбору задач и отдельным сложным темам. Почему я сделал платную подписку?
Описание: Математика — одна из самых древних наук. Она связана со всеми науками, внедряя в них математические методы исследования.
И не последнюю роль в этом играют дроби и, в частности, аликвотные, которые создали древние египтяне. Египетская математика возникла в глубокой древности. Она зародилась из практических нужд.
Подписка Получайте новости и уведомления о новых публикациях на нашем портале. Подписаться Перепечатка материалов и использование их в любой форме, в том числе и в электронных СМИ, возможны только с письменного разрешения администрации сайта. При этом ссылка на сайт www. Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены.
Слайд 17 Дроби в других государствах древности В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами». В старых руководствах находим следующие названия дробей на Руси: Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная позиционная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I. Слайд 19 В китайской «Математике в девяти разделах» уже имеют место сокращения дробей и все действия с дробями. У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим. Арабы первыми начали отделять чертой числитель от знаменателя. Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. Для этого приходится члены первой дроби дополнять множителями. Слайд 20 Открытие десятичных дробей. Уже несколько тысячелетий человечество пользуется дробными числами, а вот записывать их удобными десятичными знаками оно додумалось значительно позже. Сегодня мы пользуемся десятичными дробями естественно и свободно. В Западной Европе 16 в. Понадобился светлый ум нидерландского математика Симона Стевина, чтобы привести запись и целых, и дробных чисел в единую систему.
Презентация - "Презентация по теме "Десятичные дроби и проценты""
Что такое Числа Фибоначчи? Числа Фибоначчи — элементы числовой последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, в которой. это веселый и познавательный способ ознакомиться с миром дробей. ВСЁ по обыкновенным дробям. 9.9.17 Сложение и вычитание смешанных чисел ЧТОБЫ СЛОЖИТЬ (или вычесть) СМЕШАННЫЕ ЧИСЛА, НАДО: ПРИВЕСТИ ДРОБНЫЕ ЧАСТИ ЭТИХ.
Презентация по математике: "Египетские дроби" | Мандрикова Нина Емельяновна. Работа №305201
Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин. Народы прошли через многие варианты записи дробей, пока не пришли к современной записи. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек — десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику. Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную но не позиционную систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела. Кроме того, египтяне умели оперировать с так называемыми аликвотными дробями от лат. Остальные дроби они записывали в виде суммы долей. Она основывалась на делении на 12 долей единицы веса, которая называлась асс.
Число наверху называется числителем, внизу — знаменателем.
Знаменатель показывает, на сколько частей разделили целое, а числитель — сколько частей взяли. Например, одну вторую половину и одну треть. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю. Любое смешанное число можно представить в виде неправильной дроби и наоборот.
Актуализация: Ребята, все вы знакомы с Фиксиками и профессором Чудаковым? Так вот недавно Дедус попросил Чудакова провести урок математики для фиксиков, но рассеянный Гений Евгеньевич позабыл тему занятия, а бумагу с записями порвал. Сложите пазл из кусочков бумаги и помогите Чудакову с темой урока. Тема: Сложение и вычитание обыкновенных дробей А вы знаете как складывать и вычитать обыкновенные дроби? Какое правило для сложения и вычитания дробей вы знаете?
Запишем это свойство в виде буквенных выражений. Сравнение дробей с одинаковыми знаменателями Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше. Сравнение дробей с одинаковыми числителями Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше. В первом случае торт разделили на 2 части знаменатель дроби равен 2 , и у вас в руках половина торта, а во втором — торт поделили на 8 частей, и у вас в руках маленькая часть торта. Сложение дробей с одинаковыми знаменателями Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же. Вычитание дробей с одинаковыми знаменателями При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого первой дроби отнимают числитель вычитаемого второй дроби , а знаменатель оставляют прежним. Вычитание правильной дроби из единицы Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби. Зная целое, можно найти его часть, указанную соответствующей дробью.
Дроби презентация в формате PowerPoint - скачать бесплатно
Учебно-методический портал УчМет предлагает ознакомиться с материалом «Обобщающий урок-презентация "Умножение и деление дробей"», автор: Игорь Чернов. Поварам нужны дроби для соблюдения пропорции при приготовлении блюда. История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И. Поиск математической и исторической литературы, чтобы узнать когда древние египтяне стали использовать дроби и проводить вычисления с использованием дробей.
Применение обыкновенных дробей в жизни
Просмотреть и скачать презентацию Всё об обыкновенных дробях (Математика). Учить математики представляет презентацию для поведения открытого урока в шестом классе на тему «Арифметические действия с дробями». Презентация к уроку математики в 5 классе "Дроби.
Презентация Дроби, 6 класс
Создатель презентации нарушает закон об авторском праве, так как в информационном продукте не указаны ссылки на используемый графический материал. Кроме этого, не выполнены требования портала к размещению материала на его страницах нет логотипа, аннотации. Презентацию сложно воcпринимать без конспекта урока, она смотрелась бы лучше, если бы автор выбрал единое направление графической информации.
Все задания, собранные на... Материал изучается при рассмотрении простых чисел. Увидеть наглядность, помогающую определить ряд простых чисел,...
Этот материал весьма актуален.
Между слайдами презентации, на которых представлены задания и примеры решений арифметических действий с дробями автор демонстрирует фотографии Байкала, рассказывает интересные сведения о самом озере, а также о самых крупных реках, впадающих в него. Также представлены фотографии флоры и фауны этого края.
На 2 части Запишем число 2 под чертой вот так:. Черту называют дробной, а число, записанное под чертой — знаменателем. Закрасьте одну часть красным цветом. ВЫВОД: красным цветом закрашена одна вторая часть полоски на практике обозначает половину некоторой величины Слайд 6 Описание слайда: Обыкновенные дроби Каждый может за версту Видеть дробную черту.
Над чертой — числитель, знайте, Под чертою — знаменатель.
Действия над обыкновенными дробями
Разное, презентация, доклад, проект на тему. История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И. Метапредметные результаты: проводить исследования свойств дробей, опираясь на числовые эксперименты; распознавать истинные и ложные высказывания о дробях. Презентация подготовлена для повторения и обобщения по теме: "Действия с десятичными дробями".