Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года. Ученые нашли способ восстановления ходьбы после повреждения спинного мозга —. Ученые предложили чаще использовать нейростимуляцию спинного мозга электричеством с помощью небольшого вживляемого стимулятора.
Причины опухоли спинного мозга у взрослых
- Сейчас на главной
- Результаты исследований
- Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность
- Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19 - новости медицины
Парализованный мужчина начал ходить с помощью "моста" между головой и спинным мозгом
Ученые Курчатовского института с коллегами из Казанского федерального университета разработали модель, которую можно использовать для создания нейропротезов для пациентов с повреждением спинного мозга. Здесь Технологии Долголетия публикуют наиболее важные и актуальные новости о продлении жизни человека и событиях, связанных с этой тематикой. Читайте самые интересные и обсуждаемые посты по теме Спинной мозг. – Опухоли спинного мозга, – говорит врач-онколог Александр Серяков, – это патологические новообразования злокачественной и доброкачественной природы, которые локализуются в области спинного мозга. Сайт для специалистов и больных по проблеме травматической болезни спинного мозга. Клиника, диагностика, лечение, реабилитация. Новейшие достижения и перспективы исследования. — Исследования цитокинов при травме спинного мозга помогают лучше понять патофизиологию повреждения и могут предоставить ценную информацию для разработки новых методов лечения и диагностики, — цитирует ведущего научного сотрудникоа НИЛ «Генные и.
Спинной мозг. Секреты наружного строения
И, по его собственным ощущениям, мост позволял ему контролировать движения лучше, чем простая эпидуральная стимуляция. Кроме того, система позволила мужчине ходить по лестницам и неровной поверхности — то, чего раньше он не мог. Пациент ходит без стимуляции: до первого клинического испытания, после его завершения и после завершения нейрореабилитации с цифровым мостом слева направо. Даже спустя год сигналы не стали менее точными. Впоследствии пациент смог самостоятельно с костылями ходить по дому, стоять, садиться в машину и выходить из нее даже без стимуляции. Авторы отмечают, что неизвестно, смогут ли пациенты с другими травмами спинного мозга использовать устройство, — поскольку проверяли его на конкретном и частичном повреждении.
Но эпидуральная стимуляция уже помогала другим пациентам — в том числе с полным сенсорномоторным параличом, декодирование сигналов мозга тоже не ново, а откалибровать устройство достаточно просто. Поэтому каких-то серьезных помех для применения нейроинтерфейса у других пациентов ученые не видят. Электростимуляция спинного мозга может помочь двигать не только ногами, но и руками — ученые из США вернули таким образом подвижность рук людям после инсульта. Но в этом случае электроды имплантировали в шейный отдел. Автор: Катерина Петрова.
Первый размещен над областью мозга, отвечающей за управление движениями ног, и может декодировать электрические сигналы, возникающие, когда мы думаем о ходьбе. Аналогичным образом второй имплантат размещается над частью спинного мозга, которая управляет ногами. Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения. В течение пяти минут я мог управлять своими бедрами". Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы.
Теперь нейробиологи восстановили связи так, чтобы волокна соединялись с поврежденными зонами. Исследователи провели опыт на мышах с относительно легкими травмами, а также на грызуне с серьезным повреждением спинного мозга. В обоих случаях у животных были серьезные улучшения при ходьбе.
Однако биологические принципы, по которым работает такая терапия до сих пор не исследованы. Ученые из Федеральной политехнической школы Лозанны под руководством Клаудии Кате Claudia Kathe предположили, что электростимуляция воздействует на еще неисследованные нейроны, которые начинают участвовать в ходьбе лишь при восстановлении от паралича. Эту гипотезу поддержали и данные, полученные учеными — в клиническом испытании терапии нейронная активность в поясничных сегментах спинного мозга падала, а не возрастала. Это позволило предположить, что восстановлением активности после паралича занимается другая группа нейронов, которая не выполняет рутинную двигательную функцию. Чтобы проверить эту гипотезу, исследователи создали мышиную модель травмы спинного мозга, а также и терапевтическую систему стимуляции и механической поддержки веса тела при ходьбе. Чтобы исследовать, как нейроны мышей реагируют на терапию, ученые создали целый атлас клеток, основанный на экспрессии их генов и расположении в спинном мозге. Для этого биологи использовали секвенирование РНК в каждом из ядер клеток отдельно snRNA-seq и нанесли результаты секвенирования на проекцию спинного мозга. Так удалось выделить 36 субпопуляций, основанных на работе маркерных генов.
Life78 показал, как пациенты с травмой спинного мозга начинают ходить
Технологии позволяют опытным хирургам справляться с патологиями позвоночника и спинного мозга | Работа лишь одной субпопуляции нейронов спинного мозга помогла пациентам с параличом снова двигаться. Для терапии травм спинного мозга авторы статьи, использовали электростимуляцию клеток поясничного отдела. |
Впервые в мире с помощью стволовых клеток восстановили спинной мозг - Здоровье | Ученые предложили чаще использовать нейростимуляцию спинного мозга электричеством с помощью небольшого вживляемого стимулятора. |
Молодой нейрохирург РКБ впервые в Татарстане провел уникальную операцию на спинном мозге | | Новости 16 апреля. |
Парализованный мужчина начал ходить с помощью "моста" между головой и спинным мозгом | Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС. |
Спинной мозг: истории из жизни, советы, новости, юмор и картинки — Горячее | Пикабу | «Естественная ходьба после травмы спинного мозга с использованием интерфейса мозг-позвоночник» представляет ситуацию Герта-Яна, 40 лет, который получил травму спинного мозга после велосипедной аварии, в результате которой он был парализован. |
Починить спинной мозг: новые терапии на грани фантастики
Врачи соединили мозг парализованного человека со спинным в обход повреждённого участка — он начал ходить Они вживили ему несколько имплантов, которые образовали беспроводную связь между головным и спинным мозгом Новости Несколько имплантов. А в участок спинного мозга, контролирующий движения ног, был имплантирован электронный нейростимулятор, который, стимулируя спинной мозг, заставляет его активизировать мышцы нижних конечностей. Новости Казахстана. Россиянин Спиридонов оценил новость о пересадке мозга хирургом Канаверо. При частичном повреждении спинной мозг может передавать некоторые сигналы в головной мозг и наоборот, поэтому такие пациенты обладают некоторой чувствительностью и даже некоторыми моторными функциями ниже пораженной области. Читайте самые интересные и обсуждаемые посты по теме Спинной мозг.
Человеческому мозгу вернули контроль над парализованными ногами
Ученым удалось срастить поврежденный спинной мозг | MedAboutMe | Новости окружающая среда Спинной мозг беспроводным способом подкл. |
Главный онколог «СМ-Клиника» об опухолях спинного мозга | По сути дела, спинной мозг — это нервная трубка, которая выросла, достигла размера 40–45 сантиметров и выполняет в нашем организме очень важные функции, связанные с управлением телом. |
Травма спинного мозга - Новости | «Естественная ходьба после травмы спинного мозга с использованием интерфейса мозг-позвоночник» представляет ситуацию Герта-Яна, 40 лет, который получил травму спинного мозга после велосипедной аварии, в результате которой он был парализован. |
Впервые в мире: ученые Университета «Сириус» разработали мягкий нейроимплант спинного мозга | Создан препарат со стволовыми клетками для лечения спинного мозга. |
Спинной мозг также может обучаться и запоминать | Травма спинного мозга (ТСМ) – это сложное неврологическое состояние, вызывающее физическую инвалидность, психологический стресс. |
Человеческому мозгу вернули контроль над парализованными ногами
Новости науки и техники/. Ученые из Калифорнийского университета в Лос-Анджелесе и Гарвардского университета провели исследование, которое может иметь огромное значение для восстановления спинного мозга после травмы. Ученые из Калифорнийского университета в Лос-Анджелесе и Гарвардского университета провели исследование, которое может иметь огромное значение для восстановления спинного мозга после травмы. Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС. Потому что через так называемый гематоэнцефалический барьер, который отделяет мозг от кровотока, проникают не все противовирусные лекарства.
Травматическое повреждение спинного мозга (Continuum, февраль 2024)
Спинной мозг обладает собственными нейронными сетями, которые выполняют просчёт движений на месте. написали исследователи. Здесь Технологии Долголетия публикуют наиболее важные и актуальные новости о продлении жизни человека и событиях, связанных с этой тематикой. По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия.
Вести с полей: спинной мозг и движение
Представить на рынке российский препарат могут уже в 2025 году. По словам Белоусова, препарат будет востребован у пациентов, получивших ранения на СВО. Кроме того, в дальнейшем его компоненты планируют использовать для лечения при инсультах. Третий конгресс молодых ученых работает в Парке науки и искусства "Сириус" 28-30 ноября.
Они поляризуются спонтанно, но обычно в большей степени происходит поляризация в сторону нейротоксического фенотипа, так как этому способствует выброс провоспалительных молекул разными клетками в эпицентре повреждения. Активация клеток микроглии в случае приобретения нейропротективного фенотипа способствует восстановлению нервной ткани. Нами, а также другими авторами, было доказано существование клеток промежуточного фенотипа», — рассказывает руководитель Центра превосходства «Персонифицированная медицина» и НИЛ «Генные и клеточные технологии» КФУ Альберт Ризванов. Исследователи КФУ выявили закономерность: чем серьезнее травма спинного мозга, тем ниже способность микроглии к делению и уничтожению чужеродных частиц и поврежденных клеток во всех посттравматических периодах. Это открытие поможет в разработке новых подходов к лечению травм спинного мозга.
Полученные учеными НИЛ «Генные и клеточные технологии» новые научные результаты будут способствовать лучшему пониманию механизмов, происходящих в нервной ткани после травмы спинного мозга, и разработке новых методов лечения больных с такими травмами.
Между головным и спинным мозгом образуется цифровой мост. Последний участник звена — имплантируемый генератор импульсов Specify 5-6-5, состоящий из массива на 16 электродов. Корковые сигналы проходят через процедуры модуляции, преобразуясь в аналоговые команды. Имплантат проводит их к задним корешкам спинного мозга. Уже оттуда сформированная команда достигает мышц нижних конечностей.
Программная часть. Аспекты декодирования Электрическую активность сенсомоторной коры головного мозга регистрируют по 32 каналам с частотой 586 Гц. Диапазоном полосовой фильтрации стал промежуток между 1 и 300 Гц. Именно в нём скрыты данные, необходимые для иннервации нижних конечностей. Как выявить намерение к движению? Эту работу выполняет алгоритм рекурсивной экспоненциально-взвешенной мультилинейной модели марковского переключения.
В её состав входит классификатор скрытой марковской модели и набор независимых регрессионных моделей. При возникновении намерения к движению происходит активация сенсомоторной коры головного мозга, которую возможно считать с помощью электродов. Каждая из регрессионных моделей осуществляет контроль над целыми группами степеней свободы конечностей. Дело в том, что нога или рука — не просто рычаг. В своей работе он подчиняется законам биомеханики. Любое движение возможно лишь при согласованной работе множества звеньев.
К ним относят суставы, мышцы, сухожилия и сенсорную иннервацию от механо- и проприорецепторов. Человек не смотрит на ноги, когда ходит. Мы и так знаем, какое положение занимает тело. Мы спокойно выполняем движения вслепую, не полагаясь на зрение. Это возможно благодаря тому, что на аппаратной части головного и спинного мозга непрерывно крутятся скрипты, отвечающие за восприятие схемы тела. Подробнее мы рассказывали в предыдущей статье.
Если коротко, мозг не контактирует с реальностью напрямую. Он создаёт абстрактную схему тела, которая выступает прокси-моделью организма. Чем активнее мы пользуемся тем или иным органом, тем ярче будут выражены соответствующие нейронные поля в коре. Классификатор на основе НММ выполняет важную работу. Он оценивает вероятность активации конечности под конкретное движение. Гипотеза цепей Маркова выступает математическим аппаратом, благодаря которому возможно просчитывать непрерывные и динамические движения.
Каждое новое состояние будет проистекать из предыдущего с внесением правок от коры головного мозга. Разумеется, это вполне возможно предсказать средствами современной математики. Классификатор НММ учитывает вероятность выброса и перехода нескольких переменных. К ним относится бедро, колено и лодыжка по отдельности, вместе или во всех возможных комбинациях плюс состояние покоя. Здесь модель немного упрощена, ведь человек не может одновременно шагать правой и левой ногой. Калибровка декодера осуществляется в режиме онлайн, базируясь на прошлых состояниях массива данных.
Модель, контролирующая сгибание бедренных суставов во время ходьбы, самообучалась гарантированно предсказывать статус нижних конечностей после 30 повторений стереотипного движения. Но даже этого мало. Чтобы эффективно выполнить движение, имплантат должен непрерывно держать контакт со скелетной мускулатурой. При спинальной травме головной мозг не получает сигналов от органов-исполнителей. Эта работа ложится на бионику. Электрическую активность считывают методом электромиографии со множества мышц нижней конечности.
Биполярные электроды Delsys Trygno устанавливают на подвздошно-поясничную, прямую, полусухожильную, латеральную широкую, переднюю большеберцовую и прочие мышцы ноги. Каждую пару электродов ставили на брюшко мышцы, ориентировав продольно по ходу волокон. Компьютер регистрирует непрерывные ЭМГ-сигналы на частоте 2 кГц с полосовой фильтрацией в диапазоне 20-450 Гц. Ещё одна пара электромиографических электродов стала над позвоночником между грудным и поясничным отделом. Она отсекает артефакты стимуляции, позволяя процессору работать с чистым сигналом. Нейротехнологии в обычной жизни Используя спинномозговой интерфейс, участник эксперимента смог стоять и ходить.
Разумеется, этот факт открыл дорогу к использованию нейроимплантатов не только в условиях лаборатории, но и дома. Интегрированная система состоит из умных «ходунков». На них расположен ноутбук, соединённый через USB с базовой станцией. От неё запитаны все имплантаты. Коннектор в гарнитуре интегрирован с антеннами, упомянутыми в предыдущих абзацах. Человек общается с аппаратно-программной частью устройства с помощью адаптивного тактильного интерфейса.
Время динамической калибровки занимает менее 5 минут с минимальным вмешательством человека. Запуск алгоритмов, калибровка и локальное изменение двигательной модели происходит средствами программной оболочки. ПО приняло на себя самую тяжелую работу, позволив пациенту не отвлекаться от самой важной задачи: реабилитации. В нашем случае пациент смог покинуть кресло-каталку и одолеть лестницу, не приспособленную для людей с ограниченными возможностями. Физические принципы, направленные на восстановление иннервации у спинальных пациентов, доказали свою эффективность у двух групп людей. К первой относятся пациенты с неполным сенсомоторным блоком.
У них изначально были проводящие пути и нормальная скелетная мускулатура, но эффективной передаче импульса препятствовал локус травмы. В этом случае цифровой мост облегчал прохождение электрохимического сигнала. Со второй группой ситуация немного сложнее. Это люди с полным сенсомоторным блоком. У них полностью разрушен канал передачи данных между головным и спинным мозгом. Авторы оригинального исследования приводят данные, что с помощью цифрового моста им удалось добиться уверенного хождения у трёх добровольцев с полным сенсомоторным блоком.
Судя по всему, они перенесли травму относительно недавно, раз их спинной мозг ещё помнил, как правильно иннервировать ноги. На данный момент можно выделить три основных ограничения в применении и массовом внедрении нейроимплантатов. Мы не будем останавливаться на экономических составляющих вроде стоимости оборудования и производства, технологической базы государства, наличия профильных специалистов и платёжеспособности клиента.
Как говорят ученые, современные методы лечения ТСМ часто являются обобщенными и могут не учитывать уникальные биохимические изменения, происходящие у каждого пациента. Их подход может предложить более персонализированный подход, потенциально снижая риск осложнений и улучшая прогноз для пациентов. В дальнейшем можно будет более эффективно выстраивать прогноз выздоровления и лучше проводить терапию, исходя из состояния конкретного пациента, — объяснил младший научный сотрудник НИЛ «Генные и клеточные технологии» Ильяс Кабдеш.
В России проведена операция по установке нейростимулятора в спинной мозг
Нейроинтерфейс, соединяющий спинной и головной мозг, позволил пациенту с повреждением спинного мозга лучше ходить — сначала со стимуляцией, а потом и без нее. Когда участник исследования думает о движении руки или кисти, мы «перезаряжаем» его спинной мозг и стимулируем его мозг и мышцы, чтобы помочь восстановить связи, обеспечить сенсорную обратную связь и способствовать выздоровлению. Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями. Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink.