Новости слова из слова персона

Происхождение слова персона нон грата. ра. протоиндоевропейское re означает рассуждать/считать. Слова из букв персона. Слова на букву р. Чтение слов с буквой р. Слоги и слова с буквой р. Слова на букву р для детей. На уровне игры "Слово из слова "призвание"" нужно найти вот эти слова.

Слова из букв персона

Новая игра «Слова из слова» поможет составить из букв все ответы, скрытые от игрока, а также бесплатно улучшит память, внимание и логику. Слова из слова – это игра в которой нужно составить слово из букв другого слова. Это увлекательная головоломка для вашего телефона на Андроид. Однокоренные и проверочные слова для слова ПЕРСОНА: персонаж, персонал, персонализация, персонализировать, персоналия Посмотрите полный список слов, в т.ч. с омонимичными корнями. Все слова, подобранные по набору букв слове ПЕРСОНА. Список из 55 существительных с учетом количества каждой буквы, сгруппированный по длине получившихся слов. Бесплатно. Android. Слова из слова — представляет игру с простыми и увлекательными правилами: из букв выбранного длинного слова надо составить по возможности больше коротких.

Слова из слова

Обеденный стол на 12 персон купить. одна из лучших головоломок в замечательном бумажном стиле. З слова персона можна скласти 78 слів: персон, персон, серап, опера, проса, нерпа, сонар.

Похожие вопросы

  • Каратист отбился в горах от двух медведей: Люди: Из жизни:
  • Похожие игры:
  • «Персона» - однокоренные и родственные слова. Примеры.
  • Cлова cоставленные из не повторяющихся букв слова "персона"
  • Слова из слова ПЕРСОНА

Соствить слова онлайн

  • Разбор слова «персона» по составу
  • Электронные
  • СОСТАВЬ СЛОВА ИЗ СЛОВА — играть онлайн бесплатно
  • Слова из Слов

Однокоренные слова к слову персона. Корень.

Игры по персонажам Игра Слова из Слова 2 Приветствуем вас в продолжении очень увлекательной игры под названием "Слова из Слова 2"! Прямо сейчас вы сможете хорошо постараться и пройти все 8 000 уровней! Вас ждут самые лучшие награды, очень приятная музыка и таблица тех игроков, с которыми вы будете сражаться за победу. Станьте лучшим среди других! Вы когда-нибудь представляли, сколько может получиться слов всего лишь из одного слова? Если нет, тогда данная головоломка даст вам возможность прочувствовать это. Проверьте свою грамотность и эрудицию, узнав для себя новые слова!

Я составила далеко не полный список слов, которые ваш словарь почему-то "не знает". Скопировала его, но здесь вставить невозможно. Если напишете ваш емейл - перешлю. В отличии от того, что есть слова, которые никогда не приходят на ум, потому, что они специфичны только для определённых профессий.

Если составленный экземпляр имеется в базе и еще не был напечатан, то он появится в одной из строк-ответов. Если же такого слова в базе нет, то оно на мгновение окрасится красным и исчезнет. Уровень считается пройденным, если вам удалось заполнить все строки.

За полностью завершенный этап игрок получает 3 звезды и 3 подсказки их общее число указано рядом с лампочкой наверху. Подсказку можно использовать в любой момент. Нажав на лампочку, вы получите очередное слово-ответ в произвольной строке. Кстати, ответы в строках отсортированы по алфавиту. Это удобно использовать при поиске новых слов.

Всего 42 слова, из которых вам предстоит составлять слова. Каждое слово — отдельный уровень игры. И как это часто бывает в играх, пока не пройдешь один уровень, на следующий не пустят. Впрочем, здесь создатели подошли к вопросу более толерантно. К этому же можно вернуться в любой удобный момент.

Это удобно, поскольку необязательно пытаться пройти игру в один присест, можно растянуть прохождение на несколько дней. Немного о механизме. Слово-донор размещается внизу.

Игра Слова из слов

Слова из букв персона Эти слова явно лишние, их стараются избегать и исключать из круга общения, как любую нежелательную персону, то есть персону нон грата, но они настойчиво проникают в нашу речь.
Игра Слова из слов - Играть Онлайн Составить слова. персона. Сервис поможет отгадать слово по заданным буквам или другому слову. Поиск на русском, английском и украинском языках.
Слова из слова персона это интеллектуальная игра, которая заставит ваш мозг просто кипеть тот угадывания слов из данного слова!

Всі слова (анаграми), які можуть бути складені з слова "персона"

Слова из букв персона - 88 фото Бесплатно. Android. Слова из слова — представляет игру с простыми и увлекательными правилами: из букв выбранного длинного слова надо составить по возможности больше коротких.
Перевод "Persona" на русский с транскрипцией и произношением З літер заданого слова "персона" утворюваний 45 варіантів нових слів з неповторюваними і повторюваними літерами. Найцікавіші варіанти арсен, перса, спора, перон.
Слова в слове Персона : Слова из букв слова Персона Слова из слова персона Составление одних слов из других или заданных Воспользоваться нашим сайтом очень просто. Вам достаточно ввести выбранное слово в указанное поле и система выдаст целый блок анаграмм, то есть столько, сколько можно подобрать к этому слову.
Ответы игры Слова из слова - YouTube Найди слова – словесная игра-головоломка, в которой вам нужно отгадывать слова из более чем 50 категорий на больших полях с набором букв, который по началу кажется случайным.

Слова из Слова 25.7

Поиск на русском, английском и украинском языках. Моментальный поиск даже по 2. Огромная база слов.

Понятно, что по такой разметке мы однозначно можем установить границы всех аннотаций сущностей. Действительно, про каждый токен мы знаем, верно ли, что сущность начинается с этого токена или заканчивается на нем, а значит, закончить ли аннотацию сущности на данном токене, или расширять ее на следующие токены. Подавляющее большинство исследователей использует этот способ или его вариации с меньшим количеством меток — BIOE или BIO , но у него есть несколько существенных недостатков. Главный из них заключается в том, что схема не позволяет работать с вложенными или пересекающимися сущностями. Но Ломоносов сам по себе — это персона, и это тоже было бы неплохо задать в разметке. С помощью описанного выше способа разметки мы никогда не сможем передать оба эти факта одновременно потому что у одного токена можем сделать только одну пометку. Здесь в идеале хотелось бы выделять 3 вложенных организации, но приведенный выше способ разметки позволяет выделить либо 3 непересекающиеся сущности, либо одну сущность, имеющую аннотацией весь приведенный фрагмент.

Кроме стандартного способа свести задачу к классификации на уровне токенов, есть и стандартный формат данных, в котором удобно хранить разметку для задачи NER а также для многих других задач NLP. Основная идея формата такая: храним данные в виде таблицы, где одна строка соответствует одному токену, а колонки — конкретному типу признаков токена в т. Но исследователи обычно рассматривают формат шире и включают те типы признаков, которые нужны для конкретной задачи и метода ее решения. Приведем ниже пример данных в CoNLL-U-подобном формате, где рассмотрены 6 типов признаков: номер текущего предложения в тексте, словоформа т. А как решали задачу NER раньше? Строго говоря, задачу можно решать и без машинного обучения — с помощью rule-based систем в самом простом варианте — с помощью регулярных выражений. Это кажется устаревшим и неэффективным, однако нужно понимать, если у вас ограничена и четко очерчена предметная область и если сущность, сама по себе, не обладает большой вариативностью, то задача NER решается с помощью rule-based методов достаточно качественно и быстро. Например, если вам нужно выделить емейлы или числовые сущности даты, денежные суммы или номера телефонов , регулярные выражения могут привести вас к успеху быстрее, чем попытка решить задачу с помощью машинного обучения. Впрочем, как только в дело вступают языковые неоднозначности разного рода о части из них мы писали выше , такие простые способы перестают хорошо работать.

Поэтому применять их имеет смысл только для ограниченных доменов и на простых и четко отделимых от остального текста сущностях. Несмотря на все вышесказанное, на академических корпусах до конца 2000-х годов SOTA показывали системы на основе классических методов машинного обучения. Давайте кратко разберем, как они работали. Признаки До появления эмбеддингов, главным признаком токена обычно являлась словоформа — т. Таким образом, каждому токену ставится в соответствие булев вектор большой размерности размерности словаря , где на месте индекса слова в словаре стоит 1, а на остальных местах стоят 0. Кроме словоформы, в качестве признаков токена часто использовались части речи POS-таги , морфологические признаки для языков без богатой морфологии — например, английского, морфологические признаки практически не дают эффекта , префиксы т. Если токен имеет нестандартную капитализацию, про него с большой вероятностью можно сделать вывод, что токен является какой-то сущностью, причем тип этой сущности — вряд ли персона или локация. Кроме всего этого, активно использовались газетиры — словари сущностей. Впрочем, конечно, несмотря на неоднозначность, принадлежность токена словарю сущностей определенного типа — это очень хороший и значимый признак настолько значимый, что обычно результаты решения задачи NER делятся на 2 категории — с использованием газетиров и без них.

Методы, которые там описаны, конечно, устаревшие даже если вы не можете использовать нейросети из-за ограничений производительности, вы, наверное, будете пользоваться не HMM, как написано в статье, а, допустим, градиентным бустингом , но посмотреть на описание признаков может иметь смысл. К интересным признакам можно отнести шаблоны капитализации summarized pattern в статье выше. Они до сих пор могут помочь при решении некоторых задач NLP. Так, в 2018 году была успешная попытка применить шаблоны капитализации word shape к нейросетевым способам решения задачи. Как решить задачу NER с помощью нейросетей? Но нужно понимать, что превосходство модели по сравнению с системами на основе классических алгоритмов машинного обучения было достаточно незначительным. В последующие несколько лет методы на основе классического ML показывали результаты, сравнимые с нейросетевыми методами. Кроме описания первой удачной попытки решить задачу NER с помощью нейростетей, в статье подробно описаны многие моменты, которые в большинстве работ на тему NLP оставляют за скобками. Поэтому, несмотря на то что архитектура нейросети, описанная в статье, устаревшая, со статьей имеет смысл ознакомиться.

Это поможет разобраться в базовых подходах к нейросетям, используемых при решении задачи NER и шире, многих других задач NLP. Расскажем подробнее об архитектуре нейросети, описанной в статье. Авторы вводят две разновидности архитектуры, соответствующие двум различным способам учесть контекст токена: либо использовать «окно» заданной ширины window based approach , либо считать контекстом все предложение sentence based approach. В обоих вариантах используемые признаки — это эмбеддинги словоформ, а также некоторые ручные признаки — капитализация, части речи и т. Расскажем подробнее о том, как они вычисляются. Пусть всего имеется K различных признаков для одного токена например, такими признаками могут выступать словоформа, часть речи, капитализация, является ли наш токен первым или последним в предложении и т. Все эти признаки мы можем считать категориальными например, словоформе соответствует булев вектор длины размерности словаря, где 1 стоит только на координате соответствующей индексу слова в словаре. Пусть — булев вектор, соответствующий значению i-го признака j-го токена в предложении. Важно отметить, что в sentence based approach кроме категориальных признаков, определяемых по словам, используется признак — сдвиг относительно токена, метку которого мы пытаемся определить.

Значение этого признака для токена номер i будет i-core, где core — номер токена, метку которого мы пытаемся определить в данный момент этот признак тоже считается категориальным, и вектора для него вычисляются точно так же, как и для остальных. Напомним, что каждый из — булев вектор, в котором на одном месте стоит 1, а на остальных местах — 0. Таким образом при умножении на , происходит выбор одной из строк в нашей матрице. Эта строка и является эмбеддингом соответствующего признака токена. Матрицы где i может принимать значения от 1 до K — это параметры нашей сети, которые мы обучаем вместе с остальными слоями нейросети. Отличие описанного в этой статье способа работы с категориальными признаками от появившегося позже word2vec мы рассказывали о том, как предобучаются словоформенные эмбеддинги word2vec, в предыдущей части нашего поста в том, что здесь матрицы инициализируются случайным образом, а в word2vec матрицы предобучаются на большом корпусе на задаче определения слова по контексту или контекста по слову. Таким образом, для каждого токена получен непрерывный вектор признаков, являющийся конкатенацией результатов перемножения всевозможных на. Теперь разберемся с тем, как эти признаки используются в sentence based approach window based идейно проще.

Ранее Небензя сообщил, что американская сторона совершила очередной враждебный выпад в наш адрес. Он указал, что 12 человек из русской дипмиссии признаны персонами нон грата, а потому до конца недели покинут Штаты. Небензя добавил, что такой шаг со стороны США является проявлением неуважения к своим обязательствам в рамках Устава ООН и соглашения с принимающей стороной.

Любители словесных головоломок по достоинству оценят приложение. Возможности игры Слова из слова: сохранение наивысших достижений; повышение рейтинга, получение наград за успехи; увеличение сложности от уровня к уровню, вплоть до 96 ступени; режим получения подсказок; оформление в виде тетрадного листа; действует развивающе на неокрепший детский интеллект. Есть обновление в Google Play:.

На игру Слова из слов все ответы (АНДРОИД)

Как скачать игру Слова из слова: тренировка мозга на телефон? Это же онлайн-игры , играйте на результат. Ничего качать теперь не нужно. Вы можете поиграть в Слова из слова: тренировка мозга онлайн. Где найти прохождение игры Слова из слова: тренировка мозга.

Не могу пройти уровень...

Прогульщик слова из слова 2015. Связанность слова из слова 2015 ответы. Слова из слова известность.

Длинные слова сля игры. Длинные Слава для игры. Длинные слова для игры в слова. Игра составление слов из букв.

Игра в слова из букв. Слово из 8 букв. Игра придумать слова из букв. Игра слова из слова играть.

Игра слова из слова 2 уровень. Игра слова из слова отгадки. Слова для составления слов. Слова из длинного слова.

Составьте слова из слова. Игра придумай слова из слова. Слова слова из слова. Сосьпаь слова из слооов.

Слова из слова слово Росомаха. Слова из слова Росомаха ответы на игру. Слова из слова Росомаха ответы на игру слова из слова. Игра слова из слова Росомаха.

Слова из букв.

Сосна - сущ. Puhspartak 28 апр. Vadim963656 28 апр. GodMod142 28 апр.

Ivansramko 28 апр. Объяснение : Словосочетание как бы используется место слова якобы... Ананасапельсин 28 апр. Кисуня45 28 апр.

Но нужно понимать, что превосходство модели по сравнению с системами на основе классических алгоритмов машинного обучения было достаточно незначительным.

В последующие несколько лет методы на основе классического ML показывали результаты, сравнимые с нейросетевыми методами. Кроме описания первой удачной попытки решить задачу NER с помощью нейростетей, в статье подробно описаны многие моменты, которые в большинстве работ на тему NLP оставляют за скобками. Поэтому, несмотря на то что архитектура нейросети, описанная в статье, устаревшая, со статьей имеет смысл ознакомиться. Это поможет разобраться в базовых подходах к нейросетям, используемых при решении задачи NER и шире, многих других задач NLP. Расскажем подробнее об архитектуре нейросети, описанной в статье.

Авторы вводят две разновидности архитектуры, соответствующие двум различным способам учесть контекст токена: либо использовать «окно» заданной ширины window based approach , либо считать контекстом все предложение sentence based approach. В обоих вариантах используемые признаки — это эмбеддинги словоформ, а также некоторые ручные признаки — капитализация, части речи и т. Расскажем подробнее о том, как они вычисляются. Пусть всего имеется K различных признаков для одного токена например, такими признаками могут выступать словоформа, часть речи, капитализация, является ли наш токен первым или последним в предложении и т. Все эти признаки мы можем считать категориальными например, словоформе соответствует булев вектор длины размерности словаря, где 1 стоит только на координате соответствующей индексу слова в словаре.

Пусть — булев вектор, соответствующий значению i-го признака j-го токена в предложении. Важно отметить, что в sentence based approach кроме категориальных признаков, определяемых по словам, используется признак — сдвиг относительно токена, метку которого мы пытаемся определить. Значение этого признака для токена номер i будет i-core, где core — номер токена, метку которого мы пытаемся определить в данный момент этот признак тоже считается категориальным, и вектора для него вычисляются точно так же, как и для остальных. Напомним, что каждый из — булев вектор, в котором на одном месте стоит 1, а на остальных местах — 0. Таким образом при умножении на , происходит выбор одной из строк в нашей матрице.

Эта строка и является эмбеддингом соответствующего признака токена. Матрицы где i может принимать значения от 1 до K — это параметры нашей сети, которые мы обучаем вместе с остальными слоями нейросети. Отличие описанного в этой статье способа работы с категориальными признаками от появившегося позже word2vec мы рассказывали о том, как предобучаются словоформенные эмбеддинги word2vec, в предыдущей части нашего поста в том, что здесь матрицы инициализируются случайным образом, а в word2vec матрицы предобучаются на большом корпусе на задаче определения слова по контексту или контекста по слову. Таким образом, для каждого токена получен непрерывный вектор признаков, являющийся конкатенацией результатов перемножения всевозможных на. Теперь разберемся с тем, как эти признаки используются в sentence based approach window based идейно проще.

Важно, что мы будем запускать нашу архитектуру по отдельности для каждого токена т. Признаки в каждом запуске собираются одинаковые, за исключением признака, отвечающего за позицию токена, метку которого мы пытаемся определить — токена core. Берем получившиеся непрерывные вектора каждого токена и пропускаем их через одномерную свертку с фильтрами не очень большой размерности: 3-5. Размерность фильтра соответствует размеру контекста, который сеть одновременно учитывает, а количество каналов соответствует размерности исходных непрерывных векторов сумме размерностей эмбеддингов всех признаков. После применения свертки получаем матрицу размерности m на f, где m — количество способов, которыми фильтр можно приложить к нашим данным т.

Как и почти всегда при работе со свертками, после свертки мы используем пулинг — в данном случае max pooling т. Таким образом, вся информация, содержащаяся в предложении, которая может нам понадобиться при определении метки токена core, сжимается в один вектор max pooling был выбран потому, что нам важна не информация в среднем по предложению, а значения признаков на его самых важных участках. Дальше пропускаем вектор через многослойный персептрон с какими-то функциями активации в статье — HardTanh , а в качестве последнего слоя используем полносвязный с softmax размерности d, где d — количество возможных меток токена. Таким образом сверточный слой позволяет нам собрать информацию, содержащуюся в окне размерности фильтра, пулинг — выделить самую характерную информацию в предложении сжав ее в один вектор , а слой с softmax — позволяет определить, какую же метку имеет токен номер core. Первые слои сети такие же, как в пайплайне NLP, описанном в предыдущей части нашего поста.

Сначала вычисляется контекстно-независимый признак каждого токена в предложении. Признаки обычно собираются из трех источников. Первый — словоформенный эмбеддинг токена, второй — символьные признаки, третий — дополнительные признаки: информация про капитализацию, часть речи и т. Конкатенация всех этих признаков и составляет контекстно-независимый признак токена. Про словоформенные эмбеддинги мы подробно говорили в предыдущей части.

Дополнительные признаки мы перечислили, но мы не говорили, как именно они встраиваются в нейросеть. Ответ простой — для каждой категории дополнительных признаков мы с нуля учим эмбеддинг не очень большого размера. Это в точности Lookup-таблицы из предыдущего параграфа, и учим их мы точно так же, как описано там. Теперь расскажем, как устроены символьные признаки. Ответим сначала на вопрос, что это такое.

Все просто — мы хотим для каждого токена получать вектор признаков константного размера, который зависит только от символов, из которых состоит токен и не зависит от смысла токена и дополнительных атрибутов, таких как часть речи. Нам дан токен, который состоит из каких-то символов. На каждый символ мы будем выдавать вектор какой-то не очень большой размерности например, 20 — символьный эмбеддинг. Символьные эмбеддинги можно предобучать, однако чаще всего они учатся с нуля — символов даже в не очень большом корпусе много, и символьные эмбеддинги должны адекватно обучиться. Итак, мы имеем эмбеддинги всех символов нашего токена, а также дополнительных символов, которые обозначают границы токена, — паддингов обычно эмбеддинги паддингов инициализируются нулями.

Нам бы хотелось получить по этим векторам один вектор какой-то константной размерности, являющийся символьным признаком всего токена и отражающий взаимодействие между этими символами. Есть 2 стандартных способа. Чуть более популярный из них — использовать одномерные свертки поэтому эта часть архитектуры называется CharCNN. Делаем это мы точно так же, как мы это делали со словами в sentence based approach в предыдущей архитектуре. Итак, пропускаем эмбеддинги всех символов через свертку с фильтрами не очень больших размерностей например, 3 , получаем вектора размерности количества фильтров.

Однокоренные слова к слову персона

СОСТАВЬ СЛОВА ИЗ СЛОВА Какие слова можно составить из слова person? Ответ или решение1. Суханов Петр.
Составить слова из слова персона Однокоренные и проверочные слова для слова ПЕРСОНА: персонаж, персонал, персонализация, персонализировать, персоналия Посмотрите полный список слов, в т.ч. с омонимичными корнями.
Составить слова Из слова Персона можно составить 206 новых слов, например порсена, непора, просна, персан, панеро, неспор, апрон.
Слова из букв персона - 88 фото Слова и анаграммы, которые можно составить из заданных букв слова персона. Из букв ПЕРСОНА (п е р с о н а) можно составить 286 слов от 2 до 7 букв. + слова в любом падеже.
Составить слова из слова персона смішні рими і рими до імен.

Однокоренные слова к слову персона

Играть без регистрации нельзя. Но это не страшно, регистрация в ОК займет совсем немного времени, вы сможете играть в Слова из слова: тренировка мозга онлайн, проходить новые уровни и просто с удовольствием скоротать время. Можно ли узнать, какой сюжет игры Слова из слова: тренировка мозга? Играть в нее или нет?

В описании к игре можно узнать нужную информацию. Там же вы можете увидеть скриншоты игры Слова из слова: тренировка мозга.

В отличии от того, что есть слова, которые никогда не приходят на ум, потому, что они специфичны только для определённых профессий. Дошел до 425 уровня. Написано для девочек 7 лет. Какая голова должна быть у "девочки 7 лет"?

Слова из слова 2015 ответы. Слова из слова беспокойство. Слова из слова ответы. Игра слова из слова 2 уровень. Слова из слова коллектор. Слова для составления слов. Слова из длинного слова. Сосьпаь слова из слооов. Игра составлять слова. Игра Составь слово для взрослых. Игра слова из слова играть. Игра слова из слова отгадки. Слова из букв текст. Слова слова из слова. Составление слов. Составь слова из букв. Игра в составление слов. Слова из слова водораздел. Слова из слова 2015. Слова из слова американец. Слова из слова и слова американец. Биомеханика слова из слова 2015. Слова из слова захватчик.

Ваша задача — пройти все уровни, составляя слова из букв одного слова. Для этого вам нужно проявить все свои умственные и поисковые способности, которые на протяжении всего игрового процесса будут вам очень необходимы. Вам дадут одно слово, из которого вы должны составить то количество слов, что написано внизу игрового поля. Чтобы перейти к следующему уровню, вам нужно угадать и прописать заданное количество слов. Если вы успешно будете выполнять задания вам будут начисляться подсказки. С помощью заработанных звездочек вы открывайте неразгаданные слова. Выполняйте определенные действия и открывайте подсказки бесплатно.

Игра Слова из слов

Предлагаем вашему вниманию список анаграмм к слову персоне. Главная» Новости» Составить слово из слова пенсия. Корень слова персона. Богатый на слова, практичный и надежный словарь однокоренных слов русского языка поможет без труда подобрать, найти нужное слово.

Слова из слова: тренировка мозга

Попасть в нее смогут только те, кто знает ссылку. Все, что потребуется от них - перейти по ней и ввести имя. Вам не придется никуда переходить и заново подключаться. Показать категории.

Это совершенно разные слова не связанные друг с другом. За каждый пройденный уровень вам будет засчитано несколько очков опыта. Их можно расходовать на подсказки.

Также интересно, то что с каждым разом уровни становятся всё труднее и труднее.

Каждое из однокоренных слов к слову «персона» имеет свое собственное значение. Чтобы не совершать банальных ошибок при употреблении родственных слов для слова «персона» персонаж, персонал, персонализировать, персоналия, персонально... Вы можете посмотреть список однокоренных родственных слов к ним, перейдя на их страницу нажатием левой кнопкой мыши по ним. Мы очень рады, что вы посетили наш словарь однокоренных слов, и надеемся, что полученная вами информация о родственных словах к слову «персона», оказалась для вас полезной. Будем с нетерпением ждать ваших новых посещений нашего сайта.

Лицо, человек за столом: обедом, ужином и т.

Обед на 10 персон. Сервиз на 12 персон из 12 приборов. Собственной персоной торж. Все значения Предложения со словом персона Иными словами, персональный имидж руководителя компании должен быть разработан в соответствии с современным эталонным имиджем главы корпорации, глава корпорации должен соответствовать образу корпорации, над которым старательно работают пиар-специалисты.

Похожие новости:

Оцените статью
Добавить комментарий