По мнению исследователей, тогда произошел взрыв голубого сверхгиганта, образованного слиянием двух звезд, в результате чего возникла сверхновая в близлежащей галактике.
Астрономы совершили значительный прорыв в нашем понимании голубых сверхгигантов
это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. В следующей части исследования будет предпринята попытка исследовать, как эти голубые сверхгиганты взрываются и вносят свой вклад в ландшафт черных дыр и нейтронных звезд. это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. V372 Ориона относится к голубым сверхгигантам (спектральный класс B9 III/IV) и орионовым переменным — типу неправильных переменных звёзд, связанных с диффузными туманностями. Несмотря на свою важность для эволюции галактик, голубые сверхгиганты встречаются достаточно редко.
Астрономы выяснили, как появляются голубые сверхгиганты
Международная группа ученых сделала прорыв в изучении голубых сверхгигантов, наиболее ярких и теплых звезд во Вселенной. Молодая космическая структура под названием NGC 3184, где находится голубой сверхгигант, открыта в марте текущего года японским астрофизиком. Ригель (голубой сверхгигант) и туманность IC 2118, которую он освещает. Голубой сверхгигант, обитающий в экстремальных условиях, был открыт двумя учеными.
Ученые раскрыли секрет голубых сверхгигантов
Ведущий астрофизик доктор Тамара Роджерс с коллегами из Университета Ньюкасла Великобритания в течение последних пяти лет работали над созданием симуляций звезд, подобных этим для того, чтобы попытаться предсказать, что заставляет поверхность таких звезд выглядеть так, как она выглядит. Моделируя внутреннее пространство звезд, команда предсказала, что гравитационные волны, подобные тем, которые мы видим в океане, могут разрушаться на поверхности звезд. Второй тип волны также был предсказан. Эти когерентные волны похожи на сейсмические волны на Земле, которые генерируются глубоко внутри звезды.
До космических телескопов наблюдалось очень мало синих сверхгигантов, поэтому знания ученых об этих звездах были ограничены. Ведущий астрофизик доктор Тамара Роджерс с коллегами из Университета Ньюкасла Великобритания в течение последних пяти лет работали над созданием симуляций звезд, подобных этим для того, чтобы попытаться предсказать, что заставляет поверхность таких звезд выглядеть так, как она выглядит. Моделируя внутреннее пространство звезд, команда предсказала, что гравитационные волны, подобные тем, которые мы видим в океане, могут разрушаться на поверхности звезд. Второй тип волны также был предсказан.
У голубых сверхгигантов быстрые звездные ветры, а в спектрах самых ярких, называемых гипергигантами , преобладают эмиссионные линии, указывающие на сильную потерю массы, вызванную континуумом. Голубые сверхгиганты показывают разное количество тяжелых элементов в своих спектрах, в зависимости от их возраста и эффективности, с которой продукты нуклеосинтеза в ядре конвектируются на поверхность. Быстро вращающиеся сверхгиганты могут быть сильно перемешаны и содержать большое количество гелия и даже более тяжелых элементов, при этом все еще сжигая водород в ядре; эти звезды показывают спектр, очень похожий на звезду Вольфа Райе. В то время как звездный ветер от красного сверхгиганта густой и медленный, ветер от синего сверхгиганта быстрый, но разреженный. Когда красный сверхгигант становится синим сверхгигантом, более быстрый ветер, который он производит, воздействует на уже выпущенный медленный ветер и заставляет истекающий материал конденсироваться в тонкую оболочку.
В некоторых случаях несколько концентрических слабых оболочек можно увидеть из последовательных эпизодов потери массы, либо из предыдущих синих петель от стадии красного сверхгиганта, либо из извержений, таких как вспышки LBV. Обратная связь: support alphapedia.
Может, 50 тысяч лет назад, а может, и 100. А что же будет, когда этот этап закончится? Будет великолепная вспышка, которая затмит в ночном небе саму полную Луну. Это называется взрывом сверхновой звезды. Её мантия сбрасывается в окружающий космос. Как будет выглядеть взрыв сверхновой Бетельгейзе. Поэтому астрономы пристально всматриваются в Бетельгейзе, ловят каждое её дыхание и при любом заметном изменении замирают в ожидании. Один из таких волнительных моментов был в 2019—2020 годах. Событие прозвали "великим затемнением". По основной версии, самые верхние слои звезды охладились, и на них как бы сконденсировалось облако выброшенной звёздной пыли. То есть в целом это одно из проявлений пульсации.
Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе
В пользу этого говорит хорошее соответствие моделям слияния свойств голубых сверхгигантов из галактики-спутника Млечного Пути Большого Магелланова Облака. Голубой сверхгигант Ригель и туманность IC 2118, которую он освещает. Голубые сверхгиганты недавно возникли из главной последовательности, имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. Для голубых сверхгигантов характерен сильный звёздный ветер, и как правило, в своём спектре они имеют эмиссионные линии. Голубые сверхгиганты — самые яркие звезды в родительских галактиках, однако их эволюционный статус является давней проблемой звездной астрофизики. В следующей части исследования будет предпринята попытка исследовать, как эти голубые сверхгиганты взрываются и вносят свой вклад в ландшафт черных дыр и нейтронных звезд.
Рождение звездных титанов: как формируются голубые сверхгиганты?
До космических телескопов наблюдалось очень мало синих сверхгигантов, поэтому знания ученых об этих звездах были ограничены. Ведущий астрофизик доктор Тамара Роджерс с коллегами из Университета Ньюкасла Великобритания в течение последних пяти лет работали над созданием симуляций звезд, подобных этим для того, чтобы попытаться предсказать, что заставляет поверхность таких звезд выглядеть так, как она выглядит. Моделируя внутреннее пространство звезд, команда предсказала, что гравитационные волны, подобные тем, которые мы видим в океане, могут разрушаться на поверхности звезд. Второй тип волны также был предсказан.
В результате значительного уменьшения площади поверхности увеличивается плотность излучаемой энергии, а это, в свою очередь, влечёт за собой нагрев поверхности. Такого рода сжатие массивной звёзды приводит к превращению красного сверхгиганта в голубой. Возможен также обратный процесс — превращение голубого сверхгиганта в красный. В то время как звёздный ветер от красного сверхгиганта плотен и медленен, ветер от голубого сверхгиганта быстр, но разрежён. Если в результате сжатия красный сверхгигант становится голубым, то более быстрый ветер сталкивается с испущенным ранее медленным ветром и заставляет выброшенный материал уплотняться в тонкую оболочку. Почти все наблюдаемые голубые сверхгиганты имеют подобную оболочку, подтверждающую, что все они ранее были красными сверхгигантами. По мере развития звезда может несколько раз превращаться из красного сверхгиганта медленный, плотный ветер в голубой сверхгигант быстрый, разрежённый ветер и наоборот, что создаёт концентрические слабые оболочки вокруг звезды. В промежуточной фазе звезда может быть жёлтой или белой, как, например, Полярная звезда. Как правило, массивная звезда заканчивает своё существование взрывом сверхновой , но очень небольшое количество звёзд, масса которых колеблется в пределах от восьми до двенадцати солнечных масс, не взрываются, а продолжают эволюционировать и в итоге превращаются в кислородно-неоновые белые карлики. Пока точно не выяснено, как и почему образуются эти белые карлики из звёзд, которые теоретически должны закончить эволюцию взрывом малой сверхновой.
Как голубые, так и красные сверхгиганты могут эволюционировать в сверхновую.
Эти когерентные волны похожи на сейсмические волны на Земле, которые генерируются из глубин звезды. Теперь, используя данные, собранные космическими телескопами NASA, международная группа экспертов впервые наблюдала звезду и обнаружила, что почти все эти неуловимые голубые гиганты на самом деле мерцают и пульсируют из-за наличия волн на их поверхности.
Как и предсказывалось, волны возникают в их глубоких недрах и открывают новые захватывающие перспективы для изучения этих звезд с помощью астеросейсмологии, аналогичной тому, как сейсмологи используют землетрясения для изучения недр Земли. Во всей Вселенной звезды бывают разных форм, размеров и цветов. Некоторые звезды похожи на наше Солнце и спокойно живут миллиарды лет.
Это событие также привело к пересмотру некоторых положений теории эволюции звёзд. Ригель [ править править код ] Самый известный пример — Ригель бета Ориона , самая яркая звезда в созвездии Орион , масса которой приблизительно в 20 раз больше массы Солнца и светимость примерно в 130 000 раз выше солнечной, а значит, это одна из самых мощных звёзд в Галактике во всяком случае, самая мощная из ярчайших звёзд на небе, так как Ригель — ближайшая из звёзд с такой огромной светимостью. Древние египтяне связывали Ригель с Сахом — царём звёзд и покровителем умерших, а позже — с Осирисом. Гамма Парусов [ править править код ] Гамма Парусов — кратная звезда, ярчайшая в созвездии Паруса.
Расстояние до звёзд системы оценивается в 800 световых лет. Гамма Парусов Регор — массивный голубой сверхгигант. Имеет массу в 30 раз больше массы Солнца. Его диаметр в 8 раз больше солнечного.
Светимость Регора — 10 600 солнечных светимостей. Необычный спектр звезды, где вместо тёмных линий поглощения имеются яркие эмисионные линии излучения, дал название звезде как «Спектральная жемчужина южного неба» Альфа Жирафа [ править править код ] Расстояние до звезды примерно 7 тысяч световых лет, и тем не менее, звезда видна невооружённым глазом. Это третья по яркости звезда в созвездии Жирафа, первое и второе место занимают Бета Жирафа и CS Жирафа соответственно.