Новости коэффициент джини показывает

Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат.

Ваш пароль

Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.

Доверительный интервал коэффициента Джини. Что это?

В 2023 году коэффициент Джини (индекс концентрации доходов) составил 0,403, сообщил Росстат. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. Как указывает автор, коэффициент Джини лишь один из многих измерителей неравенства, и сказанное относительно коэффициента Джини в равной мере относится и к остальным, близким по содержанию показателям (например, к индексам Тейла, Аткинсона, Херфиналя-Хиршмана.

РБК: Росстат зафиксировал рост концентрации доходов в 2023 году

В этом информативном видеоролике вы узнаете о коэффициенте Джини и о том, что он говорит нам о неравенстве доходов. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf).

Что бы сделал Робин Гуд?

Коэффициент Джини, равный 1 единице , означает, что в обществе наблюдается абсолютное неравенство, в то время как 0 ноль означает полное равенство. В действительности население любой страны или региона в каждый конкретный момент находится где-то между этими показателями. Коэффициент Джини для Коста-Рики — 0,48 — самый высокий среди стран Организации экономического сотрудничества и развития ОЭСР , что свидетельствует о высоком неравенстве в доходах местного населения.

При уровне ВВП на душу населения - 17 тысяч долларов за чертой бедности в России живут примерно 13 процентов человек, что, по мнению специалистов, является почти нонсенсом. Особенно, если учесть, что доля теневой экономики в нашей стране остается достаточно высокой - 25-30 процентов. Эти деньги не учитываются в ВВП, значит, его реальный уровень выше официального. При этом большая часть доходов от теневого сектора достается людям небедным, а, значит, и реальное расслоение общества выше. Один из способов искоренения неравенства доходов предполагает поддержку со стороны государства систем здравоохранения, социального обеспечения и образования. В этом случае люди с меньшими доходами могут получить удовлетворительное физическое состояние, уверенность в завтрашнем дне и образование. Такой подход предоставляет необходимые условия для жизни всем.

Другой путь борьбы с неравенством предполагает изменения в налоговой системе и, в частности, системе прогрессивного подоходного налога. В этом отношении есть существенная разница в применяемых нормах разных стран, диапазон процентных ставок в разных странах отличается. Число российских миллионеров, чьё состояние превышает 100 миллионов долларов, к 2017 году вырастет на 76 процентов.

Факторы, влияющие на неравенство доходов в России Неравенство доходов в России обусловлено множеством факторов, которые влияют на распределение доходов между различными слоями населения. Ниже приведены некоторые из основных факторов, которые оказывают влияние на неравенство доходов в России: Различия в заработной плате Одним из основных факторов, влияющих на неравенство доходов, являются различия в заработной плате. В России существует значительное различие в заработной плате между разными профессиями и отраслями экономики. Некоторые профессии, такие как финансовые специалисты и менеджеры, получают значительно более высокую заработную плату, чем рабочие в сфере обслуживания или сельском хозяйстве. Образование и квалификация Уровень образования и квалификация также оказывают существенное влияние на неравенство доходов.

Люди с высшим образованием и специализированными навыками обычно имеют больше возможностей для получения высокооплачиваемой работы и, следовательно, зарабатывают больше. В то же время, люди с низким уровнем образования и ограниченными навыками часто оказываются на низкооплачиваемых работах и имеют меньше возможностей для повышения своего дохода. Региональные различия Россия — это огромная страна с различными регионами, и неравенство доходов может существенно различаться в разных частях страны. Некоторые регионы, такие как Москва и Санкт-Петербург, имеют более высокий уровень доходов и лучшие возможности для работы и развития, в то время как другие регионы, особенно сельская местность и отдаленные районы, могут страдать от низкого уровня доходов и ограниченных возможностей. Неравенство в собственности и бизнесе Неравенство доходов также связано с неравенством в собственности и бизнесе. Богатые люди и предприниматели имеют больше возможностей для создания и развития своего бизнеса, что позволяет им зарабатывать больше денег. В то же время, люди без собственности или с ограниченными возможностями для предпринимательства могут оказаться в более уязвимом положении и иметь меньше возможностей для улучшения своего дохода. Социальные и политические факторы Социальные и политические факторы также могут оказывать влияние на неравенство доходов.

Например, наличие социальных программ и государственной поддержки может помочь снизить неравенство доходов, предоставляя бедным и уязвимым группам населения доступ к основным услугам и возможностям. В то же время, политические реформы и изменения в экономической политике могут также влиять на неравенство доходов, создавая новые возможности или ограничивая доступ к ресурсам и возможностям. В целом, неравенство доходов в России является сложным и многогранным явлением, которое обусловлено различными факторами. Понимание этих факторов помогает нам лучше понять причины и последствия неравенства доходов и разработать эффективные меры для его снижения. Последствия неравенства доходов в России Неравенство доходов в России имеет серьезные последствия для общества и экономики. Вот некоторые из них: Социальные проблемы Неравенство доходов может привести к социальным проблемам, таким как бедность, безработица и социальное неравенство. Люди с низкими доходами могут испытывать трудности в доступе к основным услугам, таким как образование, здравоохранение и жилье. Это может привести к ухудшению качества жизни и увеличению социального неравенства.

Экономические последствия Неравенство доходов может оказывать негативное влияние на экономику. Когда большая часть доходов сосредоточена у небольшой группы людей, это может привести к снижению потребительского спроса и ограничению рынка для товаров и услуг.

Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и со временем эта взаимосвязь менялась. Майкл Моатсос из Утрехтского университета и Джори Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство немного росло, а затем уменьшалось по мере роста ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало. Ограничения индекса Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от надежных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран.

В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов. Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства. В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам.

В России вырос уровень доходного неравенства

Несмотря на отсутствие официальных данных о росте зарплат в ВПК, полная загрузка производственных мощностей в отрасли увеличила спрос на кадры, а следовательно, и уровень дохода сотрудников. Дефицит кадров в определённых отраслях. Например, за счет значительного сокращения в 2022 г. Эксперты считают, что тенденция продолжится Фото: pixabay. Сфера информационных технологий IT привлекательна на российском рынке труда из-за высоких зарплат и льготной ипотеки.

Доступ к официальной статистической информации, включенной в состав статистических ресурсов, входящих в межведомственную систему, осуществляется на безвозмездной и недискриминационной основе.

Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма.

Ученые выяснили, почему начал таять ледник Туэйтса «ледник Судного дня». Этот процесс связали с феноменом Эль-Ниньо: повышение температуры поверхностного слоя воды на востоке Тихого океана. Когда ледник полностью растает, уровень моря поднимется на 0,6 метра, а в перспективе и на 3 метра. Это может дестабилизировать всю западную часть Антарктического ледяного щита. Депутаты Госдумы от фракций ЛДПР, КПРФ и «Справедливая Россия — За правду» внесли законопроект, разрешающий использовать средства материнского капитала на получение платных медицинских услуг или покупку лекарств для ребенка. Миссия ООН покинула Судан. В апреле 2023 года между армией Судана и силами быстрого реагирования начались столкновения.

Генеральный секретарь ООН Антониу Гутерриш призвал воюющие стороны сложить оружие и приступить к мирным переговорам.

Эта отметка установлена 18 апреля 2012. Недостатки коэффициента Джини Довольно часто коэффициент Джини приводится без описания группировки совокупности, то есть часто отсутствует информация о том, на какие же именно квантили поделена совокупность. Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини.

Коэффициент Джини не учитывает источник дохода, то есть для определенной локации страны, региона и т. Метод кривой Лоренца и коэффициента Джини в деле исследования неравномерности распределения доходов среди населения имеет дело только с денежными доходами, меж тем некоторым работникам заработную плату выдают в виде продуктов питания и т. Различия в методах сбора статистических данных для вычисления коэффициента Джини приводят к затруднениям или даже невозможности в сопоставлении полученных коэффициентов.

Коэффициент Джини: формула неравенства

В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат. Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход.

В России зафиксирован рост доходного неравенства

Коэффициент Джини для Коста-Рики — 0,48 — самый высокий среди стран Организации экономического сотрудничества и развития ОЭСР , что свидетельствует о высоком неравенстве в доходах местного населения. Он составляет всего 0,24. Материалы по теме.

Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку.

Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него. По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой.

Сравним все полученные результаты метрик. Показатель Модель без доп.

Это, когда доходы распределены абсолютно неравномерно.

А это как? Это когда один человек забирает все доходы, а остальные питаются воздухом. И кривая абсолютного неравенства тогда будет выглядеть как красная кривая на графике слева.

Также, как и кривая абсолютного равенства, кривая абсолютного неравенства имеет сугубо теоретический смысл, пока что история не знает реальных примеров стран, где было бы абсолютное равенство или абсолютное неравенство. Эти линии мы построили только для того, чтобы ориентироваться, к какой из этих крайностей ближе кривая Лоренца для страны Казыстан. Теперь, когда у нас есть с чем сравнивать, становится понятно: чем дальше от красной линии или чем ближе к синей линии находится кривая Лоренца — тем более неравномерно распределены доходы.

Напряженность на рынке труда Рост заработных плат связан с кадровым голодом, уверена профессор кафедры государственных и муниципальных финансов РЭУ им. Плеханова Юлия Финогенова. Он возник в результате оттока специалистов за границу, роста отдельных отраслей из-за развития импотрозамещения и демографических проблем. Средний уровень зарплат при этом «не отражает реальной ситуации на рынке», уточнила она.

Он происходит в основном за счет отдельных отраслей — таких как ИТ, строительство и недвижимость, логистика, транспорт, розничная торговля, где компании вынуждены «перекупать» специалистов. При этом макроэкономическая стабилизация возможна только при условии, что рост зарплат будет сопровождаться положительной динамикой производительности труда и цифровизацией, уточнила она. В противном случае избыток денежной массы может спровоцировать дальнейший рост инфляции. Среди ключевых причин такого низкого уровня безработицы он выделил демографическую яму 1990-х, рост количества самозанятых, увеличение количества граждан, имеющих неполную занятость.

Доверительный интервал коэффициента Джини. Что это?

Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения.

Похожие новости:

Оцените статью
Добавить комментарий