Новости светодиодная подсветка для телевизора

Заменить светодиод в подсветке телевизора Когда владелец телевизора выяснил, что причиной неисправности являются светодиоды, тогда появляется вопрос: чем заменить светодиоды в подсветке телевизора? Что такое светодиодная LED подсветка в телевизоре – это источник света, ответственный за появление картинки на экране. Первое наименование подсветки это Direct LED и она устанавливалась на телевизоры с 2012 года.

Технология LED TV - как это работает

Помните о зонах локального затемнения у U7HQ? У него светодиоды так же разделены на группы, но и они сами, и зоны, в рамках которых они сгруппированы в 50 раз меньше обычного. Это позволяет управлять подсветкой гораздо точнее, получая ещё более достоверный чёрный цвет. Если вернуться к примеру с луной на ночном небе, то в случае с Mini-LED вокруг неё практически не будет заметно контура — яркий объект будет окружен темнотой.

Для сравнения на ТВ с обычной зональной подсветкой та же сцена смотрится менее контрастно, поскольку сквозь матрицу просачивается больше света, чем это нужно в данный момент, как-раз за счёт большего размера групп подсветки и диодов в них. Но что это такое? В этом и есть основная фишка всей технологии: OLED-матрице не нужен внешний источник света.

Она и есть этот источник! Следовательно, пиковой яркости можно достичь на одном пикселе и просто выключить соседний, если его работа сейчас не нужна. Из вышесказанного вытекает следующее: органические светодиоды — вершина эволюции дисплеев на текущий момент.

И главная их фишка — они позволяют получить идеальный черный цвет по всей площади экрана в любой точке и добиться высокой контрастности. Для сравнения: если взять самый быстрый сейчас игровой монитор, то это в 50 000 раз более быстрый отклик пикселей и до трёх раз сокращённое время задержки. Но контраст здесь, разумеется, во главе угла.

Ту самую луну на тёмном небе A85H покажет идеально: без контуров, ореолов и других возможных артефактов изображения, ведь как мы помним из описания технологии OLED, каждый пиксель на матрице, которых тут несколько десятков миллионов, излучает свечение самостоятельно, а при необходимости, просто выключается. Тут же освежаем в памяти, что весь этот сложный процесс занимает всего три тысячных миллисекунды и делаем вывод: в сочетании с частотой обновления 120 Гц это выводит A85H в категорию ультимативного решения для любителей поиграть на большом экране: телевизора быстрее и отзывчивее чем OLED попросту не существует. Равно как и нет решения, лучше подходящего для HDR-контента.

Говоря проще, достигнуть как можно большего контраста между самым светлым и самым тёмным участком картинки, а OLED — идеальная для этого технология. Впрочем, есть у OLED и недостатки. Первый — возможное выгорание пикселей из-за продолжительной работы под напряжением.

Именно поэтому OLED-панели могут бояться статических элементов картинки — логотипов телевизионных каналов, неподвижных элементов меню ОС и HUD в играх: все они требуют постоянной работы пикселей с одинаковой яркостью, а значит, и постоянного напряжения. Второй — конструкция субпиксельной структуры. У традиционных ЖК-моделей субпиксели расположены в ряд: красный, зелёный, затем синий.

На восприятие медиаконтента это не влияет — вы увидите привычную для себя картинку, но вот с текстом дело обстоит хуже: он не такой чёткий, как на ЖК-панелях, так как края символов окружены крохотным радужным ореолом.

Аура, излучаемая комплектом подсветки, действует как золотая середина между ярким экраном и темным окружением, избавляя ваши глаза от необходимости приспосабливаться к контрастной динамике. В: Какой цвет подсветки лучше всего подходит для телевизора?

Подсветка может быть разных цветов, поэтому вы можете свободно экспериментировать с цветами и выбирать, какой из них лучше всего подходит для вашей комнаты. Однако оттенок белого — хороший способ снизить нагрузку на глаза. В: Как установить светодиодную подсветку на телевизор?

Возможность создавать ультратонкие модели мониторов с переносным блоком питания, завоевавшие большую популярность у покупателей благодаря рекламе. Низкое энергопотребление, невозможно реализовать в других вариантах. По ярким характеристикам краевая подсветка занимает среднее положение и сильно зависит от качества сборки и основы используемых элементов. Но в целом цветопередача сравнима с технологией CCFL.

Модели телевизоров с боковой подсветкой не могут получить высококонтрастное изображение по двум причинам. Все светодиоды светятся с одинаковой яркостью, одинаково освещая темные и светлые области экрана. Световоды, несмотря на продуманную конструкцию, не могут обеспечить равномерного распределения света по всей рабочей поверхности. Direct Подсветка матрица представляет собой матрицу, собранную из нескольких линий с распределенными по площади светодиодами.

Этот метод обеспечивает равномерное освещение всей ЖК-панели и, что самое главное, позволяет осуществлять динамическое управление. В результате разработчикам удалось добиться высокой контрастности изображения и насыщенности черного. Прямая подсветка реализована двумя способами. Первый, самый распространенный, собран на белых светодиодах или WLED, что в принципе одно и то же.

Он может быть статическим или динамическим, в зависимости от модели телевизора. Второй предполагает, что вы используете светодиоды RGB вместо белых. С их помощью можно регулировать не только яркость, но и устанавливать любой цвет из всего видимого спектра. Благодаря высокой скорости переключения светодиоды отлично реагируют на подаваемый сигнал и идут в ногу с быстро меняющимся изображением на экране.

Подсветка RGB построена только на динамической основе. Матричные дисплеи с подсветкой обеспечивают отличную контрастность и точность цветопередачи по всему экрану. Это их главное преимущество, которое кроется сразу за несколькими недостатками, а именно: высокая цена; высокое энергопотребление, сопоставимое с технологией CCFL; корпус более дюйма толщиной. Если один из светодиодов выходит из строя, вся линия гаснет.

Это явление появится на экране в виде затемненной области. Самостоятельно заменить сгоревший элемент на аналогичный не получится, так как найти точную копию с таким же объективом практически невозможно. В итоге замене подлежит вся линейка. Сначала телевизоры со светодиодной подсветкой использовались для освещения ячеек ЖК-матрицы «полной матрицы» светодиодов по аналогии со стандартными телевизорами, основанными на подсветке лампами CCFL.

Но чтобы изменить толщину телевизоров в сторону меньшего размера, разработчики отказались от использования полного массива светодиодов на задней части экрана, установив линейку источников света сбоку от ЖК-панели. Таким образом, распределение света от светодиодных источников по всей площади экрана осуществляется с помощью светодиодов специальной формы. Эти модели ЖК-телевизоров называются телевизорами с боковой или боковой светодиодной подсветкой, которые сегодня доминируют. Светодиодная подсветка с локальной системой затемнения позволяет автоматически затемнять или полностью отключать отдельные группы источников подсветки.

При использовании локального затемнения некоторые области общего массива светодиодов подсветки становятся темнее или светлее в зависимости от яркости и цвета соответствующей части изображения на экране. Возможность затемнить определенную область экрана может уменьшить количество света, проходящего через закрытые пиксели ЖК-панели, что положительно сказывается на воспроизведении черного цвета, который становится темнее и реалистичнее. Поскольку уровни черного имеют решающее значение для контраста, восприятия глубины черных поверхностей, цветное изображение становится более выразительным и резким. У технологии локального затемнения есть только один недостаток: эффект локальной дымки, которая образуется, когда часть света из более ярких областей проникает в соседние более темные, которые впоследствии осветляют темный цвет на границе.

Со стандартной подсветкой CCFL и большинством ЖК-телевизоров с боковой светодиодной подсветкой все источники подсветки одновременно включаются или тускнеют так называемое глобальное затемнение , но телевизоры Samsung и LG редко имеют дисплеи с боковой светодиодной подсветкой, которые могут работать также по принципу локального затемнения. Проще говоря, это поддержка локального затемнения. Тонкие модели с боковой светодиодной подсветкой наверняка страдают неравномерной подсветкой экрана, но это еще не все. Главная особенность телевизоров с боковой светодиодной подсветкой — тонкий корпус, из-за которого сложно обеспечить равномерное распределение светового потока по всей плоскости экрана.

При покупке телевизора воспроизведите белую поверхность на боковом светодиодном дисплее, чтобы убедиться, что по краям экрана нет более ярких участков. Точно так же, когда экран заполнен черной рамкой, края больше не должны казаться более светлыми серыми. Также следует отметить, что светодиодная подсветка, независимо от типа, не улучшает углы обзора ЖК-панели. Уровень черного при использовании светодиодной подсветки и возможном смещении угла обзора на 1-2 метра влево или вправо уменьшается.

Нельзя забывать об энергоэффективности светодиодной подсветки. Конечно, на энергопотребление любой модели очень сильно влияют размер экрана и яркость источников подсветки. ЖК-телевизоры со светодиодной подсветкой обоих типов значительно более энергоэффективны, чем плазменные. Светодиодные подсветки для ЖК-дисплеев делятся на категории по следующим признакам: цвет свечения: белый или RGB; равномерность освещения: статическая или динамическая; конструктивная: матричная или боковая более подробно описано выше Подсветка RGB используется для реализации возможности точной настройки светового спектра.

Кроме того, часто используется дополнительная компенсация изменений в спектре излучения светодиодов с течением времени. В светодиодных телевизорах со светодиодной подсветкой RGB разные области экрана подсвечиваются в зависимости от цвета картинки. Цветная подсветка обеспечивает лучшую контрастность и глубокий черный цвет, о чем свидетельствуют многие светодиодные телевизоры Sony. Edge LED: лучшая цветопередача Sony использует технологию Triluminos в своих новых флагманских моделях телевизоров, таких как линейка W905.

Встроенная в рамку телевизора со всех сторон экрана светодиодная подсветка Edge LED дополнена так называемыми квантовыми точками — полупроводники размером в несколько сотен атомов, излучающие свет в строго заданном диапазоне. Технология Triluminos разработана для минимизации искажения цвета и усиления красных и зеленых оттенков. Это позволит получать очень гладкие и естественные изображения с гораздо более широким диапазоном цветов. Устройства серий W805 и W605, также поступившие в продажу в этом году, не используют Triluminos, а значит, их стоимость значительно ниже.

В будущем производители смогут полностью отказаться от светодиодной подсветки в пользу квантовых точек. Преимущества и недостатки каждого из вариантов Чтобы сравнить два решения и понять плюсы и минусы каждого из них, необходимо сравнить характеристики каждого и выделить положительные и отрицательные стороны. Сравнительная таблица плюсов и минусов. Прямая светодиодная подсветка Edge LED backlight Достоинство Недостатки Равномерное освещение всей матрицы благодаря расположению источников света и наличию рассеивателя Высокая яркость и хороший контраст изображения.

Сравнительный тест 6 жидкокристаллических телевизоров со светодиодной подсветкой Диодов негасимый свет Жидкокристаллические телевизоры со светодиодной подсветкой Светодиоды все увереннее вытесняют люминесцентные лампы с холодным катодом из корпусов жидкокристаллических телевизоров. Но при всех неоспоримых преимуществах подобной подсветки ее использование связано с решением целого комплекса технических проблем, что отражается на стоимости аппаратуры. Потому пока подобная схема применяется лишь в топовых линейках крупных компаний, представителей которых мы и собрали для сравнительного тестирования Запущенный в оборот с легкой руки маркетологов термин «LED-телевизор» может легко ввести в заблуждение. Настоящие светодиодные дисплеи, где изображение формируется именно с помощью этих полупроводниковых элементов, слишком велики, а потому используются лишь как рекламные экраны на улице, в аэропортах, на стадионах. A за названием LED-телевизора скрывается дисплей, изображение в котором формируется на слое жидких кристаллов, меняющих поляризацию проходящего через них света в зависимости от приложенного к ним электрического поля, — совершенно аналогично тому, как это происходит в привычных ЖК-моделях. А как же светодиоды? Общеизвестно, что жидкокристаллические матрицы, в отличие от плазменных, не являются излучающими, а значит, требуют внешнего источника света. До недавнего времени эту роль играли люминесцентные лампы с холодным катодом, и как раз их-то в LED-телевизорах и заменили светодиоды. LED-подсветка бывает двух типов — LED Backlight тыловая , когда излучающие элементы располагаются позади слоя жидких кристаллов по всей поверхности экрана, и Edge LED, когда диоды монтируются с торцов экрана, а равномерность подсветки обеспечивается системой световодов. К преимуществам LED-подсветки любого типа, помимо меньшего энергопотребления и более продолжительного срока службы техники, относится широкий спектр излучения, что позволяет добиваться лучшего цветового охвата.

Кроме того, тыловая подсветка позволяет реализовать динамическое управление яркостью отдельных участков экрана Local Dimming , что способствует росту контрастности изображения и насыщенности цветов. Зато если расположить светодиоды с торцов дисплея, то можно добиться рекордно малой толщины корпуса. Нам удалось свести вместе почти всех представителей этого пока немногочисленного племени.

Сравнительный тест 6 жидкокристаллических телевизоров со светодиодной подсветкой

В телевизорах с этим типом подсветки не предусмотрены ЖК-экраны над массивами диодов. купить с доставкой по выгодным ценам в интернет-магазине OZON (1252672236). Светодиодная лента для подсветки клеится сзади телевизора по всему периметру. Наиболее распространенной подсветкой для ЖК-дисплеев (и светодиодов) является холодная люминесцентная лампа с задней подсветкой (CCFL) и светодиодная подсветка с краев.

7 лучших комплектов подсветки телевизора для приятного фонового освещения

Если у Вас когда-либо был современный телевизор от Philips, то Вы наверняка сталкивались с технологией фоновой подсветки Ambilight. Технология подсветки LED в современных телевизорах, в чем преимущества и недостатки led экранов. Компанией DetalkofLED предлагается оптом или в розницу оригинальная светодиодная подсветка телевизора, цена которой максимально привлекательна для потребителя. Хотите приобрести экологичную, энергосберегающую и высококачественную светодиодную подсветку телевизора от профессиональных производителей? QLED телевизоры отличаются типом подсветки и конечный результат в качестве изображения зависит именно от неё.

Что такое Dual LED в телевизорах Samsung: вот что вы должны знать

Чем больше этот параметр, тем более четкое изображение и больше разных деталей можно разглядеть на экране. Это самые популярные форматы видео в настоящий момент. Это формат расширенного динамического диапазона, который позволяет изображать картинку максимально приближенной к действительности. Покрытие экрана. Различают матовое и глянцевое. При матовом покрытии изображение более мягкое. Угол обзора ограничен. При попадании солнечного света отсутствуют блики. Если покрытие глянцевое, то на экране картина очень яркая и контрастная. При ярком солнечном освещении видимость становится хуже.

Функциональные разъёмы. В последних моделях встречается видеопорт D-sub. Он предполагает подключение компьютера к телевизору. Частота развертки. Показатель того, сколько кадров фильма показывается за секунду. Измеряется в Герцах и может достигать величины до 960 Гц. Для 3D телевизоров частота может быть ещё выше. Дополнительные возможности DVB-T. Стандарт цифрового телевидения.

Позволяет, кроме аналогового кабельного и эфирного телевидения, подключать спутниковое. Объемное 3D изображение. С помощью этой опции можно просматривать объемные картинки с активным или пассивным 3D. Необходимо позаботиться о специальных очках. Смарт ТВ. Разрешает подключить и использовать интернет. Подключение происходит через модуль WiFi. Возможно подключение через сетевой кабель. Некоторые телевизоры позволяют встраивать роутер дополнительно.

Со Smart T. Советы при выборе LED устройства стали популярны. Ведь LED-телевизор — что это значит? Это высокое качество, удобств и комфорт в использовании. Преимущество жидкокристаллического телевизора — светодиодная подсветка, есть у всех LED моделей.

Первый вид — это палочки, наше сознание интерпретирует сигналы от них, как яркость. Три других — колбочки. Наше сознание интерпретирует сигналы с них как цвета: красный, зелёный и синий — именно из-за этого мы воспринимаем цвет как смесь трёх цветов. Вот только ловят эти сенсоры не строго определённые длины волн, а целые диапазоны, причем каждый сенсор в своем диапазоне по-разному чувствителен к разным длинам волн. К примеру, зелёный сенсор ловит хорошо 534 нм.

Но и 500 нм он тоже обнаружит, только хуже. Обнаруженная яркость будет меньше. Сенсор яркости палочка лучше всего ловит 498 нм — это очень близко к зелёному, и поэтому зелёный цвет кажется нам самым ярким. Как мы видим разные цвета? Например, жёлтый? Жёлтый — это 570 нм. Значит, думай, что это жёлтый». Хотя, в реальности, это может быть и не жёлтый, а обманка в виде того самого зелёного и красного, которую излучил дисплей. Да, ваш дисплей если это не Sharp особой серии настоящий жёлтый цвет показать не сможет, всё это обман. Некоторые живые существа, кстати, вполне могут это заметить.

Здесь должна быть маленькая формула с интегралом, но, к несчастью для интегралов, они очень пугают большинство людей. Объясню словами. Сенсор не детектирует какую-то одну длину волны, а суммирует амплитуды яркость всех обнаруженных длинн волн. Но не просто суммирует. Перед этим суммированием всего-всего, он домножает яркость каждой длины волны на свою сенсора способность видеть эту длину волны, то есть свою чувствительность к этой длине волны. Пример с зелёным сенсором. Посветим на него одновременно несколькими длинами волн: 450 нм, 500 нм, 550 нм и 600 нм. Каждая волна будет иметь условную яркость в 1 единицу. Посмотрите на график, и увидите, какая у него чувствительность к этим длинам волн. Как он будет действовать?

Яркость волны длиной 450 нм, равную 1 он умножит на 0,1 Яркость волны длиной 500 нм, равную 1, он умножит на 0,4 Яркость волны длиной 550 нм, равную 1, он умножит на 1,2 Яркость волны длиной 600 нм, равную 1, он умножит на 0,4 А потом всё это сложит. Получится 2,1. И он отправит значение 2,1 в зрительный нерв на самом деле не сразу, в сетчатке есть своя мини-нервная система, выполняющая предварительную обработку информации, но это не важно. Пример двух спектров, которые на химическом и физическом уровне абсолютно разные, но для сенсора — то же самое Теперь убираем все эти четыре длины волны, и, вместо этого, светим одной в 525 нм и яркостью 2,1. Сенсор снова сделает это умножение-сложение, и у него снова получится 2,1. То же самое. Поэтому, с информационной точки зрения, для сенсора два этих воздействия — абсолютно одно и то же. Сенсор выдаёт только интенсивность, просто циферку — и мозг, как-бы, будет видеть одно и то же. Только вот сенсор живой и электрохимический. Он требует обслуживания, заботы и управления, надо подкачивать разные нужные вещества и калибровать всякие биологические штуки.

Кислород с витаминками, и всё такое. Не одно и то же всё время, а по ситуации: от воздействия света разной интенсивности и длины волны в палочках и колбочках возникают разные фотохимические реакции, и баланс веществ в них постоянно меняется. Чтобы грамотно рассчитать калибровку нервных окончаний и дозу веществ и витаминок в нужный момент времени, организм должен понять, какое на этот сенсор идет воздействие со стороны внешней среды, и на основе этого сделать нужные организменные штуки с этим сенсором. Адаптировать его к ситуации. А какое воздействие на глаз может быть со стороны внешней среды? Если не брать во внимание нештатные сценарии шлицевая отвёртка , то это могут быть только электромагнитные волны разной частоты длины волны. Очень условный гипотетический! Организм начеку — как только эта длина волны появилась, надо усилить подкачку новых молекул этого витамина, чтобы концентрация не снижалась. Но сенсор даёт очень скудную информацию — лишь одно число, и по нему непонятно, что там происходит. Вдруг там 458 нм, или 461 нм?

Сенсор всё равно выдавал бы одно и то же. А может там вообще только 500 нм? Тогда, если мы ложно испугаемся и ошибочно начнем пихать туда новые дополнительные витаминки, их там будет, наоборот, переизбыток — а это тоже нехорошо. То есть, на информационном уровне, сенсор детектирует зелёный цвет и всё, а на физиологическом уровне на него разные длины волн в спектре действуют по разному, просто он об этом доложить организму не может. Как же узнать, что витаминки действительно уничтожаются и их пора подкачивать? Поставить спектрограф? Природа их делать не умеет. Датчик на каждое вещество и каждый чих в каждый сенсор — глаза будут размером с арбузы и очень мясные, придётся уменьшить мозг и качать шею. Но можно сделать проще — ориентироваться на среднюю температуру по больнице. Природа любит так делать.

Для того, чтобы полностью оценить это воздействие, и, в частности, узнать, как сильно светит волна 459 нм, нужно знать весь спектр, а не одну циферку с сенсора. За неимением спектрографа, организм, руководствуясь генетическим опытом, выработанным в ходе эволюции нашего вида, выдумывает наиболее вероятный спектр, который бы воздействовал на сенсор так, чтобы получился как раз тот сигнал-циферка, которая с этого сенсора и поступает в данный момент. То есть он пытается выдумать такой спектр, при котором бы сенсоры выдавали то, что они выдают в данный момент. Поскольку он знает только естественный спектр и его формы, то выдумывает именно естественный спектр. И, поскольку сенсор не один, а четыре, очень грубую картину спектра организм таки восстанавливает. Естественный для нашего организма спектр — это довольно плавная штука: Естественный спектр Плавный он по простой причине. Что видел глаз всю эволюцию? Листики с травинками, камешки, небо с речками, волосня товарища по пальме, вот это всё. Большое разнообразие химических элементов, одним словом. И почти для каждой длины волны найдется какая-нибудь молекула, хорошо отражающая именно её.

И получается, что когда веществ много разных, то отражаются почти все волны, и спектр этих отражённых волн плавный. А что значит «плавный спектр»? График плавный. Например, яркости 480 нм много — значит, скорее всего, и 479 нм, и 475 нм, и 485 нм тоже довольно много. Физиология глаза заточилась под эту вездесущую плавность — потому что это всегда срабатывало. Работает — не трогай. Все, у кого глаз подстраивался неправильно, плохо видели и были заклёваны саблезубыми мамонтами, не дав потомства. Но потом появились искусственные источники света. Их спектр бывает очень разный. В большинстве случаев, он очень сильно отличается от естественного спектра, под который эволюционно заточена автонастройка наших глаз.

Спектры разных искусственных источников света Например, производители отчаянно воюют со светодиодами, которые очень любят длину волны в районе 430 нм и шпарят ей, как прожекторы, а в природе такого не бывает, там если 430 нм шпарит — то 420 нм и 440 нм тоже будут шпарить. И вот светодиод, у которого 430 нм светит ярко, а в окрестности нет, светит в глаз. Организм думает, что раз синий датчик выдаёт что-то интенсивное, значит 420 нм, и 430 нм, и 440 нм много, и начинает на физиологическом уровне подстраиваться под этот спектр. Подкачивает не те вещества, не в той концентрации и невпопад, генерирует неверные стимулы всяких нейронов, неправильно калибрует чувствительность. В глазах нарушается баланс нужных веществ и электрохимических регулировок, и глаза начинают вполне справедливо докладывать о сбоях. Эти сбои наше сознание интерпретирует как неестественность картинки и усталость глаз. Словом, не для того у нас эти две штуки в голове выросли. Неестественный спектр создаёт ощущение неестественности цвета. Сенсоры передают в мозг нужную информацию, на информационном уровне всё нормально — картинка как картинка, но авторегулировка физиологии глаза отрабатывает неадекватно ситуации, потому что неправильно рассчитывает предположение о том спектре, который светит в глаз. Если же спектр естественный — то представление организма о спектре и его реакции адекватны реальному воздействию на сетчатку — и цвета кажутся мягкими.

Потому что с физиологией всё хорошо. Спектр решает, будут цвета ощущаться мягкими и естественными, или нет. Давайте делать дисплей. Светоизлучающих элементов, способных выдавать любую видимую длину волны, пока не сделали. А жаль. Поэтому делаем просто — под каждый сенсор в нашем глазу свой элемент на дисплее. Красному — 700 нм, зелёному — 550 нм, синему — 450 нм. Будем этими элементами дисплея стимулировать сенсоры глаз так же, как это делают цвета, и обманем глаз, чтобы он думал, что видит цвет. В длинах волн и частотах видимого спектра стоит коварный капкан для мозга. Случайно или нет?

Длины волн видимого спектра - от 380 до 780 нм, а частоты - от 380 ТГц до 790 ТГц. Например, у оранжевого частота 500 ТГц, а у бирюзового - длина волны 500 нм. Частота и длина волны - это, как-бы, взаимно обратные величины, и вот такой вот нюанс с почти одинаковыми цифрами может сильно путать мозг Резюмируем. У нас в дисплее три источника света: красный, зелёный и синий. Когда они будут светить одновременно — мы будем стимулировать сразу три сенсора в глазу — и будет белый. Вот только этот белый — какой у него будет спектр? Если этот спектр будет неестественным, то от такого дисплея устанут глаза. А если наоборот, спектр получится более естественным — картинка будет выглядеть мягкой и глаза не будут уставать. И так не только с белым, а вообще со всеми цветами. В этом вся соль.

К слову, в ныне вымерших плазменных телевизорах, особенно последних моделей, дела со спектром обстояли очень и очень хорошо. Поэтому у многих из них картинка выглядит, местами естественнее, чем на OLED, если не брать в расчёт моральное устаревание и связанные с этим аспекты. Свет от Солнца до Земли летит миллионы лет А как же отражённый свет? Да никак. Фотоны не бывают «отражённые» и «прямые». Если хочется, можно даже сказать, что все фотоны вокруг нас — отраженные. Даже с Солнца. Почему же на лампочку и солнце смотреть больно, а на объекты, освещенные ими нет? Ну ясно-понятно, это же прямой свет, а не отражённый. Не по этому.

Когда солнце или лампочка проецируется на сетчатку глаза, то на сравнительно маленькой площади сетчатки появляется слишком много яркого света. Источник света же точечный. Вот он в виде этой точки и проецируется. Если натянуть на лампочку большой трёхметровый светорассеиватель, то на него вполне комфортно будет смотреть. И наоборот, если осветить комнату мощным военным прожектором и посмотреть на мебель в этом «безвредном» отражённом свете, то это может оказаться последним, что вы увидите. Потому что смысл в яркости, а не в том, откуда свет. Точнее, концентрации яркости на условном кусочке сетчатки глаза. Лазеров это тоже касается — сами по себе, они не вредные. Просто у лазеров спектр очень-очень далёк от естественного, и лазером гораздо легче получить концентрированную яркость на маленьком участке сетчатки. Лазер мы встречаем в жизни чаще, чем сверхмощные военные прожекторы по крайней мере, пока что , поэтому проблема попадания лазера в глаз встречается чаще.

Сенсоры сетчатки могут перегрузиться и сгореть, поэтому сигнализируют об этом, если успеют. Вот поэтому нам неприятно смотреть те штуки, которые перегружают их. Давайте посмотрим на фотоны поближе и изучим их повадки. Не будем заострять внимание на том, что мир для них двумерный, времени не существует, и они вообще не «летят» — лучше обратим внимание на то, как они отражаются. Когда свет летит через плазму или газ — фотоны не летят через него. Вместо этого, атомы газа постоянно поглощают и переизлучают фотоны заново. Как по цепочке. Долетают не «те самые» фотоны, а «новые» физики, держитесь. На постоянное поглощение-переизлучение уходит время, именно поэтому свет в веществе замедляется. Точно также, когда фотоны «отражаются от поверхности» — на самом деле они поглощаются, и переизлучаются новые.

Большая часть фотонов, прилетающих с Солнца на Землю, рождаются у него в сердце, и миллионы лет скитаются в толще его плазмы, переизлучаясь-отражаясь огромное число раз, прежде, чем вырваться на волю и долететь до нас за те самые 8 минут. А с книжкой то что? А почему же книжку легче читать, чем дисплей? Да потому, что отражение есть переизлучение, а переизлучение немного меняет спектр. Одни частоты отражаются лучше, другие хуже.

В итоге замене подлежит вся линейка. О недостатках для здоровья Сама по себе LED-подсветка независимо от способа реализации имеет несколько весомых недостатков, которые оказывают влияние не на качество изображения, а на зрение.

В первую очередь — это функция широтно-импульсного модулирования. С её помощью пользователь регулирует яркость и, тем самым, ухудшает своё здоровье. Суть проблемы заключается в мерцании светодиодов с частотой выше 80 Гц, что проявляется во время снижения яркости. Зрительно такое мерцание человеческим глазом не фиксируется, но оно непрерывно раздражает нервные окончания, вызывая головную боль и усталость в глазах. Во время просмотра телевизионных передач данный недостаток не доставляет особого дискомфорта из-за большого расстояния между зрителем и экраном, а также низкой концентрации внимания. С другой стороны, длительная работа с документами на пониженной яркости комфортнее воспринимается глазами, но теперь негатива добавляет ШИМ. Кроме этого существуют и другие недостатки, ухудшающие зрение, проявление которых в той или иной степени зависит от технологии производства дисплеев.

Например, завышенное излучение светодиодов в области близкой к ультрафиолетовому спектру. Тем, кому дорого зрение, следует остановить свой выбор на профессиональной серии мониторов с CCFL лампами, которые по-прежнему выпускают для работы с изображениями. Несмотря на наличие недостатков, производители электронной техники не перестанут использовать led подсветку в своих устройствах, а крупные компании по-прежнему будут рекламировать так называемые LED TV. Потому что маркетинговые цели по-прежнему имеют высокий приоритет.

Каждая ячейка в этой технологии — самостоятельный световой источник. Экран не нуждается в подсветке.

Это главное отличие от LED. Телевизоры OLED используют свечение органических светодиодов в каждом из 8. Поэтому здесь прекрасный уровень света и затемнения. Мало того, вплоть до 1 пикселя можно отключать свет! Например, компания LG выпустила модель G6 с разрешением 4К, экран которой обладает толщиной всего 2. Угол обзора в OLED экранах доведён до совершенства.

С какой бы стороны не смотреть на экран, качество изображения не ухудшается. Контрастность также выше в несколько раз. Потому что нет дополнительной подсветки и органический светодиод в выключенном состоянии ничего не излучает.

Отличия LED от обычных LCD

  • Светодиодная led подсветка в телевизоре — что это?
  • Как выбрать светодиодную ленту
  • Заявка на звонок
  • Устройство и принцип работы LED телевизора - Мир телевизоров - Статьи
  • Какие достоинства у LED-телевизора
  • Подсветка от LED телевизоров. Кто и как использует? | Форум по ремонту Monitor

Светодиодные подсветки для телевизоров

Светодиодная подсветка с функцией Ambilight работает на версии HDMI 2.0. Решив купить качественную светодиодную ленту, вы можете существенно сократить расходы на электроэнергию, получив необходимое освещение. LED-телевизоры оснащены светодиодной подсветкой — диоды превращают движение электронов через полупроводник в изображение на экране.

Способы LED подсветки

  • Что такое LED-подсветка, что значит и как она работает в телевизорах и мониторах
  • Светодиодные подстветки Direct LED и Edge LED: что это такое и что лучше
  • Lightpack 2: фоновая динамическая подсветка для любых телевизоров и мониторов
  • LED-подсветка в телевизоре — что это такое и зачем нужно

Технология подсветки LED в современных телевизорах

Канал о Смарт технике, роутерах, тв боксах, гаджетах, носимой электронике и не только. ремонт телевизора Что такое ЛЕД (LED) подсветка телевизора? Это метод подсвечивания матрицы жидкокристаллического ТВ на основе светодиодов. Много приходит крупноформатных телевизоров с LED подсветкой и с дефектной матрицей, от таких телевизоров клиенты отказываются. резко упала надежность. Продажа светодиодных LED подсветок с доставкой. Отличные цены на светодиодную LED подсветку. В настоящий момент все крупные производители телевизоров используют одну из двух светодиодных подсветок: Direct LED или Edge LED.

Похожие новости:

Оцените статью
Добавить комментарий