Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру.
Коэффициент джини в России
Насколько можно полагаться на коэффициент Джини при сравнении стран? В целом этот параметр довольно хорош, но есть и нюансы. Когда вы видите коэффициент, вы не знаете, на основании какого количества групп он рассчитывался — чем меньше групп, тем больше коэффициент.
Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много?
Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.
Если в 2022 году этот коэффициент составлял 13,8 раза, то в 2023 году он возрос до 14,6 раза.
Эти данные свидетельствуют о сохранении высокого уровня неравенства в стране. Росстат отметил, что неравенство доходов в России остается высоким, но наблюдается некоторое снижение этого показателя. Источник фото: Фото редакции Помощник президента Максим Орешкин ранее указывал, что положительная динамика снижения неравенства связана с уменьшением безработицы, ростом зарплат и масштабными программами поддержки семей.
Он составляет всего 0,24. Материалы по теме.
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат.
РБК: Росстат зафиксировал рост концентрации доходов в 2023 году
Среди населения России растет доходное неравенство: почему ускорился этот процесс? | Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. |
В России вырос показатель доходного неравенства | World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. |
Коэффициент Джини | В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. |
Ваш пароль
Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство». Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей.
Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области.
На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование.
И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие.
Может быть использован для сравнения распределения признака дохода между различными совокупностями например, разными странами.
При этом нет зависимости от масштаба экономики сравниваемых стран. Может быть использован для сравнения распределения признака дохода по разным группам населения например, коэффициент Джини для сельского населения и коэффициент Джини для городского населения. Позволяет отслеживать динамику неравномерности распределения признака дохода в совокупности на разных этапах. Анонимность — одно из главных преимуществ коэффициента Джини. Нет необходимости знать, кто имеет какие доходы персонально.
Рассмотрены основные преимущества и недостатки коэффициента Джини по сравнению с децильным коэффициентом. Ключевые слова: экономическая безопасность, оценка экономической безопасности, коэффициент Джини, децильный коэффициент, социальное неравенство. В условиях экономических санкций, сохраняющейся волатильности национальной валюты, падения реальных располагаемых доходов граждан, роста числа невозвратных кредитов у населения, возрастает роль обеспечения экономической безопасности. В соответствии со Стратегией экономической безопасности 2030 угрозы экономической безопасности, связанные с ростом социального неравенства, являются особенно актуальными на сегодняшний день[1]. Своевременное принятие государством адекватных мер по снижению дифференциации населения в целях уменьшения социальной напряженности и повышения уровня экономической безопасности является одной из ключевых задач государства, что подтверждается Указом Президента Российской Федерации «О национальных целях и стратегических задачах развития Российской Федерации на период до 2024 года», где одной из целей развития Российской Федерации является снижение уровня бедности в два раза[2]. Предшествующим этапом по реализации мер снижения уровня дифференциации населения по уровню доходов, является этап оценки текущего состояния социального расслоения общества по уровню доходов. На сегодняшний день существует много способов измерения неравенства, каждый из которых имеет некоторую интуитивную или математическую привлекательность. Тем не менее, многие явно подходящие способы измерения неравенства не могут быть использованы. Например, дисперсия, которая должна быть одной из самых простых мер неравенства, не является независимой от шкалы доходов: простое удвоение всех доходов приведет к четырехкратному увеличению оценки неравенства доходов. Федеральная служба статистики Российской Федерации в качестве меры измерения социального неравенства использует децильный коэффициент фондов, который рекомендован в качестве одного из показателей оценки состояния экономической безопасности[7]. Однако на международном уровне зачастую используется другой показатель оценки социального неравенства — коэффициент Джини, который обладает своими плюсами и минусами по сравнению с коэффициентом фондов и может быть использован в качестве дополнительного показателя в оценки экономической безопасности. Методика расчета коэффициента Джини основывается на построении кривой Лоренца. Коэффициент Джини определяется как отношение двух площадей: площадью между кривой Лоренца распределения доходов и диагональной линией полного равенства, выраженная как доля треугольной области между кривыми полного равенства и неравенства. Величина коэффициента Джини может принимать значения в пределах от 0 до 1. Чем ближе значение коэффициента к 1, тем выше уровень неравенства в распределении совокупного дохода.
Как рассчитывать коэффициент Джини
Помимо Коэффициента Джини и Децильного коэффициента, народ постоянно пытается придумать другие коэффициенты и индексы, которые бы, так или иначе, отражали неравенство. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон. Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Коэффициент Джини (Gini coefficient) – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини (1884-1965 г.г.). Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше.
Какие страны и почему отличаются высоким показателем джини география реферат
Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса. Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Страны ближнего востока и северной Африки: Коэффициент Джини.
Что такое индекс Джини?
- Коэффициент Джини (индекс концентрации доходов)
- Доверительный интервал коэффициента Джини. Что это?
- Доверительный интервал коэффициента Джини. Что это?
- Что бы сделал Робин Гуд? -
В России вырос уровень доходного неравенства
Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство».
Задача №77. Расчёт коэффициента Джини
РБК: Росстат зафиксировал рост концентрации доходов в 2023 году 00:06 29. В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395 В 2023 году Росстат зафиксировал увеличение коэффициента Джини, отражающего уровень концентрации доходов в стране, до 0,403, в сравнении с предыдущим годом, когда он составлял 0,395. Данные об индексе Джини и другие социально-экономические показатели были опубликованы Росстатом в отчете, выпущенном 28 февраля, сообщает РБК. Важно отметить, что в 2022 году индекс Джини показал падение ниже отметки 0,4 впервые с 2002 года.
Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.
Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего. Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.
Минздрав России зарегистрировал двухкомпонентную вакцину от коронавируса «Спутник V» с обновленным составом. В 16 российских регионах зафиксировали нехватку вакцин от кори. Препараты производит компания «Нацимбио». Ее представители сообщили, что в январе 2024 года все регионы получили почти 200 тыс. В Волгограде произошел пожар на складе пиломатериалов.
Площадь возгорания составила тысячу квадратных метров. Погибших и пострадавших нет. Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма. Ученые выяснили, почему начал таять ледник Туэйтса «ледник Судного дня».
В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Применение коэффициента Джини в России началось в 1990-х годах — в это время, как и позднее период экономического роста в 2000-е годы , он демонстрировал низкую эгалитарность равенство российского общества [2]. Показатели коэффициента Джини в России за все время измерения 1991—2018 Содержание.
В России зафиксирован рост доходного неравенства
Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство». Коэффициент Джини.
Формула расчета
- Социальная поддержка сократила уровень неравенства в России
- Коэффициент Джини (распределение дохода)
- Суть коэффициента Джини
- Коэффициент Джини — Финуслуги