Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что.
Собянин: искусственный интеллект станет базовой медицинской технологией в Москве
Благодаря возможностям искусственного интеллекта (ИИ) здравоохранение в России постепенно трансформируется по мере того, как передовые технологии меняют медицинскую практику, включая диагностику, лечение пациентов и медицинские операции. Как в здравоохранении помогает искусственный интеллект. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Нормативное регулирование искусственного интеллекта в медицине.
Минздрав рассказал о распространении искусственного интеллекта для медицины в России
Посмотрим, какой же теперь, по мнению цифросекты, будет медицина для застрахованных объектов, то есть нас с вами. Персональный медицинский помощник — тесно связан с дистанционным мониторингом. Как обычно, утверждался и согласовывался этот документ в кулуарах цифротрансформеров, ни общественников, ни профильных специалистов, ни гражданское общество в широком смысле слова никто не спрашивал и не информировал. Будем по традиции цитировать и комментировать самые яркие места документа: «Паспорт направления цифровой трансформации здравоохранения, к 2030 году: - достижение высокого уровня показателя "цифровая зрелость" участников реализации стратегического направления, ускоренный переход сектора здравоохранения РФ на новые управленческий и технологический уровни посредством полного перехода к "цифровым двойникам", тем самым обеспечивая создание единой платформенной экосистемы на основе целостных и однородных первичных данных. Цифровое преобразование способствует достижению технологического суверенитета и обеспечивает условия для развития сферы здравоохранения и долгосрочного устойчивого социально-экономического развития РФ в условиях высокой динамики изменений внешних и внутренних факторов» В общем, во имя технологического суверенитета и долгосрочного устойчивого развития понятие ЦУР ООН на каждого из нас создадут «цифрового двойника» пациента и будут обрабатывать наши мед.
И в единой экосистеме все здоровее будем. Мы подробно разбирали суть платформы «Гостех» в 2023 г. Просто отметим еще раз, что суть внедрения «Гостеха» - в разгосударствлении всех ключевых социальных сфер. Тотальный перевод всей мед.
Вообще-то куда больше похоже на контроль над нашими телами, а не на защиту здоровья. И все застрахованные — в единой базе. А далее честно приводится одна из причин, почему граждане не спешат пользоваться «цифровой медициной»: «Рост киберпреступности, участившиеся случаи атак, связанные с хищением и уничтожением конфиденциальных данных, нарушением функционирования информационных систем, в том числе на значимых объектах критической информационной инфраструктуры, не только угрожают безопасности жизнедеятельности граждан, но и вызывают у них нежелание использовать государственные информационные системы, обеспечивающие предоставление государственных и муниципальных услуг, в связи с отсутствием доверия у граждан и недостаточной информационной безопасностью». Все сказано предельно точно, все риски причем — неустранимые риски!
Удивительное двоемыслие Мишустина и Ко. Внедряемые технологии: В ходе реализации проектов стратегического направления будут внедрены: нейротехнологии и технологии искусственного интеллекта; технологии работы с большими данными; технологии беспроводной связи.
С ней начинающие специалисты смогут мгновенно получать фидбэк о своей работе и заниматься без наставников. А российская компания «Нейроспутник», входящая в Сколково, разрабатывает тренажёр для безопасного обучения будущих медиков: он заменит тела животных и людей, на которых обычно тренируются студенты. Тренажёр — один из трёх элементов экосистемы «Левша». В неё также входит 3D-симулятор, который имитирует архитектуру сосудов конкретного пациента и позволяет подготовиться к операции, и робот-хирург на дистанционном управлении — он защищает врачей от рентгена и корректирует тремор в их движениях, минимизируя риски для пациента. Диагностика заболеваний Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Алгоритмы научились анализировать медицинские изображения и выявлять по ним заболевания — от плоскостопия до инсульта. Основные преимущества таких разработок — скорость и точность.
Они оптимизируют работу докторов, снижают вероятность ошибки и сокращают время получения результатов, что может спасти не одну жизнь. Разработчики СберМедИИ шагнули ещё дальше и научили искусственный интеллект ставить диагноз не по снимкам, а по словам. Они используются во всех взрослых поликлиниках Москвы и постепенно проникают в другие субъекты России. ТОП-3 предлагает три наиболее вероятных диагноза по Международной классификации болезней на основе жалоб пациента. AIDA использует для постановки диагноза данные электронной медицинской карты за последние два года. Эти сервисы не вытесняют врачей, как может показаться, — наоборот, они помогают не упустить важные детали и вынести наиболее подходящее для пациента решение. Уход за больными В больницах искусственный интеллект активно помогает медсёстрам и медбратьям. Российская компания «Третье мнение» создала умную видеоаналитику на базе компьютерного зрения — области искусственного интеллекта, которая может обнаружить, отследить и проанализировать увиденное. ИИ-мониторинг уже работает в частных и государственных клиниках: он распознаёт движения пациентов и предупреждает медперсонал в случае угрозы, например падения.
Так работникам поликлиник не нужно постоянно следить за видеокамерами, чтобы быть в курсе состояния больных. Видеоаналитика также делает наблюдение менее навязчивым.
Модель обучалась на обезличенных данных более чем на 30 млн визитов пациентов», - поделилась Елена Соколова из лаборатории искусственного интеллекта «Сбера». В медицине большинство сервисов для обработки диагностических изображений ориентировано на лучевое исследование, говорит Анна Мещерякова, гендиректор компании «Платформа «Третье мнение»: «Уровень зрелости этого направления самый высокий: данные — цифровые, инфраструктура наиболее готова к внедрению ИИ. Поэтому большинство сервисов, которые мы в «Третьем мнении» вывели на рынок, — это сервисы для отделения лучевой диагностики». Недавно организация в одном из регионов завершила проект по ретроспективному анализу исследований грудной клетки, были проанализированы данные за 1,5 года.
Технологии помогают и младшему медперсоналу. Например, медсестры благодаря push-уведомлениям смогут до 50 раз быстрее реагировать на тревожные ситуации, связанные с возможным падением пациентов», - говорит Анна Мещерякова. Барьеры для внедрения ИИ Вопреки всем успехам, реального внедрения серьезных, глубоких систем поддержки принятия врачебных решений на федеральном уровне очень мало, подытожил руководитель экспертной группы «Цифровые технологии в медицине» при АНО «Цифровая экономика», гендиректор ассоциации «НБМЗ» и руководитель направления цифровой медицины компании «Инвитро» Борис Зингерман. По его мнению, сейчас ИИ охотнее всего доверяют сами пациенты. А у пациентов нет медобразования, и они рады любой помощи и подсказке от искусственного интеллекта», — отметил Борис Зингерман. Сложнее ситуация обстоит в здравоохранении в субъектах.
На первом этапе обновлен парк медоборудования, создан центральный архив медицинских изображений и проведено несколько технических интеграций с сервисами ИИ. Для контроля качества ИИ-решений в медицине не хватало специалистов, поэтому на призывы о помощи откликнулись эксперты Департамента здравоохранения Москвы. Согласно договоренностям со столичными экспертами, в ЯНАО подключаются сервисы, занимающие в Москве лидирующие позиции. Сейчас реализуется третий этап — вовлечение врачей-рентгенологов в работу с ИИ. Отрабатываются механизмы сбора обратной связи о работе сервисов на базе ИИ. Следующее, что мы сделаем, — продумаем, как мотивировать врачей на работу с ИИ-решениями», — объяснил Андрей Дорофеев.
Если же ИИ найдёт отклонение от нормы, описание поступит врачам. В этом случае пациент получит заключение специалиста в течение суток. С помощью применения искусственного интеллекта рассчитываем ускорить описание исследований и повысить точность диагностики.
Топ-7 прорывов в медицине в 2023 году
С помощью ИИ врачи и исследователи могут получить представление о сложных медицинских данных, что может привести к новым методам лечения и даже лекарствам от болезней, которые ранее были неизлечимы. С помощью ИИ врачи могут быстро выявлять закономерности и тенденции в данных пациентов, что позволяет ставить более ранние диагнозы и составлять более персонализированные планы лечения. Давайте посмотрим, как ИИ играет большую роль в различных областях здравоохранения. Роль искусственного интеллекта в различных областях здравоохранения Роль ИИ в радиологии Использование ИИ в радиологии помогает улучшить контроль качества процессов медицинской визуализации. ИИ используется для оценки качества изображения, уменьшения артефактов изображения и оптимизации доз облучения. Это обеспечивает пациентов высококачественными диагностическими изображениями, которые можно использовать для принятия обоснованных решений об их лечении. Использование ИИ в радиологии помогает улучшить контроль качества процессов медицинской визуализации. ИИ используется для анализа медицинских изображений и выявления заболеваний или аномалий.
Системы искусственного интеллекта могут обнаруживать рак, переломы костей и другие состояния точнее и быстрее, чем люди-радиологи. ИИ используется для интеграции нескольких медицинских изображений, чтобы создать полное представление об анатомии пациента. Это важно при лучевой терапии, хирургии под визуальным контролем и других медицинских процедурах. ИИ можно использовать для автоматической идентификации и классификации поражений, опухолей и других аномалий по размеру и текстуре. ИИ можно научить распознавать закономерности на медицинских изображениях и прогнозировать прогрессирование заболевания или вероятность рецидива. ИИ может помочь рентгенологам в анализе медицинских изображений, таких как рентгеновские снимки, компьютерная томография и МРТ, для выявления аномалий и помощи в диагностике. Роль ИИ в дерматологии ИИ можно использовать для анализа изображений кожных заболеваний, таких как дерматит, рак кожи или другие поражения кожи.
ИИ можно научить классифицировать различные типы поражений кожи, такие как меланома или немеланомный рак кожи. Это может помочь повысить точность диагностики. ИИ можно использовать для разработки индивидуальных планов лечения кожных заболеваний, таких как меланома, с использованием информации о пациентах и рекомендаций, основанных на данных. ИИ может извлекать сложную количественную информацию из медицинских изображений для создания радиомикроскопических сигнатур различных видов рака. ИИ можно использовать для анализа больших объемов данных для выявления потенциальных новых лекарств и методов лечения рака. ИИ можно использовать для разработки индивидуальных планов лечения онкологических больных. Эти персонализированные планы лечения могут быть основаны на индивидуальных факторах пациента, таких как генетическая информация и биология опухоли.
Роль ИИ в кардиологии ИИ может помочь в диагностике сердечных заболеваний. Он может анализировать данные ЭКГ для обнаружения аритмий, таких как мерцательная аритмия. ИИ можно использовать для анализа рентгенограмм грудной клетки для выявления признаков сердечных заболеваний, таких как увеличенное сердце или жидкость в легких. ИИ можно использовать для оценки риска сердечно-сосудистых заболеваний у пациента на основе таких факторов, как демографические данные, история болезни и образ жизни. На основании чего можно выявить пациентов, нуждающихся в раннем вмешательстве. ИИ можно использовать для обнаружения и диагностики сердечных заболеваний, таких как ишемическая болезнь сердца или заболевания сердечных клапанов, путем анализа изображений с эхокардиограмм или компьютерной томографии. Раннее выявление важно для контроля и лечения сердечных заболеваний, а прогнозы на основе ИИ могут спасти жизнь.
Роль ИИ в инфекционных заболеваниях ИИ может помочь в диагностике инфекционных заболеваний, идентифицируя микроорганизмы, такие как бактерии, вирусы и грибки, на основе данных секвенирования ДНК. ИИ можно использовать для прогнозирования устойчивости микроорганизмов к различным антибиотикам. Таким образом, ИИ может помочь оптимизировать лечение и уменьшить распространение устойчивости к противомикробным препаратам. ИИ можно использовать для мониторинга распространения инфекционных заболеваний, отслеживая количество случаев заболевания и смертей. ИИ можно использовать для выявления факторов риска и потенциальных вспышек инфекционных заболеваний путем анализа больших объемов данных электронных медицинских карт. Роль ИИ в разработке лекарств ИИ можно использовать для анализа больших объемов данных из различных источников, таких как молекулярные базы данных, научная литература и клинические испытания, для определения новых мишеней для лекарств и потенциальных методов лечения.
Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать.
И здесь возникает вызов — как научиться делать это быстро. Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи. При смене методологии медицинские информационные системы тоже начинают наполняться новыми данными только с появлением утвержденных изменений в методологии диагностики, лечения, наблюдения пациента и т. Симбиоз или противостояние? Если мы смотрим на искусственный интеллект глазами разработчика, то видим набор алгоритмов и математических методов, которые могут обучаться на данных, анализировать изображения, искать неочевидные связи и сходства в огромных массивах данных, обнаруживать различия там, где естественный интеллект может просто их не заметить. Но для врача работа искусственного интеллекта — это черный ящик. Врачу непонятно «мышление» системы и то, как ИИ получил итоговый результат. Формировать доверие медицинских работников к ИИ возможно, объясняя базовые алгоритмы его работы и то, на каких данных обучаются системы. Возможно также более широкое участие врачей в рабочих группах по подготовке данных для обучения нейросетей.
Объяснять базовые алгоритмы работы искусственного интеллекта необходимо в рамках вузовской подготовки специалистов на цифровых кафедрах и в рамках профессиональной переподготовки. Ну и, отвечая на вопрос: возможен ли симбиоз врачей и ИИ. Да, при условии, что мы разделим решение задач между интеллектами. Если мы оставим естественному интеллекту возможность решать стратегические и творческие задачи и будем использовать искусственный как инструмент для выполнения рутинных задач, чтобы снизить нагрузку на врачей. Преодолев все эти сложности, мы сможем стать с искусственным интеллектом друзьями и партнерами. Дина Филюшина.
Личный блог" Перед столичными властями стоит задача превратить искусственный интеллект в базовую медицинскую технологию, сообщил Сергей Собянин на своем личном сайте.
По его словам, в результате этого все московские врачи получат надежных цифровых помощников, которые подскажут оптимальную тактику лечения пациентов. Кроме того, исчезнет рутинная бумажная работа — медицинская информация будет регистрироваться и обрабатываться исключительно в цифровой среде, а врачи смогут больше времени уделять задачам, где действительно нужны их компетенции. Также будет внедрен "умный" проактивный подход, в рамках которого ИИ будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний, "подсвечивая" их медикам. Мэр отметил, что телемедицина станет обычной практикой, когда значительную часть рутинных проблем со здоровьем можно будет решить онлайн, без личного визита к врачу.
Сфера прогнозирования заболеваний также претерпела существенные изменения, с появлением алгоритмов, способных предсказывать возникновение заболеваний на основе анализа большого объема данных. Например, исследования, основанные на данных электронных медицинских карт, могут предсказать риск развития диабета, сердечных заболеваний или депрессии у конкретного пациента. К примеру, IBM Watson для лечения онкологии проанализировала 30 миллиардов снимков, и помогает врачам выбирать оптимальные методы лечения рака на основе анализа огромного объема медицинских данных. Стартап Healx использует ИИ для сопоставления лекарств, прошедших клинические испытания, с редкими заболеваниями, которые они могли бы лечить. Arterys использовала облачные вычисления для предоставления изображений 4D Flow больничным радиологам через веб-браузер, что позволяет им принимать жизненно важные решения о лечении.
Компания Thymia, основанная в 2020 году, разработала видеоигру на основе искусственного интеллекта, которая призвана обеспечить более быструю, точную и объективную оценку психического здоровья. Алгоритмы ИИ способны анализировать большие объемы данных о здоровье населения, включая информацию из социальных сетей, новостных порталов и официальных статистических данных, для прогнозирования возможных вспышек болезней и эпидемий. Это позволяет государственным органам заранее подготовиться к возможным эпидемиям. В России работает цифровой сервис диагностики MDDC, основанный на алгоритмах нейросети: он помогает выявлять минимальные новообразования в легких менее 4 мм , а также диагностировать рак на ранней стадии. В исследовании Journal of the National Cancer Institute ученые использовали ИИ для анализа маммограмм более чем 26 000 женщин. В целом, ранняя диагностика и прогнозирование с использованием ИИ открывает новые горизонты для медицинской науки, делая возможным профилактику и оперативное лечение многих заболеваний на самых ранних стадиях. Персонализированное лечение на основе искусственного интеллекта ИИ играет важную роль в разработке персонализированных планов лечения, основанных на индивидуальных характеристиках пациента. В хирургии, роботизированные системы и ИИ уже помогают хирургам в проведении сложных операций с большей точностью и меньшими рисками для пациента. В операционной ИИ может анализировать данные в реальном времени, предоставляя хирургам ценную информацию, которая помогает в принятии решений во время операций.
Роман Душкин: «Медицина — это область доверия»
ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений. Напомним, цифровизация здравоохранения происходит благодаря нацпроекту «Здравоохранение», который реализуется по решению президента. Технологии искусственного интеллекта для системы здравоохранения.
Цифровой ассистент: как искусственный интеллект помогает московским врачам
Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии. Компьютерное зрение способно: анализировать изображения; определить состояние органов и тканей при различных заболеваниях; быстро обнаружить патологии на КТ-снимках легких. Он помогает медику быстрее и точнее интерпретировать флюорограммы и рентгенограммы.
Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям. Еще сервис умеет сортировать проблемы по степени опасности и оповещать о необходимости немедленного вмешательства. Цифровой помощник врача Сервисы компании «Платформа третьего мнения» в 2020 году внесли большой вклад в борьбу с коронавирусной инфекцией.
Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца.
Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных.
Эти технологии включают в себя решения для электронных медицинских карт, маммографии и анализа рентген-снимков грудной клетки. Пугачев также отметил, что Росздравнадзор зарегистрировал 24 медицинских изделия, использующих ИИ, из которых 17 разработаны отечественными компаниями, а 7 — иностранными. Эти технологии, в основном помогают врачам в анализе медицинских данных, включая изображения и цифровые медицинские записи.
До 50 процентов уменьшается время на интерпретацию исследования, и до 15-20 процентов повышается качество - выявление онкологических и других заболеваний на ранних стадиях". Один из самых активных регионов в плане использования ИИ для анализа медицинских изображений - город Москва. Научная база столицы включает более 10,5 миллиона исследований, проанализированных с помощью сервисов искусственного интеллекта, рассказал директор Центра диагностики и телемедицины, главный внештатный специалист по лучевой и инструментальной диагностике департамента здравоохранения Москвы Юрий Васильев. Врач-рентгенолог большую часть времени что-то пишет, а не смотрит на изображение, а должно быть наоборот", - сказал он. Пока искусственный интеллект применяется в основном для анализа медицинских изображений и электронных медицинских карт Есть и другие технологии ИИ, помогающие повысить эффективность системы здравоохранения. Например, голосовые сервисы ввода данных устной речи - врач может наговаривать то, что он видит, а данные записываются в медицинскую карту уже в виде текстового сообщения. Сервисы видеоаналитики могут следить за состоянием пациентов с ограничениями по движению, например, в реанимации и при необходимости послать сообщение на пост. Ну и, конечно, стоит отметить чат-боты, которые помогают с первичным сбором данных о пациенте в кол-центрах при записи к врачу. Она позволяет на УЗИ-аппаратах неэкспертного уровня за счет анализа данных получать то же качество, как и на УЗИ-аппаратах более высокого класса", - рассказал Павел Пугачев. Искусственный интеллект имеет большие возможности, но решать с его помощью все задачи сразу не требуется, полагают эксперты. Инвесторы, работающие в сегменте цифровой медицины, считают, что нужно фокусироваться на отдельных ключевых элементах, где ИИ сегодня действительно может помогать, отметил директор по развитию венчурного фонда НТИ под управлением Kama Flow Евгений Борисов.
Роман Душкин: «Медицина — это область доверия»
Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? На сессии «Внедрение искусственного интеллекта в здравоохранении: новые возможности для стартапов и цифрового бизнеса» RIW-2022 эксперты обсудили эффективные практики внедрения искусственного интеллекта и перспективы технологий в России. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Статья Искусственный интеллект в медицине России, Искусственный интеллект в медицине, Искусственный интеллект в радиологии, AI-технология Сбера прогнозирует развитие злокачественных новообразований, «Синтелли» представила российскую.
Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме
Ему надо быть подобным шестирукому божеству, и все это — в условиях крайне сжатого времени, отведенного на прием. А перегруженность, как известно, ведет к профессиональному выгоранию. Естественный, то есть человеческий интеллект способен на многое: синтезировать новые знания, принимать решения, основанные на ценностях и смыслах, неся социальную и профессиональную ответственность, постоянно расширять профессиональный кругозор. Человек может мыслить креативно, создавая качественно новые решения.
Не только на базе предыдущего опыта, но и на основе абстракций строить модели будущего, создавать концепции, рассматривать теории и предположения. Он видит профессиональную проблему с разных сторон и применяет кросс-дисциплинарный подход. Например, врач при постановке диагноза учитывает не только данные по своему профилю, но и по смежным дисциплинам.
А еще берет во внимание эмоциональное состояние пациента, его образ жизни, помнит, что пациент может симулировать или что симптоматику могут искажать сопутствующие заболевания. С учетом всего этого диагностика будет намного качественнее. Наверное, у многих так бывало, что все данные и цифры говорят об одном, но есть четкое внутреннее ощущение, что сейчас нужно сделать другой выбор.
И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык.
Но есть у естественного интеллекта не только преимущества, но и слабые места — тот самый человеческий фактор. Любому биологическому организму свойственна усталость, влекущая потерю концентрации и риск совершить ошибку. Огромный поток интерактивных данных и массив исторически накопившихся данных в виде анамнеза заболеваний, предыдущих исследований, динамики показателей здоровья пациента, множество факторов для принятия решений и катастрофическая нехватка времени — неподъемная ноша для обычного врача.
Медработнику нужно осознать, проанализировать, сопоставить, пропустить через себя и выйти на принятие решения, на которое есть только минуты, а то и секунды. А если специалист не в настроении или плохо себя чувствует, то эффективность его диагностики снижается в разы.
Например, они могут помочь выявить новообразования в реальном времени во время колоноскопии. В рамках национального проекта «Создание единого цифрового контура в здравоохранении на основе ЕГИСЗ» регионы обязаны использовать медицинские изделия с ИИ в определённых системах государственной информационной инфраструктуры здравоохранения. Эти требования будут ужесточены в следующие годы, где ожидается увеличение числа систем, использующих технологии ИИ в медицине.
Сложнее ситуация обстоит в здравоохранении в субъектах. На первом этапе обновлен парк медоборудования, создан центральный архив медицинских изображений и проведено несколько технических интеграций с сервисами ИИ.
Для контроля качества ИИ-решений в медицине не хватало специалистов, поэтому на призывы о помощи откликнулись эксперты Департамента здравоохранения Москвы. Согласно договоренностям со столичными экспертами, в ЯНАО подключаются сервисы, занимающие в Москве лидирующие позиции. Сейчас реализуется третий этап — вовлечение врачей-рентгенологов в работу с ИИ. Отрабатываются механизмы сбора обратной связи о работе сервисов на базе ИИ. Следующее, что мы сделаем, — продумаем, как мотивировать врачей на работу с ИИ-решениями», — объяснил Андрей Дорофеев. Для выбора обоснованного подхода к этому вопросу он предлагает рассмотреть три различных уровня зрелости ИИ-систем: «Первый уровень — это новые идеи и разработки, требующие апробации на предмет востребованности рынком. Такие решения еще не прошли необходимые клинические испытания.
Источником финансирования для них могут быть собственные средства разработчиков, инвесторов или институтов развития. Второй уровень — это технологически зрелые компании, имеющие регистрационное удостоверение медицинского изделия Росздравнадзора на свою ИИ-систему. Такие решения уже полностью готовы к внедрению, но пока не имеют убедительных доказательств клинической или экономической эффективности. Их оптимально финансировать за счет целевых программ, как это, например, реализуется в рамках московского эксперимента. Третий уровень — это продукты, успешно прошедшие проспективные контролируемые клинические исследования. Решения, по которым собрана обширная доказательная база их клинической или экономической эффективности. При «погружении» таких систем в клинические рекомендации появится возможность оплачивать их применение из средств ОМС.
Если на снимке не обнаружится признаков заболеваний, то заключение от нейросети автоматически появится в электронной медкарте пациента. Если же ИИ найдёт отклонение от нормы, описание поступит врачам. В этом случае пациент получит заключение специалиста в течение суток.
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
Всемирная организация здравоохранения (ВОЗ) выпустила новую публикацию, в которой излагаются основные принципы регулирования технологий искусственного интеллекта (ИИ) в здравоохранении. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения.
Для чего в российских регионах используют ИИ в медицине
Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине. рассказал он РИА Новости. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении?