Что такое хроматофор у водорослей кратко. Хроматофор — клетка, в состав которой входит определённый пигмент.
Хроматофор: структура и функция
- Разнообразие хроматофоров
- ХРОМАТОФОРЫ | это... Что такое ХРОМАТОФОРЫ?
- Для чего нужен хроматофор? Ответы на вопрос: 25
- Научитесь определять, что такое и как работает хроматофор
- Что такое хроматофор? Функция хроматофора
- Параграф 18. Водоросли
Что такое хроматофор и какую функцию он выполняет
«Хроматофор» является ответом на вопросы. В русском языке слово «хроматофор» означает: (chromatophore) — клетка, в состав которой входит пигмент. Ответ на вопрос: Хроматофоры это в биологии что такое?. Ответы на часто задаваемые вопросы при подготовке домашнего задания по всем школьным предметам. В этой статье мы разберем, что такое хроматофор более подробно и как они работают. Хроматофоры (от греч. χρῶμα — цвет и греч. φορός — несущий) — пигментсодержащие или светоотражающие клетки у животных и человека (то же, что и пигментные клетки), либо пигменосодержащие внутриклеточные органеллы у растений и микроорганизмов.
Что такое хроматофор
Хлорофилл, содержащийся в хроматофоре, придаёт зелёную окраску всей клетке. У многоклеточных представителей зелёных водорослей тело слоевище имеет форму нитей или плоских листовидных образований. В проточных водоёмах часто можно заметить ярко-зелёные скопления шелковистых нитей, прикреплённых к подводным камням и корягам. Это многоклеточная нитчатая зелёная водоросль улотрикс. Его нити состоят из ряда коротких клеток. В цитоплазме каждой из них расположены ядро и хроматофор в виде незамкнутого кольца. Клетки делятся, и нить растёт. В стоячих и медленно текущих водах часто плавают или оседают на дно скользкие ярко-зелёные комки. Они похожи на вату и образованы скоплениями нитчатой водоросли спирогиры.
Вытянутые цилиндрические клетки спирогиры покрыты слизью. Внутри клеток — хроматофоры в виде спирально закрученных лент. Многоклеточные зелёные водоросли живут также в водах морей и океанов. Примером таких водорослей может служить ульва, или морской салат, длиной около 30 см и толщиной всего две клетки. Наиболее сложное строение в этой группе растений имеют харовые водоросли, обитающие в пресноводных водоёмах. Эти многочисленные зелёные водоросли по внешнему виду напоминают хвощи. Харовую водоросль нителлу, или блестянку гибкую, часто выращивают в аквариумах. Бурые водоросли в основном морские растения.
Общий внешний признак этих водорослей — желтовато-бурая окраска слоевищ. Бурые водоросли — многоклеточные растения.
Например, они могут служить для сигнализации между особями одного вида. Они способны изменять окраску и яркость, чтобы передать определенное сообщение другим животным, например, о своем настроении, статусе в иерархии или приближении опасности. Хроматофоры также могут использоваться в качестве защитного механизма. Некоторые виды организмов могут изменять цвет своей кожи или покрова, чтобы отпугивать хищников. Такой вид самозащиты наблюдается, например, у ядовитых животных. Наконец, хроматофоры иногда служат для регуляции тепла. Животные могут изменять окраску своего тела, чтобы привлечь или отражать солнечный свет, влияя тем самым на его поглощение и сохранение тепла.
В целом, хроматофоры выполняют множество функций в животном мире. Они позволяют животным осуществлять камуфляж, привлекать партнеров, передавать сообщения, защищаться и регулировать теплообмен.
Кто содержит Хроматофоры? Хроматофоры являются клетками, которые содержат пигмент. Данный тип клеток присущ земноводным, рыбам, головоногим, рептилиям и ракообразным.
Их главной функцией является цвет кожи и глаз. Что такое Хроматофоров в биологии? Хроматофором называется внутриклеточное образование различной формы у водорослей, в котором находится хлорофилл и другие пигменты. Что вызывает хламидомонада? Chlamydomonas nivalis — вид одноклеточных зелёных водорослей из порядка Chlamydomonadales.
Благодаря способности существовать при низких температурах и наличию красного пигмента астаксантина, вызывают явление «красного снега». Ответы пользователей Отвечает Юлия Россо 7 дек. Отвечает Екатерина Цуканова Хроматофоры - это органоиды, расположенные в цитоплазме, и придающие клетке окраску. В водорослях хроматофоры выполняют функцию фотосинтеза. Отвечает Юлия Андрейченко Хроматофор.
Внутри клетки ближе к жгутикам находятся две сократительные вакуоли... Свет хламидомонаде нужен для осуществления процесса фотосинтеза. В клетке...
Хроматофоры играют важную роль в эволюции животных и позволяют им выживать и приспосабливаться к разнообразным средам.
Благодаря этим клеткам животные могут быть незаметными или испугать хищника, подчеркнуть свою сексуальность или просто сохранить свою собственную безопасность. Вопрос-ответ: Что такое хроматофор? Хроматофоры — это специальные клетки, которые содержат в себе пигменты и отвечают за окрашивание живых организмов. Они помогают животным и растениям менять цвет своего тела в зависимости от окружающей среды или для общения с другими особями.
Как работают хроматофоры? Хроматофоры могут изменять свой цвет или его насыщенность. Это происходит благодаря увеличению или уменьшению количества пигмента в клетках. Кроме того, некоторые хроматофоры, такие как меланофоры, имеют способность рассеивать свет, что также влияет на окрашивание живых организмов.
Какие животные используют хроматофоры для маскировки? Многие животные, такие как хамелеоны, осьминоги и раковины, используют хроматофоры для маскировки.
Значение слова «хроматофор»
Хроматофоры — пигментсодержащие или светоотражающие клетки у животных и человека (то же, что и пигментные клетки), либо пигменосодержащие внутриклеточные органеллы. Форма хроматофоров отличается значительным разнообразием, однако наиболее распространена звездчатая (ем. рис. 10) и дисковидная или близкая к ним (например, ветвистая). Хроматофоры — пигментсодержащие или светоотражающие клетки у животных и человека (то же, что и пигментные клетки), либо пигменосодержащие внутриклеточные органеллы. В этой статье мы разберем, что такое хроматофор более подробно и как они работают. расскажем в подробностях про Хроматофоры (от греч. χρῶμα — цвет и греч. φορός — несущий) — пигментсодержащие или. Что такое хроматофор в биологии и как его можно кратко определить?
Что означает слово Хроматофор?
Что такое хроматофор в 7 классе | Гид по Китаю | Хроматофоры — это специализированные клетки, которые содержат пигменты и отвечают за формирование и изменение цвета у животных и некоторых микроорганизмов. |
Что такое ХРОМАТОФОР простыми словами | Что такое хроматофоры в биологии. |
Что такое хроматофор? Функция хроматофора | Хроматофор – клетка, чаще всего содержащая пигмент, которая вырабатывает какой-либо цвет. Хроматофоры есть у многих видов животных: рыб, амфибий, рептилий, ракообразных и др. Учебники. Биология. |
Хроматофор — Википедия | Хроматофоры (носители окраски) — этим именем можно назвать все окрашенные тела, заключающиеся в клетках растений, но специально им называются таковые, заключающиеся в клетках водорослей (см.), в отличие от хлорофилльных зерен (см.) и хромопластов (см. |
§10 Многообразие водорослей
Структура хроматофоров включает центральное тело, содержащее пигменты, и множество ветвей, называемых фибриллами. Фибриллы могут быть сжаты или растянуты с помощью мышц, что позволяет клетке изменять свой цвет. Например, при растяжении фибриллы пигменты раздвигаются и поглощают определенные длины волн света, что приводит к изменению цвета хроматофора. Интересно, что некоторые хроматофоры могут иметь светоотражающие слои или отражающие зеркала, которые помогают усилить цвет и блеск. Это особенно важно для животных, живущих в воде, где свет легко рассеивается и поглощается. Хроматофоры являются захватывающим примером адаптации животных к их среде и демонстрируют сложность и разнообразие живой природы. Процесс пигментации и изменение цвета Процесс пигментации, определяющий цвет, осуществляется с помощью сложной биохимической реакции, которая происходит внутри хроматофоров. Для синтеза пигментов хроматофора используются различные молекулярные компоненты, такие как меланины, каротиноиды или гуанин. Когда определенные молекулы находятся в хроматофоре, они абсорбируют свет определенных длин волн и отражают остаточный свет, определяя цвет организма.
Этому способствует их заметный цвет, высокое содержание в клетках, а также факт, что меланоциты — аналоги меланофоров, являются единственным классом пигментсодержащих клеток человека. Тем не менее, существуют различия между меланофорами и меланоцитами. Цианофоры[ править править код ] В 1995 году было показано, что яркие голубые цвета некоторых видов мандаринок обусловлены циансодержащими биохромами, а не хемохромами. Данный пигмент, встречающийся у как минимум двух видов семейства Callionymidae , очень редок в животном мире, синий цвет обычно обусловлен наличием хемохроматиков. Эти данные позволяют говорить о наличии особого типа хроматофоров — цианофоров. Физиологическая смена цвета[ править править код ] Многие виды обладают способностью перемещать пигмент внутри хроматофоров, что позволяет им менять цвет. Этот процесс, известный как физиологическая смена цвета, является хорошо изученным на примере меланофоров. Это обусловлено тем, что меланин является наиболее тёмным и заметным пигментом. У большинства вида, с относительно тонкой кожей, кожные меланофоры обычно имеют плоскую форму и покрывают большую площадь. У животных с толстой кожей, примером которых могут служить рептилии, кожные меланофоры часто объединяются в трёхмерные блоки с другими хроматофорами. Указанные кожные комплексы хроматофоров состоят из верхнего слоя ксантофора или эритрофора, следующего за ним иридофора и нижнего меланофорвого слоя, тяжи которого покрывают иридофоры [1]. Оба типа кожных меланофоров играют важную роль в процессе физиологической смены цвета. Плоские кожные меланофоры часто перекрывают другие хроматофоры, таким образом, что когда пигмент распределён по всей клетке, кожа приобретает тёмную окраску. Когда пигмент сосредотачивается ближе к центру клетки, пигменты других хроматофоров выступают ближе к поверхности и кожа приобретает цвет.
Это создает быструю смену оптических свойств. Такие механизмы контролируются гормонально или нервной системой. Они позволяют мгновенно менять окраску в зависимости от окружающих условий. Хроматофоры растений У растений и водорослей функцию хроматофоров выполняют специализированные пластиды, участвующие в фотосинтезе. Они содержат пигменты, такие как хлорофилл и каротиноиды, и имеют разнообразные формы. Хроматофоры растений отделены от цитоплазмы мембраной и могут образовывать скопления. Они автономно размножаются делением, а их окраска определяет цвет растения. У зеленых водорослей хроматофоры звездчатые У бурых - они имеют форму чечевицы или диска А у красных водорослей - спиральную или ленточную форму Таким образом, хроматофоры растений - это органоиды, выполняющие фотосинтез и дающие им окраску. Бактериальные хроматофоры У фотосинтезирующих бактерий в цитоплазме клеток находятся особые пигмент-белковые комплексы - бактериальные хроматофоры. Они выполняют функцию улавливания света и преобразования энергии. Бактериальные хроматофоры состоят из бактериохлорофилла, каротиноидов, белков-переносчиков электронов и других соединений. Они могут иметь разную форму - пластинок, трубочек или шариков. Отличительной чертой бактериальных хроматофоров является отсутствие мембранной оболочки, что отличает их от растительных хроматофоров. Они тесно связаны с цитоплазматической мембраной. Применение знаний о хроматофорах Изучение различных типов хроматофоров имеет большой потенциал практического применения в медицине, фармакологии и биотехнологиях.
Внутри хроматофора гранулы пигмента находятся в особом мешочке. Изменение цвета обеспечивается за счёт деформации этих мешочков, приводящей к изменению их оптических качеств. Этот механизм отличается от механизма физиологической смены цвета у рыб, земноводных и рептилий. Осьминоги проявляют способность управлять хроматофорами. Нервы, управляющие хроматофорами располагаются в головном мозгу в порядке, соответствующей распределению хроматофоров, которыми они управляют. Это предположение объясняет, почему при последовательном возбуждении нейронов, смена цвета имеет волновой характер. Как и хамелеоны, головоногие используют физиологическую смену цвета для коммуникации. Кроме того, головоногие, с их поразительно точной способностью подстраиваться под цвет и текстуру окружающего фона, являются рекордсменами животного мира по мимикрии. Бактерии Также хроматофоры были обнаружены в мембранах фототрофных бактерий. Здесь они используются главным образом для фотосинтеза, содержат пигмент бактериохлорофилл и каротиноиды. Однако, в зелёных серных бактериях они расположены в особых антенных комплексах , которые называются хлоросомы. Bagnara, J. The Dermal Chomatophore Unit англ. Bacterial membrane proteins. Microbiol Sci. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol. О сайте infor24. Он открыт и бесплатен для любого пользователя. Сайт infor24.
Что такое Хроматофор 5 класс?
Хроматофором называется внутриклеточное образование различной формы у водорослей, в котором находится хлорофилл и другие пигменты. Например, у животных хроматофоры могут использоваться для маскировки, коммуникации, терморегуляции или защиты от ультрафиолетового излучения. это специализированные клетки или органы, которые содержат пигменты и отвечают за изменение цвета у животных и некоторых других организмов.
Хроматофоры - это что такое в биологии?
Хроматофор представляет собой содержащую пигмент и светоотражающую клетку, обнаруженную у различных беспозвоночных и хладнокровных позвоночных животных, которая может способствовать изменению цвета или яркости в организме. Научитесь определять, что такое и как работает хроматофор. Хроматофоры – это специализированные клетки, ответственные за изменение цвета у многих животных, улиток, рыб и рептилий. Что такое хроматофоры? Хроматофоры – это специализированные клетки или органы, которые содержат пигменты и позволяют живым организмам изменять свой цвет.
Что такое хроматофор простыми словами?
Еще одна группа клеток, которая схожа внешне с иридофорами. Но на этом схожесть и заканчивается. Дело в том, что лейкофоры не преломляют свет, а отражают его. Эти клетки тоже плоские, а их цвет зависит от окружающего света. Например, если на тело животного падает белый свет, то он и будет отражаться. Соответственно, в текущих условиях животное будет практически незаметным.
А эти клетки не преломляют, отражают или поглощают свет. Они его излучают, причем генерируют свет фотофоры самостоятельно. В этом случае задействована биолюминесценция или хемилюминесценция. А в некоторых случаях речь идет и о биолюминесценции, источник которой — бактерии-симбионты. Биолюминесцировать могут не все головоногие.
Те, кто умеет это делать, светятся, например, с нижней стороны — это делается для маскирования своей тени от хищников, находящихся ниже. Кроме того, биолюминесценция используется головоногими для привлечения внимания особей противоположного пола, для коммуникаций или заманивания добычи. Здесь есть один любопытный факт: у большинства представителей класса цефалопод черно-белое зрение. Каким образом тогда эти животные изменяют свою окраску в соответствии с цветовым фоном окружающей среды? Американские ученые во главе с Александром Стаббс и Кристофером Стаббсы выяснили, что источник информация о цвете окружающих моллюска предметов и среды — хроматическая аберрация глаз.
Что такое хроматофор? Ответ: два ответа это хорошооооооооооооооооооо Ответ: Хроматофоры содержатся в тканях растений и придают им окраску. Клетка, в состав которой входит пигмент.
Как и в случае с ксантофорами и эритрофорами, разница между иридофорами и лейкофорами у рыб не всегда очевидна, но обычно считается, что иридофоры создают радужный или металлический цвет, в то время как лейкофоры дают светоотражающий цвет в белых тонах.
Однако следует отметить, что иридофоры и лейкофоры - это не разные хроматофоры, а очень специфические механизмы. Меланофоры Мутант данио личинка внизу неспособна синтезировать эумеланин в его меланофорах, ниже не-мутант дикого типа личинки. Меланофоры содержат меланин , эумеланин , который выглядит черным или темно- коричневым из-за своих свойств поглощения света. Это сложная молекула, содержащая группы дигидроксииндола и дигидроксииндол-2- карбоновой кислоты с несколькими кольцами пиррольного типа.
Он содержится в пузырьках, меланосомах и распределяется по клетке. Эумеланин производится из тирозина в результате ряда химических реакций, катализируемых ферментами. Ключевым ферментом, участвующим в синтезе меланина, является тирозиназа. При дефиците этого белка не может образовываться меланин, что вызывает некоторые типы альбинизма.
У некоторых видов земноводных наряду с эумеланином содержатся и другие пигменты. Например, новый темно-красный пигмент был обнаружен в меланофорах лягушек семейства Phyllomedusinaes. Хотя возможно, что менее изученные виды имеют сложные пигменты в своих меланофорах, тем не менее верно, что большинство изученных до сих пор меланофоров содержат только эумеланин. У людей есть только один вид пигментных клеток, эквивалентный меланофорам млекопитающих, который определяет цвет кожи, волос и глаз: меланоциты.
По этой причине, а также из-за их большого количества и контрастности цветов, которые часто делают эти клетки легко идентифицируемыми, меланофоры, безусловно, являются наиболее изученными хроматофорами. Однако есть различия между биологией меланофора и меланоцита. Цианофоры Лягушка Dendrobates pumilio. Некоторые ярко окрашенные виды имеют необычные хроматофоры неизвестного пигментного состава.
В 1995 году было показано, что яркие синие цвета некоторых видов мандариновых рыб созданы не схемохромами, а голубым биохромом неизвестной химической природы. Этот пигмент, обнаруженный в клеточных пузырьках по крайней мере двух видов рыб семейства Callionymidae , очень редко встречается в животном мире, поскольку все остальные синие пятна, изученные до сих пор, производятся схемохромами. Поэтому был предложен новый тип хроматофора - цианофор. Хотя цианофоры как и другие необычные хроматофоры встречаются нечасто в таксономии , их можно найти у других видов рыб и земноводных.
Например, яркие хроматофоры с неопределенными пигментами наблюдались в семействах Dendrobatidae и Centrolenidae. Транслокация пигмента Многие виды обладают способностью перемещать пигмент внутри хроматофоров, вызывая изменение цвета. Этот процесс в основном изучается у меланофоров, поскольку меланин - самый темный и наиболее заметный пигмент. У большинства видов с относительно тонкой дермой кожные меланофоры имеют тенденцию быть плоскими и покрывать большую площадь.
Однако у животных с относительно толстым слоем дермы, таких как взрослые рептилии, кожные меланофоры часто образуют трехмерные структуры с другими хроматофорами. В обоих типах расположения кожные меланофоры играют важную роль в физиологическом изменении цвета. Плоские кожные меланофоры часто покрывают другие хроматофоры, поэтому, когда пигмент распространяется по клетке, кожа становится темной. Когда пигмент скапливается в центре клетки, пигменты других хроматофоров подвергаются воздействию света, и кожа приобретает свой оттенок.
Точно так же после накопления меланина в DCU кожа становится зеленой из-за фильтрации ксантофором желтым света, рассеянного слоем иридофоров. Когда меланин рассеивается, свет больше не разрушается; он поглощается меланином, и кожа становится темной. Поскольку другие биохроматические хроматофоры также способны достигать этой миграции пигмента, кожа животных с несколькими видами хроматофоров может таким образом генерировать широкий диапазон цветов. Покадровая фотография меланофора рыбок данио во время агрегации пигмента.
Контроль и механизмы перемещения пигмента хорошо изучены у ряда видов, особенно среди земноводных и костистых рыб. Было показано, что процесс может находиться под гормональным, нейрональным или и тем и другим контролем. Нейрохимические вещества, участвующие в перемещении пигмента, включают норадреналин , рецепторы которого находятся на поверхности меланофоров. Основными гормонами, участвующими в регуляции транслокации, являются меланокортин , мелатонин и меланоконцентрирующий гормон MCH , вырабатываемые в основном гипофизом , шишковидной железой и гипоталамусом соответственно.
Эти гормоны также могут вырабатываться паракринными клетками кожи. На поверхности меланофора гормоны активируют рецепторы, связанные со специфическими G-белками, которые, в свою очередь, передают сигнал клетке. Меланокортин заставляет пигменты рассеиваться, а мелатонин и MCH вызывают их агрегацию. Многочисленные рецепторы мелакортина, MCH и мелатонина были идентифицированы у рыб и лягушек, включая гомолог MC1R , рецептора мелакортина, который, как известно, регулирует цвет кожи и волос человека.
Внутри клетки циклический аденозинмонофосфат цАМФ является важным вторичным посредником транслокации пигмента. По еще недостаточно расшифрованному механизму цАМФ влияет на другие белки, такие как протеинкиназа А , чтобы активировать белковый двигатель, который транспортирует везикулы, содержащие пигменты, по микротрубочкам и микрофиламентам.
Изменение формы хроматофоров У головоногих моллюсков хроматофорные клетки имеют мешочки с пигментом, форма которых меняется мышцами. Это создает быструю смену оптических свойств. Такие механизмы контролируются гормонально или нервной системой. Они позволяют мгновенно менять окраску в зависимости от окружающих условий. Хроматофоры растений У растений и водорослей функцию хроматофоров выполняют специализированные пластиды, участвующие в фотосинтезе. Они содержат пигменты, такие как хлорофилл и каротиноиды, и имеют разнообразные формы.
Хроматофоры растений отделены от цитоплазмы мембраной и могут образовывать скопления. Они автономно размножаются делением, а их окраска определяет цвет растения. У зеленых водорослей хроматофоры звездчатые У бурых - они имеют форму чечевицы или диска А у красных водорослей - спиральную или ленточную форму Таким образом, хроматофоры растений - это органоиды, выполняющие фотосинтез и дающие им окраску. Бактериальные хроматофоры У фотосинтезирующих бактерий в цитоплазме клеток находятся особые пигмент-белковые комплексы - бактериальные хроматофоры. Они выполняют функцию улавливания света и преобразования энергии. Бактериальные хроматофоры состоят из бактериохлорофилла, каротиноидов, белков-переносчиков электронов и других соединений. Они могут иметь разную форму - пластинок, трубочек или шариков. Отличительной чертой бактериальных хроматофоров является отсутствие мембранной оболочки, что отличает их от растительных хроматофоров.
Они тесно связаны с цитоплазматической мембраной.
ГДЗ по биологии 7 класс Пасечник. Линейный курс | Страница 24
Хроматофоры (от греч. χρῶμα — цвет и греч. φορός — несущий) — пигментсодержащие или светоотражающие клетки у животных и человека (то же, что и пигментные клетки. Научитесь определять, что такое и как работает хроматофор. Хроматофоры – это специализированные клетки, ответственные за изменение цвета у многих животных, улиток, рыб и рептилий. Хроматофоры. (от греческого chroma, родительный падеж chromatos — цвет, краска и phoros — несущий), 1) органоиды водорослей, которые содержат пигменты, обеспечивающие фотосинтез.
Как выглядит хламидомонада?
- Введите определение
- Хроматофор - Chromatophore
- Ответы по теме 10 Многообразие водорослей, ГДЗ Биология 7 класс Пасечник Суматохин Калинова
- Что такое хроматофор? - Дата: 15.02.2020, Автор: barbaragillespie -
- Что такое хроматофор простыми словами? Ответов на вопрос: 25
Значение слова «хроматофор»
Содержат хлорофиллы, каротиноиды и др. Содержат бактерио-хлорофиллы, каротиноиды и ряд переносчиков электронов, а также ферменты, участвующие в синтезе пигментов; в них осуществляется фотосинтез. Похожие вопросы и ответы:.
Нарушение функционирования тирозиназы приводит к альбинизму вследствие невозможности синтеза меланина. Меланофоры являются наиболее широко изучаемыми клетками. Этому способствует их заметный цвет, высокое содержание в клетках, а также факт, что меланоциты — аналоги меланофоров, являются единственным классом пигментсодержащих клеток человека. Тем не менее, существуют различия между меланофорами и меланоцитами. Цианофоры[ править править код ] В 1995 году было показано, что яркие голубые цвета некоторых видов мандаринок обусловлены циансодержащими биохромами, а не хемохромами.
Данный пигмент, встречающийся у как минимум двух видов семейства Callionymidae , очень редок в животном мире, синий цвет обычно обусловлен наличием хемохроматиков. Эти данные позволяют говорить о наличии особого типа хроматофоров — цианофоров. Физиологическая смена цвета[ править править код ] Многие виды обладают способностью перемещать пигмент внутри хроматофоров, что позволяет им менять цвет. Этот процесс, известный как физиологическая смена цвета, является хорошо изученным на примере меланофоров. Это обусловлено тем, что меланин является наиболее тёмным и заметным пигментом. У большинства вида, с относительно тонкой кожей, кожные меланофоры обычно имеют плоскую форму и покрывают большую площадь. У животных с толстой кожей, примером которых могут служить рептилии, кожные меланофоры часто объединяются в трёхмерные блоки с другими хроматофорами.
Указанные кожные комплексы хроматофоров состоят из верхнего слоя ксантофора или эритрофора, следующего за ним иридофора и нижнего меланофорвого слоя, тяжи которого покрывают иридофоры [1]. Оба типа кожных меланофоров играют важную роль в процессе физиологической смены цвета.
Ксантофоры и эритрофоры Ксантофорами называются хроматофоры, содержащие большое количество жёлтых пигментов.
Хроматофоры, в которых преобладают красно-оранжевые каротиноиды называются эритрофорами[ источник не указан 2928 дней ]. Везикулы пузырьки , наполненные птиридином и каротиноидами могут встречаться в одной клетке, в таком случае её окраска определяется соотношением количества красных и жёлтых пигментов. Таким образом деление по цвету носит довольно условный характер.
Способность синтезировать птеридины из трифосфата гуанозина является характерным признаком хроматофоров, но ксантофоры, по всей вероятности, могут синтезироваться другими способами, что приводит к повышению содержания жёлтых пигментов. Каротиноиды , напротив, выделяются из пищи и накапливаются в эритрофорах. Этот факт был установлен впервые путём выращивания зелёных в норме лягушек на диете из сверчков, лишённых каротина.
Отсутствие каротина в пище лягушек привело к отсутствию красно-оранжевой составляющей окраски эритрофоров. В результате лягушки приобрели вместо зелёной синюю окраску[ источник не указан 2928 дней ]. Иридофоры и лейкофоры Иридофорами называются окрашенные клетки, которые отражают свет с помощью хемохромов из кристаллизованного гуанина.
Дифракция падающего света на гранях гуаниновых пластин вызывает появление характерной переливающейся иридирующей окраски. Природа наблюдаемого цвета определяется ориентацией хемохрома[ источник не указан 2928 дней ]. В сочетании с биохромами, которые выступают в качестве светофильтров, иридофоры создают эффект Тиндаля , придавая тканям ярко-голубую или ярко-зелёную окраску[ источник не указан 2928 дней ].
Меланофоры Меланофоры содержат эумеланин — разновидность меланина, пигмент чёрного или тёмно-коричневого цвета, обусловленного высокой светопоглощающей способностью. Эумеланин содержится в пузырьках, называемых меланосомами, и распределён по всему объёму клетки. Эумеланин синтезируется из тирозина в результате ряда последовательных катализированных химических реакций и представляет собой сложное химическое соединение состоящее из дигидроксииндола[ неизвестный термин ] и дигидроксииндол-2-карбоновой кислоты[ неизвестный термин ] с пиролловыми кольцами[ источник не указан 2928 дней ].
Основным ферментом в синтезе меланина служит тирозиназа. Нарушение функционирования тирозиназы приводит к альбинизму вследствие невозможности синтеза меланина. Меланофоры являются наиболее широко изучаемыми клетками.
Этому способствует их заметный цвет, высокое содержание в клетках, а также факт, что меланоциты — аналоги меланофоров, являются единственным классом пигментсодержащих клеток человека.
У людей есть только один класс пигментных клеток, эквивалент меланофоров у млекопитающих, для создания цвета кожи, волос и глаз. По этой причине, а также из-за того, что большое количество и контрастный цвет клеток обычно упрощает их визуализацию, меланофоры, безусловно, являются наиболее изученными хроматофорами.
Однако есть различия между биологией меланофоров и меланоцитов. Цианофоры В 1995 году было продемонстрировано, что яркие синие цвета у некоторых видов мандариновой рыбы не создаются схемохромами. Вместо этого ответственен голубой биохром неизвестной химической природы Fujii 2000.
Этот пигмент, обнаруженный в пузырьках по крайней мере у двух видов каллионимидных рыб, очень необычен для животного мира, поскольку все остальные синие окраски, исследованные до сих пор, являются схематическими. Поэтому был предложен новый тип хроматофоров - цианофор. Хотя они кажутся необычными по своему таксономическому ограничению, могут быть цианофоры а также другие необычные типы хроматофоров у других рыб и земноводных.
Например, ярко окрашенные хроматофоры с неопределенными пигментами наблюдались как у ядовитых лягушек, так и у стеклянных лягушек Schwalm et al. Разработка Во время эмбрионального развития позвоночных хроматофоры являются одним из ряда типов клеток, генерируемых в нервном гребне, парной полосе клеток, возникающих на краях нервной трубки. Эти клетки обладают способностью мигрировать на большие расстояния, позволяя хроматофорам заселять многие органы тела, включая кожу, глаза, ухо и мозг.
Покидая нервный гребень волнообразно, хроматофоры проходят либо дорсолатеральный путь через дерму, проникая в эктодерму через небольшие отверстия в базальной пластинке, либо вентромедиальный путь между сомитами и нервной трубкой. Исключением являются меланофоры пигментированного эпителия сетчатки глаза. Они не происходят из нервного гребня, вместо этого выход из нервной трубки создает глазной бокал, который, в свою очередь, формирует сетчатку.
Когда и как мультипотентные клетки-предшественники хроматофора называемые хроматобласты развиваются в свои дочерние подтипы - область постоянных исследований. У эмбрионов рыбок данио известно, например, что через 3 дня после оплодотворения каждый из классов клеток, обнаруженных у взрослых рыб - меланофоры, ксантофоры и иридофоры - уже присутствует. Исследования с использованием мутантных рыб показали, что такие факторы транскрипции, как Комплект,sox10, а также митф важны для контроля дифференцировки хроматофора Kelsh et al.
Если эти белки дефектны, хроматофоры могут отсутствовать частично или полностью, что приводит к лейцистическому расстройству. Транслокация пигмента Многие виды обладают способностью перемещать пигмент внутри хроматофора, что приводит к заметному изменению цвета. Этот процесс, известный как физиологическое изменение цвета, наиболее широко изучен у меланофоров, поскольку меланин - самый темный и наиболее заметный пигмент.
У большинства видов с относительно тонкой дермой дермальные меланофоры имеют тенденцию быть плоскими и покрывать большую площадь поверхности. Однако у животных с толстым дермальным слоем, таких как взрослые рептилии, дермальные меланофоры часто образуют трехмерные единицы с другими хроматофорами. Эти дермальные хроматофорные единицы DCU состоят из самого верхнего слоя ксантофора или эритрофора, затем слоя иридофора и, наконец, корзинообразного слоя меланофора с отростками, покрывающими иридофоры Bagnara et al.
Оба типа кожных меланофоров важны для физиологического изменения цвета. Плоские кожные меланофоры часто перекрывают другие хроматофоры, поэтому, когда пигмент рассредоточен по клетке, кожа выглядит темной. Когда пигмент собирается по направлению к центру клетки, пигменты других хроматофоров подвергаются воздействию света, и кожа приобретает свой оттенок.
Точно так же после агрегации меланина в DCU кожа становится зеленой из-за ксантофорной желтой фильтрации рассеянного света от слоя иридофора. При рассеивании меланина свет больше не рассеивается, и кожа становится темной. Поскольку другие биохроматические хоматофоры также способны к транслокации пигментов, животные с несколькими типами хроматофоров могут генерировать впечатляющий набор цветов кожи, хорошо используя эффект разделения Palazzo et al.
Контроль и механика быстрой транслокации пигмента хорошо изучены у ряда различных видов, особенно у земноводных и костистых рыб Deacon et al. Было продемонстрировано, что процесс может находиться под контролем гормонов, нейронов или и тем, и другим. Нейрохимические вещества, которые, как известно, перемещают пигмент, включают норадреналин через его рецептор на поверхности меланофоров Aspengren et al.
Основными гормонами, участвующими в регуляции транслокации, являются меланокортины, мелатонин и меланинконцентрирующий гормон MCH , которые вырабатываются в основном в гипофизе, шишковидной железе и гипоталамусе соответственно. Эти гормоны могут также паракринно вырабатываться клетками кожи. Было показано, что на поверхности меланофора гормоны активируют специфические рецепторы, связанные с G-белком, которые, в свою очередь, передают сигнал в клетку.
Меланокортины приводят к диспергированию пигмента, в то время как мелатонин и MCH вызывают агрегацию Logan et al. Многочисленные рецепторы меланокортина, МСН и мелатонина были идентифицированы у рыб Logan et al. Было показано, что внутри клетки циклический аденозинмонофосфат цАМФ является важным вторичным посредником транслокации пигмента.
Посредством механизма, который еще не полностью изучен, цАМФ влияет на другие белки, такие как протеинкиназа A, чтобы управлять молекулярными моторами, несущими пигмент, содержащие пузырьки, вдоль как микротрубочек, так и микрофиламентов Snider et al. Фоновая адаптация См. Также: Камуфляж Большинство рыб, рептилий и земноводных претерпевают ограниченное физиологическое изменение цвета в ответ на изменение окружающей среды.
Этот вид камуфляжа, известный как фоновая адаптация », чаще всего проявляется в легком потемнении или осветлении тона кожи, чтобы приблизительно имитировать оттенок окружающей среды. Было продемонстрировано, что процесс фоновой адаптации зависит от зрения похоже, животное должно видеть окружающую среду, чтобы адаптироваться к ней Neuhauss 2003 , и что перемещение меланина в меланофорах является основным фактором изменения цвета Logan и др. У некоторых животных, таких как хамелеоны и анолисы, высокоразвитая фоновая реакция адаптации, способная очень быстро генерировать различные цвета.
Они адаптировали способность изменять цвет в зависимости от температуры, настроения, уровня стресса и социальных сигналов, а не просто имитировать окружающую среду. Хроматофоры головоногих моллюсков Колеидные головоногие моллюски имеют сложные многоклеточные «органы», которые они используют для быстрой смены цвета. Это особенно заметно у ярко окрашенных кальмаров, каракатиц и осьминогов.
Каждая хроматофорная единица состоит из одной хроматофорной клетки и множества мышечных, нервных, оболочечных и глиальных клеток Cloney and Florey, 1968. Внутри клетки хроматофора гранулы пигмента заключены в эластичный мешок, называемый цитоэластическим саккулюсом. Чтобы изменить цвет, животное искажает форму или размер саккулюса за счет сокращения мышц, изменяя его полупрозрачность, отражательную способность или непрозрачность.
Это отличается от механизма, используемого у рыб, земноводных и рептилий, тем, что изменяется форма саккулюса, а не перемещение пигментных пузырьков внутри клетки. Однако достигается аналогичный эффект. Осьминоги оперируют хроматофорами в сложных волнообразных хроматических дисплеях, что приводит к множеству быстро меняющихся цветовых схем.
Считается, что нервы, управляющие хроматофорами, расположены в головном мозге в том же порядке, что и хроматофоры, которые каждый из них контролирует. Это означает, что образец изменения цвета соответствует модели активации нейронов. Это может объяснить, почему, когда нейроны активируются один за другим, изменение цвета происходит волнообразно Demski 1992.
Подобно хамелеонам, головоногие моллюски используют физиологическое изменение цвета для социального взаимодействия. Они также являются одними из самых опытных в адаптации фона, имея способность с поразительной точностью подбирать цвет, узор, интенсивность и текстуру окружающей среды. Бактерии Хроматофоры также встречаются в мембранах фототрофных бактерий.
Используемые в основном для фотосинтеза, они содержат пигменты бактериохлорофилла и каротиноиды Salton, 1987. У пурпурных бактерий, таких как Rhodospirillum rubrum, светособирающие белки присущи мембранам хроматофора. Однако у зеленых серных бактерий они организованы в специальные антенные комплексы, называемые хлоросомами Frigaard and Bryant 2004.
Практическое применение В дополнение к фундаментальным исследованиям, направленным на лучшее понимание самих хроматофоров, клетки используются для прикладных исследовательских целей. Например, личинки рыбок данио используются для изучения того, как хроматофоры организуются и взаимодействуют, чтобы точно сформировать регулярный узор с горизонтальными полосами, как у взрослых рыб Kelsh 2004. Это рассматривается как полезная модельная система для понимания паттернов в области эволюционной биологии развития.
Биология хроматофора также использовалась для моделирования состояния или заболевания человека, включая меланому и альбинизм. Недавно ген, ответственный за меланофор-специфический золотой штамм рыбок данио, Slc24a5, было показано, что он имеет человеческий эквивалент, который сильно коррелирует с цветом кожи Lamason et al. Хроматофоры также используются в качестве биомаркера слепоты у хладнокровных животных, так как животные с определенными дефектами зрения не способны к фоновой адаптации к световой среде Neuhauss 2003.
Считается, что человеческие гомологи рецепторов, которые опосредуют перемещение пигмента в меланофорах, участвуют в таких процессах, как подавление аппетита и загар, что делает их привлекательными мишенями для лекарств Logan et al. Поэтому фармацевтические компании разработали биологический анализ для быстрой идентификации потенциальных биологически активных соединений с использованием меланофоров африканской когтистой лягушки Jayawickreme et al. Другие ученые разработали методы использования меланофоров в качестве биосенсоров Andersson et al.
Были предложены потенциальные военные применения изменения цвета, опосредованного хроматофорами, в основном как тип активного камуфляжа Lee 2005. Филиппини, А. Суска и др.
Меланофоры лягушки, культивируемые на флуоресцентных микрошариках: биосенсинг на основе биомимики.