Видеоуроки являются идеальными помощниками при изучении новых тем, закреплении материала, для обычных и факультативных занятий, для групповой и индивидуальной работы. Они содержат оптимальное количест Смотрите видео онлайн «Додекаэдр | Стереометрия.
Похожие файлы
- ✅ Додекаэдр - Что это такое, определение и понятие
- Еще термины по предмету «Высшая математика»
- Додекаэдр » Боги Славян
- Вам может понравиться:
- Дополнительные материалы по теме: Додекаэдр.
Додекаэдр в природе и жизни человека
Многогранник с 12 гранями, он же додекаэдр В геометрии додекаэдр (греч. Многогранник с 12 гранями, он же додекаэдр В геометрии додекаэдр (греч. Правильный додекаэдр (от двенадцать и грань) один из пяти возможных правильных многогранников. Додекаэдр — 1 из 5ти вероятных правильных многогранников. Пятый же многогранник, додекаэдр, воплощал в себе «всё сущее», символизировал всё мироздание, почитался главнейшим. ДОДЕКАЭДР в искусстве На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра.
Что это такое? Ученые бьются над разгадкой древнеримских многогранников – додекаэдров
Астрономические инструменты? Другая возможная версия, что додекаэдры - это астрономические инструменты, которые определяли лучшее время для выращивания злаков. По версии голландского философа Вагемансу, это был астрономический измерительный прибор, с помощью которого можно было измерить угол солнечного света и, следовательно, точно рассчитать весенний и осенний сезоны. Но даже эта теория не подтверждается, потому что у додекаэдров не было одного конкретного размера. Религиозные символы? Другая гипотеза состоит в том, что додекаэдры были религиозными символами каледонских священников в Великобритании. Но и для этой версии нет записей в письменных текстах. Игра легионеров?
Это могла быть игра легионеров во время боевых действий.
Об этом сообщили involta. Поверхности этого любопытного объекта украшены круглыми отверстиями разного диаметра и маленькими шариками на углах. За последние 200 лет в Европе было обнаружено более сотни таких предметов.
Не предоставлено и объяснений того, каким образом додекаэдры могли использоваться для этих целей. Более интересной представляется гипотеза о том, что додекаэдры служили в качестве астрономических измерительных приборов, с помощью которых определяли оптимальный срок посева озимых зерновых культур. Как считает исследователь Вагеман, «додекаэдр был астрономическим измерительным прибором, при помощи которого измеряли угол падения солнечного света, и таким образом точно определяли один особый день весной и один особый день осенью. Определяемые таким образом дни, по-видимому, имели большую важность для сельского хозяйства». Однако противники этой теории отмечают, что использование додекаэдров в качестве измерительных приборов любого рода представляется невозможным из-за отсутствия у них какой-либо стандартизации. Ведь все найденные предметы имели разные размеры и конструкции. Впрочем, среди множества подобных теорий есть одна весьма правдоподобная.
Согласно ей, эти предметы относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших территории Северной Европы и Британии. Вполне возможно, что имеется какая-то прямая связь между додекаэдрами римского периода и множеством куда более древних каменных шаров с вырезанными на их поверхности правильными многогранниками. Такие шары-многогранники, датируемые периодом между 2500 и 1500 годами до нашей эры, находят в Шотландии, Ирландии и Северной Англии. Примерно к этому же времени относится возведение знаменитого мегалитического комплекса под названием Стоунхендж. Никто до сих пор не знает наверняка, каково было предназначение этого сооружения. Однако явно неслучайное расположение гигантских камней, привязанное к циклам движения солнца по небу, дает основания полагать, что Стоунхендж служил не только для религиозно-ритуальных обрядов наиболее вероятное назначение , но и для астрономических наблюдений. Возможно, что и маленькие каменные шары-многогранники играли для древних жителей Британии роль «домашних Стоунхенджей», олицетворяя какие-то важные для них духовные идеи и тайны мироустройства.
Например, в зависимости от формы они могут быть: Выпуклый: Когда соединить любые две точки многогранника, можно провести прямую, не выходящую за пределы фигуры. Вогнутая: Если хотя бы две точки додекаэдра можно соединить прямой линией, которая в какой-то момент выходит из фигуры. Аналогичным образом, в зависимости от их регулярности, они могут быть: Обычный: Все их грани равны друг другу и представляют собой правильные пятиугольники. То есть, у которых пять сторон имеют одинаковые размеры, а также их внутренние углы также равны см.
Изображение выше. Нерегулярный: Все они имеют разные грани, каждый из которых представляет собой многоугольник, который может быть правильным, а может и не быть.
Кругосветка по додекаэдру
Додекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы. Додекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы. Важно проследить за тем, чтобы ширина рамок додекаэдра не была меньше, чем ширина припусков для склеивания. Додекаэдр (от греч. dódeka — двенадцать и hédra — грань), один из пяти типов правильных многогранников.
Додекаэдр в природе и жизни человека
Нужно учитывать, что все грани додекаэдра принимают энергию, а вершины отдают. Радиус действия додекаэдра может быть сколько угодно большим и зависит от силы намерения и силы поля «держателя». Его можно использовать при очном и дистанционном лечении. Дать намерение, что энергии пойдет столько, сколько гармонично для настоящего сеанса. При онкологии энергия направляется в причину заболевания. Очень аккуратно направлять его вершиной сверху на свою макушку, так как энергия идет очень мощная.
Во время медитации можно держать в руках, либо расположить рядом. Быстро останавливает внутренний диалог. Во время медитации, держа додекаэдр в руках и располагая его напротив чакр, можно « увидеть « как внутри него начинают вращаться и светиться определенные фигуры. А при расположении над макушкой — начинают светиться и вращаться все фигуры, по очереди, которые высвечивались на чакрах.
Леонидова, существует в нескольких вариантах и несёт особую смысловую нагрузку. Архитектурные формы меняются, «значок» додекаэдра всегда остаётся с мастером. Леонидов помещает его в ключевые места проектов и формирует вблизи него контексты, отсылающие к древним образцам архитектуры греческий храм и храмовая роща, римский форум и человеческой мысли.
Возможно, исследователи понапрасну ломают голову и функции бронзовых многогранников были гораздо более простыми. Может, это были обычные детские игрушки или необходимый элемент какой-нибудь неизвестной сегодня азартной игры забава для отдыхающих между походами легионеров. Не исключено, что додекаэдр - навершие военного штандарта, посоха или скипетра.
Вариант подсвечника также не стоило бы отметать, тем более, что в одном из найденных додекаэдров найдены следы воска. Словом, версий много, все они разные, как говорится, на любой вкус. А вот подлинной информации о загадочных предметах сущие крохи.
Известно, что они были распространены в западной части Римской империи со II по V век нашей эры, изготавливались из бронзы, имели размер от 4 до 11 сантиметров. Вот, пожалуй, и все точные данные. Добавить можно лишь то, что додекаэдры, по всей видимости, были дороги их владельцам, поскольку их периодически находят в кладах монет.
А в 2019 году удивительный додекаэдр, сплетенный из бронзовых прутьев, нашли в "сокровищнице ведьмы". Так назвали обнаруженную в Помпеях шкатулку, в которой находилось несколько десятков таинственных амулетов и драгоценностей.
Примером могут служить кости, которые они используют для ролевых игр, они представляют собой правильный додекаэдр. Каждое лицо обозначено номером: Число 1 представляет собой наименьшую фигуру, которая противоположна лицу, представленному цифрой 12, которая является самой большой фигурой. В самом деле, если добавить обе противоположные цифры, результат будет 13. Существуют различные виды додекаэдров, некоторые из них: Тупой додекаэдр: те, которые принадлежат к группе «архимедовых тел» множество выпуклых многогранников с гранями, которые являются правильными многоугольниками различных типов.
Что такое додекаэдра объяснение свойства и примеры
Каждая вершина додекаэдра является смежной с тремя гранями, что делает его уникальным среди других платоновских тел. Такое свойство делает додекаэдр интересным объектом для изучения и анализа. Каждая вершина соединена с тремя другими вершинами, образуя пять граней додекаэдра. Эти грани могут быть различными по форме и размеру, но их количество всегда остается неизменным. Изучение додекаэдра позволяет понять особенности его структуры и свойства. Он имеет симметричную форму и может быть использован в различных областях, включая геометрию, химию, физику, компьютерную графику и другие науки. Примеры додекаэдров можно найти в разных объектах и конструкциях.
Некоторые природные кристаллы обладают формой додекаэдра, а также его применяют при создании моделей и игральных костей. Додекаэдр также может быть использован для создания различных дизайнов и украшений. Свойства додекаэдра 1.
Нанеся на глобус очаги известных ему в то время наиболее крупных и примечательных культур и цивилизаций Древнего мира, он заметил ряд закономерностей в их расположении относительно друг друга, а также относительно географических полюсов и экватора планеты. Так, очаг древней протоиндийской цивилизации Мохенджо-Даро и древняя самобытная и загадочная культура острова Пасхи в Тихом океане находятся соответственно на 27 градусе северной и южной широты. В то же время, эти районы лежат на противоположных концах оси, проходящей через центр Земли, то есть они антиподальны. От Мохенджо-Даро до Северного географического полюса, как и от острова Пасхи до Южного полюса, одно и то же расстояние. Продлив линию, соединяющую эти две цивилизации, на запад на такое же расстояние, а затем соединив её концы с Северным полюсом планеты, можно получить гигантский равносторонний треугольник Земли.
В вершине первого построенного на глобусе треугольника, кроме Мохенджо-Даро, — берберо-туарегская цивилизация Северной Африки с древними священными галереями наскальных рисунков. В центре треугольника — очаг самой древней земледельческой культуры Европы — Трипольской. В центрах граней этих предметов были отверстия, а в вершинах — сферические выпуклости. При последовательном соединении центров треугольников построенной системы получается именно такой же додекаэдр — правильный двенадцатигранник с пятиугольными гранями. Совмещение на глобусе икосаэдра и додекаэдра дало модель икосаэдро-додекаэдрической системы Земли ИДСЗ. Для объяснения же электрического, магнитного и гравитационного полей планеты механизм перемещения вещества согласно ИДСЗ может, по нашему мнению, сыграть решающую роль.
Если ударить пиритом о кресало, образующиеся искры не уступают кремню по длине и при этом «живут» дольше, легче зажигая трут. Таким образом, ассоциация между огнем и додекаэдром могла сложиться сама собой. В 1907 году была высказана гипотеза, что додекаэдры являлись подсвечниками, так как они устойчивы в любом положении и имеют отверстия разных диаметров, использовавшихся в зависимости от размера свечей. Внутри одного римского додекаэдра был найден воск, что может подтверждать эту версию. Согласно G. Wagemans, «додекаэдр был астрономическим измерительным прибором, при помощи которого измеряли угол падения солнечного света и, таким образом, точно определяли один особый день весной и один особый день осенью. Определяемые таким образом дни, по-видимому, имели большую важность для сельского хозяйства». Тем не менее, противники этой гипотезы отмечают, что использование додекаэдров в качестве измерительных приборов любого рода представляется невозможным из-за отсутствия у них какой-либо стандартизации, поскольку найденные предметы имели разные размеры и конструкции. Недоказанной остается и версия, утверждающая, что додекаэдры являются религиозными принадлежностями, которые использовались в культовых обрядах друидами Британии и Каледонии. Опять же, какие-либо письменные источники или археологические находки, подкрепляющие эту версию, отсутствуют. А может быть этот странный предмет был просто игрушкой или игровой принадлежностью для легионеров во время военных кампаний? Существует мнение, что данные предметы относятся не столько к римским завоевателям, сколько к культуре местных племен и народов, издревле населявших перечисленные территории. Возможно, имеется какая-то прямая связь между додекаэдрами и множеством куда более древних каменных шаров с вырезанными по их поверхности правильными многогранниками. Такие шары-многогранники, датируемые периодом между 2500 и 1500 годами до нашей эры, находят в Шотландии, Ирландии и северной Англии. Еще одна сделанная находка только добавила таинственности всей истории о назначении этих предметов.
Это тело - одно из самых гармоничных и независимых среди Платоновых тел, поскольку, согласно Платону, оно символизировало Вселенную. После того, как площадь пятиугольника вычислена, вам просто нужно умножить его на 12 которые являются пятиугольными гранями додекаэдра. Теперь, когда у додекаэдра есть грани с правильными пятиугольниками, додекаэдр называется правильным. Примером могут служить кости, которые они используют для ролевых игр, они представляют собой правильный додекаэдр.
Что такое додекаэдра объяснение свойства и примеры
Построение структуры начинается с центрального додекаэдра, путем добавления к нему внешних додекаэдров к каждой из двенадцати граней. ДОДЕКАЭДР в искусстве На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра.
Кругосветка по додекаэдру
Правильный додекаэдр (от двенадцать и грань) один из пяти возможных правильных многогранников. Гипотеза, что додекаэдры являлись подсвечниками, была высказана еще в 1907 году. небольшой полый бронзовый или каменный предмет геометрической формы с двенадцатью плоскими гранями они украшены маленькими шарами в каждом углу пятиугольника. это многогранник, состоящий из 12 граней, каждая из которых является правильным пятиугольником.
Додекаэдр | Стереометрия #44 | Инфоурок
Если ученик выполняет МДЗ ежемесячное домашнее задание , то на сайт должны быть загружены все работы. Четвертные оценки выставляются, если у ученика есть указанное количество загруженных заданий и оценок.
От Мохенджо-Даро до Северного географического полюса, как и от острова Пасхи до Южного полюса, одно и то же расстояние. Продлив линию, соединяющую эти две цивилизации, на запад на такое же расстояние, а затем соединив её концы с Северным полюсом планеты, можно получить гигантский равносторонний треугольник Земли. В вершине первого построенного на глобусе треугольника, кроме Мохенджо-Даро, — берберо-туарегская цивилизация Северной Африки с древними священными галереями наскальных рисунков.
В центре треугольника — очаг самой древней земледельческой культуры Европы — Трипольской. В центрах граней этих предметов были отверстия, а в вершинах — сферические выпуклости. При последовательном соединении центров треугольников построенной системы получается именно такой же додекаэдр — правильный двенадцатигранник с пятиугольными гранями. Совмещение на глобусе икосаэдра и додекаэдра дало модель икосаэдро-додекаэдрической системы Земли ИДСЗ. Для объяснения же электрического, магнитного и гравитационного полей планеты механизм перемещения вещества согласно ИДСЗ может, по нашему мнению, сыграть решающую роль.
Как показано в статье, все эти поля могут быть созданы силовым полем кристаллизации внутреннего ядра планеты. Таким образом, растущий геокристалл создаёт энергетический каркас Земли. Надо отметить, что элементы симметрии, подобные кристаллу, нами обнаружены также у Марса, Венеры, Луны и Солнца.
Шестой слой продолжает иметь вид икосододекаэдра, но с другими пропорциями чем икосододекаэдр пятого слоя. Седьмой слой возвращается к форме додекаэдра, но имеющего размер примерно в 6. Ещё о выборе названия. Это объясняется тем, что FROIM структуры характеризуются идеальным прилеганием между составляющими их додекаэдрами, то есть зазоры в направлении от периферии к центру структуры отсутствуют.
Приняв за условие, что каждый индивидуальный додекаэдр является твердым, несжимаемым телом, неизбежно приходим к заключению, что результирующие FROIM структуры обладают жесткостью равной жесткости их составных частей. Под жесткостью здесь подразумевается способность противостоять внешнему давлению. Условием противостояния внешнему давлению является то, что внешнее давление должно прилагаться строго нормально по отношению к центру FROIM структуры центрально симметрично. Кстати говоря требование к давлению быть внешним неявно входит и в условия жесткости для обычных многогранников. Это обстоятельство до сих пор ускользает от внимания математиков. Так что условия жесткости одинаковы для элементарных многогранников и для структур собираемых из таких многогранников. Эта аналогия особенно очевидна в количественном совпадении составляющих элементов.
FROIM структура из 195 додекаэдров. Представлены все слои от седьмого до второго первый невидим. Известно, что в обычный додекаэдр можно последовательно вписать другие правильные многогранники — куб, октаэдр и тетраэдр. Подобное свойство присуще и рассматриваемым здесь структурам. Итак, первая структура является аналогом куба, «вписанного» в семислойный «большой додекаэдр», который был представлен в предыдущем разделе. На представленной анимации для облегчения анализа показаны только верхние четыре слоя и центральный додекаэдр. И прототип — куб, вписанный в додекаэдр, представлен ниже для сравнения.
Следующий на очереди — FROIM аналог тетраэдра: Октаэдр, больше похожий на шар и его прототип обычный многогранник: Более изящная версия октаэдра, лишенная большей части додекаэдров четвертого слоя: Еще один вариант октаэдро-подобной FROIM структуры, отличающейся от предыдущей отсутствием додекаэдров пятого слоя: И в завершении, тетраэдро-подобная структура из додекаэдров, на этот раз также четырехслойная: Додекаграфы — атомные ядра Додекаграф это производное от слов «додекаэдр» и «граф» — математическая совокупность множеств. Dodecagraf, or just graf as usual, «f» instead of «ph». В данном разделе мы представим все слои которые можно образовать из додекаэдров путем постепенного наращивания их количества, начиная с единственного центрального додекаэдра. Мы будем различать жесткие структуры от обычных нежестких. Эти структуры обеспечивают прочность всей конструкции ядра, так как не могут изменить своей формы при соударениях и при приложении внешнего давления. Будем считать, что внешние силы всегда прилагаются центрально симметрично по отношению к атомам. Это логичное допущение, так как внешними по отношению к атомам могут быть либо другие атомы максимальная разница в размерах атомов составляет менее 3х , либо окружающий атомы эфир прилагающий одинаковое давление со всех сторон, что и обеспечивает стабильность вещества.
Внешние силы всегда направлены на сжатие ФРОИМ структур, так как прилагаются перпендикулярно соприкасающимся граням додекаэдров.
Поставить отметку на границе верхнего левого сектора круга. Назвать точку буквой «А». По аналогии поставить отметку на верхней правой части круга.
Назвать точку буквой «В». Найти верхушку фигуры. Это место пересечения вертикальной линии и границы окружности. Назвать точку буквой «С».
От центра круга отступить вниз 2,5 см. Провести горизонтальную черту 3 см длиной. Вертикальная черта внутри круга должна разделить новую линию пополам. То есть, с каждой стороны должно остаться по 1,5 см.
Концы новой горизонтальной линии назвать точками «Е» и «Д». Соединить точку «Е» с точкой «А». Соединить отметку «А» с вершиной фигуры «С». От точки «С» провести линию до точки «В».
Соединить точку «В» с отметкой «Д». В конце нужно проверить, равны ли стороны пятиугольника. Если эти показатели в порядке, то заготовку можно вырезать ножницами. Построение развертки, чертежи Додекаэдр развертка для склеивания строится в центре листа можно собрать из 2 чертежей.
Как сделать 1 часть развертки, с помощью шаблона из картона: Расположить на бумаге шаблон вершиной вверх. Обвести заготовку по контуру. Развернуть картонный шаблон боком. Соединить правую сторону фигуры с левой стороной уже начерченной формы.
Обвести картонный шаблон по контуру. Переместить шаблон к верхней левой стороне центральной фигуры. Снова переместить шаблон, расположив его боковой стороной к правой верхней стороне центральной фигуры. Совместить боковую сторону шаблона с правой стороной центрального пятиугольника.
Обвести шаблон по контуру. Дорисовать последнюю грань по аналогии. Добавить припуски для склеивания. На верхних частях развертки эти припуски должны располагаться с левой стороны, а на нижних частях развертки — с правой стороны.
Края всех припусков на швы должны быть скошенными. Па аналогии нужно сделать ещё 1 развёртку на 2 листе бумаги. Развертка для склеивания Вырезать обе фигуры по контуру. Работа с готовой формой, склеивание Как собрать додекаэдр: Чтобы бумага легко складывалась, нужно продавить все линии сгиба, вокруг центральной фигуры.
Для этой цели можно использовать ребро линейки или обратную сторону ножниц. Подогнуть все припуски на склеивания внутрь. В собранном виде каждая развертка должна напоминать полусферу с гранями. Клей нужно наносить на припуски для склеивания, а затем аккуратно соединять их с гранями фигуры.
Линии сгиба на «ушках» для склеивания должна совпасть с краем грани. Собрать 2 развёртки по отдельности. Склеить половинки додекаэдра. Дождаться высыхания клея.
Можно украсить готовый додекаэдр цветной бумагой или наклеить на грани фотографии, либо листы календаря. Большой додекаэдр из картона Додекаэдр развертка для склеивания может быть сделана по шаблону, так же как для создания фигуры из бумаги из картона может быть любого размера. Чертеж развертки также следует выполнить в 2 частях. Какой картон подходит для работы: Цветной детский.
Хороший вариант для создания додекаэдра с гранью, высота которой не будет превышать 5 см. Детский картон тонкий, поэтому сделать большую фигуру будет очень сложно. Придется вырезать все грани по отдельности и чертить на них дополнительные припуски для склеивания. Более плотный материал, который используют в печати.
Что это такое? Ученые бьются над разгадкой древнеримских многогранников – додекаэдров
Мол, благодаря форме и круглым отверстиям додекаэдр определял угол падения солнечных лучей, и в результате римляне выясняли конкретный день, когда нужно приступать к посевам сельскохозяйственных культур. Видеоуроки являются идеальными помощниками при изучении новых тем, закреплении материала, для обычных и факультативных занятий, для групповой и индивидуальной работы. Они содержат оптимальное количест Смотрите видео онлайн «Додекаэдр | Стереометрия. Тайна римского додекаэдра Римский додекаэдр, найденный в Бонне, Германия. это (греч. двадцатигранник), согласно Платону, геометрическая фигура, на основе которой построена Вселенная.
Оставайтесь с нами
- Синонимы для слова "додекаэдр"
- Что понадобиться, чтобы сделать додекаэдр своими руками
- Правильный додекаэдр
- Кругосветка по додекаэдру
Додекаэдр. Развертка для склеивания, распечатки а4, шаблоны
С какой целью? Пока это неразрешимая загадка. Обломок артефакта, найденный в Бельгии. Последнее - весьма туманное - предположение высказал куратор бельгийского музея Гвидо Криммерс Guido Creemers , получив обломок: мол, додекаэдры использовали в каких-то магических обрядах. Как-то с их помощью предсказывали будущее, что было весьма популярно у древних римлян, но попало под запрет с приходом христианства. По мнению куратора, неспроста чаще всего попадаются кусочки артефактов — завершив обряд и сделав предсказание, додекаэдр разбивали. Натянуто, честно признаться. Следуя подобной логике, придется допустить, что и керамические черепки образовались не случайно — мол, посуду били сознательно в ходе домашних скандалов. Ранние гипотезы: додекаэдры служили игральными костями, но не привычными с 6 гранями, а с 12. Были какими-то измерительными инструментами. Или частями оружия.
С момента открытия римского додекаэдра прошло более 200 лет, но до сих пор эти предметы остаются неразгаданной загадкой. Первые находки датируются II и III веками до нашей эры и имеют размер от четырёх до одиннадцати сантиметров. Ясно только одно, что эти предметы имели большую ценность и хранились вместе с монетами и ценностями. Додекаэдр В стереометрии додекаэдр - многогранник, имеющий двенадцать многоугольников. Это правильное геометрическое тело, название которого происходит из 2-х греческих слов додека — двенадцать и эдрон - грань. Правильный додекаэдр описал древнегреческий учёный Платон , он сопоставлял додекаэдр с различными классическими стихиями. Это одно из Платоновых тел, описанных в трактате Тимей наряду с другими выпуклыми многогранниками - октаэдром, тетраэдром, гексаэдром и икосаэдром. Римский додекаэдр Небольшие полые бронзовые или каменные предметы геометрической формы с двенадцатью плоскими гранями, имеющие форму пятиугольника, были найдены в основном в местах галло-римских поселений, которые получили название "Римский додекаэдр".
Они украшены маленькими шарами в каждом углу пятиугольника, в то время как в большинстве случаев грани имеют отверстия.
В самом деле, если добавить обе противоположные цифры, результат будет 13. Существуют различные виды додекаэдров, некоторые из них: Тупой додекаэдр: те, которые принадлежат к группе «архимедовых тел» множество выпуклых многогранников с гранями, которые являются правильными многоугольниками различных типов. Другая его характеристика - то, что он выпуклый и имеет однородные вершины. Усеченный додекаэдр: он также относится к группе «архимедовых тел», для его получения необходимо разрезать каждую вершину додекаэдра.
Ромбический додекаэдр можно рассматривать как вырожденный пиритоэдр , в котором 6 особых ребер уменьшены до нулевой длины, превращая пятиугольники в ромбические грани. Ромбический додекаэдр имеет несколько звёздчатых звёзд , первая из которых также является параллелоэдром, заполняющим пространство. Другой важный ромбический додекаэдр, Билински додекаэдр имеет двенадцать граней, соответствующих граням ромбического триаконтаэдра , то есть диагонали находятся в соотношении золотого сечения. Это также зоноэдр , описанный Билински в 1960 году.
Эта фигура является еще одним заполнителем пространства, и также может встречаться в непериодических заполнениях пространства вместе с ромбическими триаконтаэдр, ромбический икосаэдр и ромбические гексаэдры.