Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить.
Направления деятельности и рабочие группы
- Повышение качества
- Еще по этой теме
- Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
- Искусственный интеллект в медицине: примеры применения в мире и России
Искусственный интеллект в медицине: главные тренды в мире
Алгоритмы ИИ способны анализировать большие объемы данных о здоровье населения, включая информацию из социальных сетей, новостных порталов и официальных статистических данных, для прогнозирования возможных вспышек болезней и эпидемий. Это позволяет государственным органам заранее подготовиться к возможным эпидемиям. В России работает цифровой сервис диагностики MDDC, основанный на алгоритмах нейросети: он помогает выявлять минимальные новообразования в легких менее 4 мм , а также диагностировать рак на ранней стадии. В исследовании Journal of the National Cancer Institute ученые использовали ИИ для анализа маммограмм более чем 26 000 женщин. В целом, ранняя диагностика и прогнозирование с использованием ИИ открывает новые горизонты для медицинской науки, делая возможным профилактику и оперативное лечение многих заболеваний на самых ранних стадиях. Персонализированное лечение на основе искусственного интеллекта ИИ играет важную роль в разработке персонализированных планов лечения, основанных на индивидуальных характеристиках пациента. В хирургии, роботизированные системы и ИИ уже помогают хирургам в проведении сложных операций с большей точностью и меньшими рисками для пациента.
В операционной ИИ может анализировать данные в реальном времени, предоставляя хирургам ценную информацию, которая помогает в принятии решений во время операций. Другое интересное направление - персонализированная терапия на основе генетической информации: при участии ИИ медицинские учреждения могут создавать индивидуализированные планы лечения, используя генетическую информацию пациента. Это может помочь в создании более эффективных и безопасных терапевтических планов лечения, минимизируя побочные эффекты и увеличивая шансы на успешное лечение. Алгоритмы предсказания реакции на лекарства: ИИ может анализировать большой объем данных о реакциях различных пациентов на лекарства, предсказывая, как конкретный пациент может отреагировать на определенное лекарство или терапию. Это способствует предотвращению нежелательных реакций и повышению эффективности лечения. Повышение точности и уменьшение травматизма: роботизированные хирургические системы, такие как da Vinci, используют ИИ для улучшения точности операций, уменьшения травматизма тканей и ускорения восстановления пациентов после операций.
Роботы могут выполнять сложные манипуляции с высокой точностью и стабильностью.
Какова же ситуация с применением ИИ в медицине по состоянию на июнь 2021 г.? На наш взгляд, такая фиксация времени необходима ввиду бурного развития рассматриваемой области. В 2020 г. Экспоненциальный рост числа исследований, как правило, сопровождается постоянным расширением круга решаемых задач. Поэтому мы не будем претендовать на исчерпывающую картину применения ИИ в медицине, а попытаемся очертить наиболее успешные или перспективные с нашей точки зрения направления. ИИ в хирургии Речь идет о роботах, участвующих в хирургических операциях и сопровождающих хирургические операции и послеоперационных больных. В 2018 г. Важно заметить, что термин «робот» часто создает неправильное представление о том, что роботы выполняют хирургические операции. Это не совсем так.
Роботы с искусственным интеллектом применяются все чаще в микрохирургических процедурах. Но не следует считать, что скоро будут оперировать только роботы-хирурги. Зато справедливы ожидания, что роботы с ИИ помогут хирургам работать лучше. Роботизированная хирургия — это активно развивающаяся и эффективная технология, которая приобретает все большее значение при различных медицинских процедурах в неврологии, гинекологии, ортопедии, торакальной и общей хирургии, при установке зубных имплантатов, а также трансплантации волос. Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики. Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами. Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции.
Наиболее активно в медучреждениях внедряется технология компьютерного зрения, позволяющая находить закономерности и аномалии в изображениях, получаемых с помощью рентгена, КТ и МРТ. Другая технология на основе ИИ - предиктивная аналитика, дающая возможность путем изучения больших массивов данных обнаружить скрытые связи, повысить точность диагностики и подобрать индивидуальный план лечения. Еще одно направление — создание цифрового двойника пациента: на котором можно проверить различные методы лечения без риска навредить реальному больному. Также двойники используются при тестировании новых лекарств. Также в медицине начинают активно использоваться чат-боты, голосовые ассистенты, интеллектуальные помощники, работающие на основе таких технологий ИИ, как обработка естественного языка, распознавание и синтез речи, интеллектуальная поддержка принятия решений. Цифровые помощники освобождают квалифицированных медиков от выполнения рутинных задач и позволяют им полностью сосредоточиться на более сложных диагностических вопросах и лечении. Так, при поддержке Фонда содействия инновациям российская компания «Диджитал вижн солюшнс» разработала облачную офтальмологическую платформу на базе искусственного интеллекта. Медицинский директор компании-разработчика Евгения Каталевская рассказала РИА Новости, что в проекте используются сверточные нейронные сети, которые обучаются на размеченных специалистами данных и решают задачу сегментации признаков патологий на медицинских изображениях сетчатки глаза. ИИ выявляет заболевания на ранней стадии, когда пациент еще не имеет жалоб, а также пациентов, имеющих высокий риск потери зрения, которым срочно требуется сложное специализированное лечение», - говорит Каталевская. Создатели платформы видят свои перспективы во внедрении технологии в широкую клиническую практику, чтобы пациенты, пришедшие на осмотр в городскую поликлинику, имели доступ к передовым технологиям. РФ , который выделяет специальные гранты на модернизацию программного обеспечения с применением алгоритмов ИИ.
Считается, что ИИ может разрешить эту проблему. Специальные Google уже работают в некоторых больницах, где программа Google Deepmind Health проводит анализ доступной информации о симптомах пациента и выдаёт список рекомендаций, а врач, пользуясь подсказками такого помощника, назначает пациенту курс лечения. Программа IBM Watson Health также позволяет ставить диагнозы: распознавать кардиомиопатию, тромбозы, сердечные приступы. Также ИИ дает возможность оценивать влияние медикаментов на организм человека, помогая врачам понять, как особенности генетического строения пациента влияют на течение заболевания, и какой эффект может оказать новый лекарственный препарат. С помощью приложения IBM Watson Health Cloud доктор получает и анализирует данные об организме пациента с электронного браслета, и на основе этого подбирает эффективный курс лечения. Диагностика В России записаться на приём к врачу можно через интернет. Однако пациентов много, поэтому ждать приёма приходится целыми днями и даже неделями. Технологии ИИ позволяют решить этот вопрос. Например, с помощью телемедицины и программы mHealth. Кроме того, искусственный интеллект учат распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушения зрения, туберкулез, нарушение работы головного мозга. Примером работы программы выступает сервис Ada. Это мобильное приложение, которое задаёт человеку вопросы, а тот — описывает симптомы, после чего Ada ищет информацию о проблеме и даёт рекомендации. Существуют похожие сервисы, способные указать на заболевания, и даже на сахарный диабет.
Эксперимент по внедрению технологий искусственного интеллекта
Национальная база медицинских знаний | Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. |
Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек | Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM. |
Польза ИИ в медицине
- Видео: Как искусственный интеллект помогает в медицине | Новости России
- Журнал Nature опубликовал доклад о развитии ИИ в медицине
- Будущее рядом: как нас будет лечить искусственный интеллект?
- Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город
- Предварительный просмотр:
- Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
Комплексный анализ работы сервисов ИИ в медицине провели в Москве
по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. Ученые из Сколковского института наук и технологий (Сколтех) занимаются применением методов машинного обучения и искусственного интеллекта в медицине. Искусственный интеллект на рынке медицины прогнозируемая нехватка врачей и специалистов в единицах, США, 2032 г. Применение искусственного интеллекта в медицине. Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM.
Что такое CRISPR?
- Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
- Искусственный интеллект в медицине
- Какие есть препятствия на пути внедрения ИИ в медицину?
- Искусственный интеллект в медицине. Настоящее и будущее
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
Вышеперечисленные области применения искусственного интеллекта в медицине, показывают, что ИИ находит свое применение во многих задачах – от консультирования до диагностирования. Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин.
Искусственный интеллект в медицине: главные тренды в мире
Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Области применения искусственного интеллекта в медицине обширны и разнообразны. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний.
Машины лечат людей: как нейросети используют в российской медицине
Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город | В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. |
Для чего в российских регионах используют ИИ в медицине | Сценарии применения искусственного интеллекта в медицине. |
Машины лечат людей: как нейросети используют в российской медицине
В целом, сервисы на основе ИИ улучшают качество медицинской помощи и экономят время и усилия медицинских работников, что в свою очередь помогает им улучшать процессы лечения и ухода за пациентами. Направления использования ИИ в медицине Мониторинг. ИИ может использоваться для непрерывного мониторинга состояния пациента, а также для прогнозирования его будущего здоровья. Поиск новых лекарственных препаратов. ИИ помогает ускорить процесс, а также оптимизировать их дозирование. Обработка и анализ больших объемов медицинских данных. Самое важное применение ИИ, позволяющее улучшить диагностику и лечение пациентов. ИИ-сервисы используются, чтобы обрабатывать большие объемы медицинских данных и проводить предварительный анализ, например, с целью выявления тех или иных специфических заболеваний на начальных стадиях. Автоматический анализ медицинских изображений.
ИИ-сервисы, основанные на глубоком обучении, могут быстро и точно анализировать медицинские изображения, такие как рентгеновские снимки, МРТ, КТ и другие визуальные данные, и выявлять на них патологии, что позволяет врачам быстро и точно определять диагноз и начинать лечение. Помощь в принятии врачебных решений. Это одна из очевидных сфер использования ИИ. Сервисы могут предоставить наиболее подходящие варианты лечения на основании собственной базы знаний, включающей потенциально лучшие варианты лечения и предсказание эффективности их использования. Автоматизация рутинных задач. ИИ-системы используются для заполнения медицинских карт, создание отчетов и др.
Что нужно сделать, чтобы перестать отставать от развитых стран? Эти вопросы «МВ» адресовал члену наблюдательного совета ассоциации «Национальная база медицинских знаний» и участнику рабочей группы по подготовке проекта приказа об электронном медицинском документообороте Александру Гусеву. Искусственный интеллект преодолевает препятствия Ассоциация разработчиков и пользователей ИИ в медицине «Национальная база медицинских знаний» НБМЗ , созданная несколько лет назад при поддержке РВК, поставила перед собой цель способствовать внедрению новейших технологий в клиническую практику.
Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины. Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта. Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных. Совместно мы определяем набор необходимых сведений, определяем требования к обязательности полей — стремимся собирать только востребованные данные. Эта работа позволяет нам собирать данные не «в один котел» наряду с неструктурированными данными так называемого озера данных, а в структурированном виде с формализованными значениями там, где это нужно и возможно. Это важно для синхронизации понятийного аппарата, одинаковой интерпретации сущностей в физическом и цифровом мире. При формировании нового стандарта оказания экстренной помощи на фактических данных мы увидели рассогласованность в наименованиях и емкости терминов одних и тех же лабораторных и инструментальных исследований клинический анализ крови или общий клинический анализ крови — минимальное отклонение в одно слово, а для анализа и обработки — это разные единицы данных. В результате медицинское сообщество договорилось об укрупнении синонимичных значений, о приведении множества понятий к единству. Как повлияли эти технологии на эффективность системы? ИИ уже сегодня — эффективный помощник, избавляющий врача от части рутины. В работе функциональных диагностов взрослых поликлиник Москвы помогает автоматическая расшифровка ЭКГ с предзаполненным заключением. С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра. Наиболее масштабный проект — применение компьютерного зрения в лучевой диагностике. Более 50 ИИ-сервисов по 29 клиническим направлениям обрабатывают в потоковом режиме медицинские снимки, оконтуривают выявленные патологии, проводят рутинные измерения, в том числе сложные, на которые у врача уходит много времени, а также готовят проект заключения. В арсенале столичных рентгенологов сегодня 6 комплексных сервисов для анализа КТ органов грудной клетки, органов брюшной полости. Такие сервисы в рамках одного исследования выявляют сразу несколько патологий и формируют заключение. Всего в рамках проекта ИИ-сервисы проанализировали уже 12 миллионов лучевых исследований. Более того, если раньше ИИ-решения в медицине рассматривались в первую очередь как системы поддержки принятия врачебных решений, то сегодня мы делаем первые шаги в сторону системной автоматизации производственных процессов. Так, на базе эксперимента технологии ИИ достигли того уровня зрелости, когда мы начинаем «делегировать» искусственному интеллекту отдельные диагностические задачи. В этом году мы запускаем пилотный проект в рамках территориальной программы обязательного медицинского страхования по применению ИИ в автономном режиме, без участия врача — для проекционных методов исследований, флюорографии и рентгенографии органов грудной клетки. ИИ будет сортировать все исследования взрослых пациентов, сделанные в поликлиниках, на те, где достоверно отсутствует патология, и те, где есть признаки заболевания. Для первых ИИ будет самостоятельно формировать заключение в виде электронной медицинской записи в ЭМК, а вторые — направлять на описание врачу. При этом характерная особенность профилактических исследований, таких как флюорография, — низкая доля исследований с патологическими признаками. Это решение позволит перенаправить время врача на более сложные виды исследований, где действительно требуется врачебная экспертиза.
Ученые обнаружили в её ДНК странные повторяющиеся последовательности, но не смогли выяснить их предназначение. Бактерии производят специальные ферменты, когда пытаются бороться с вирусами. Это помогает бороться с будущими вирусными атаками. Бактерия использует сохраненный генетический материал и производит белки Cas9, которые способны при совпадении генов с геном вируса быстро его нейтрализовать. По той же схеме, белок ищет совпадающий генетический материал и разрезает его вне зависимости от того, принадлежит он бактерии, животному или человеку. Например, в сельском хозяйстве технологию используют для изменения свойств продуктов: можно удалить из арахиса ген, который вызывает аллергическую реакцию, можно создавать необычные сорта. Ученые даже занимались созданием комаров, не способных переносить малярию.