Искусственный интеллект и нейросети: создание текстов и креативов — Инфоурок.
Семинар Проблемы ИИ 25.10.2023
Эта модель помогает нейросети запоминать правила языка, выбирать подходящие слова и связывать их по смыслу. Обучали YaLM по тому же принципу, как и все нейросети, которые относятся к языковым моделям. Вначале базовая модель обрабатывает огромный массив текстов и учится восстанавливать пропущенные слова на основе полученных данных. Это самый долгий этап обучения, замечает Крайнов. Зато после этого базовую модель можно дообучить на другие специфические задачи.
В 2022 году в открытом доступе также появилась модель YaLM 100B на 100 млрд, которая умеет генерировать тексты на русском и английском языках. Это самые мощные суперкомпьютеры в России и Восточной Европе. У нас очень сильная команда разработчиков и экспертов в области машинного обучения, которая постоянно расширяется", — поделился собеседник "ДП". ИИ повсюду Дмитрий Иванков, эксперт Центра искусственного интеллекта СКБ "Контур", отмечает, что есть ещё множество российских нейросетей, на которые стоит обратить внимание.
Это приложение для генерации изображений, которое после выпуска, а также благодаря хорошему продвижению попало в топ—чарт российского App Store. При этом обучение модели всё ещё продолжается для бета—версии было использовано 240 млн примеров картинок из 500 млн доступных компании.
Выпускник 3-го потока курса Аспирант Физического факультета МГУ Очень интересный и модный практически-ориентированный курс. Задач для машинного обучения в моей лаборатории оказалось уйма, и не будет преувеличением сказать, что этот курс изменил нашу научную группу. Особую благодарность хотел бы выразить Ивченко Александру, который был моим преподавателем, а также всему тёплому коллективу курса!
У этой модели очень много хороших результатов синтеза белков, к тому же она генерирует более стабильные белки, которые существуют в природе.
Эти показатели обнадеживают. О диффузии белка Если бы белки были картинкой, не было бы никаких проблем, мы бы воспользовались алгоритмами, о которых говорилось ранее. Но белки - это 3D-cтруктуры, имеющие координаты, расстояние и прочее. И чтобы создать белый гауссовский шум для диффузии белков, мы должны работать в первую очередь с координатами. На координаты "расстояние между атомами" мы делаем гауссовский шум и благодаря направлениям броуновского движения мы можем это все генерировать в структуру белка. Этим летом вышла языковая модель RF diffusion от Института дизайна белков.
Она берет за основу последовательность аминокислот и еще ряд исходных данных и предсказывает структуру белка. Таким образом они могут также в дальнейшем генерировать симметричные белки, которые могут быть использованы для производства вакцин и выполнять другие операции, необходимые для исследований. Дата-параллелизм - когда часть выборки хранится на разных устройствах. Узкое место тут - коммуникация. Наша задача - сократить число коммуникаций или их стоимость. Если мы сжимаем в 10 раз, то можно обыграть так, чтобы не надо было в 10 раз больше тратиться на коммуникацию - важен суммарный эффект.
Нужны узлы, которые будут забирать часть информации. Модельный параллелизм - это когда разные слои информации хранятся на разных устройствах. Наука в части модельного параллелизма использует те же идеи, но они недоработаны. Сейчас это открытые задачи и начало пути. Харкевича: Химия - новая точка роста для использования инструментов. Химическое пространство состоит из молекул и их соединений.
Число их увеличивается. Стоит вопрос, как ориентироваться в пространстве известных молекул и что делать с пространством молекул, которые еще не известны. Многие базовые структуры были найдены более 100 лет назад, иногда их модифицируют. Стоит вопрос об отправке в экспедицию к новым месторождениям соединений. Можно использовать новое поколение методов машинного обучения для быстрого предсказания нахождения новых соединений. Существующие методы недостаточны для описания сложных свойств, но они важны и нужны для верификации машинного обучения и механизмов реакций.
Когда мы имеем дело с огромным количеством молекул, на помощь приходит машинное обучение. Сейчас у нас есть полноценная платформа. На ней можно как анализировать, так и предсказывать ряд свойств, спектры, а также стоимость и путь синтеза. Также она предоставляет навигацию по соединениям.
Нам очень помогла открытая библиотека OpenPose, которая используется для определения положения людей в кадре, их поз и координат ключевых точек, относящихся к разным частям тела». Первая версия алгоритма базировалась на использовании RandomForest — классификатора, обученного на результатах работы OpenPose. Но у нее был существенный недостаток: большая часть потенциально полезных данных просто выбрасывалась. Например, невозможно было увидеть, что у человека в руке — ручка или шпаргалка. На сегодняшний день технология видеоаналитики отслеживает видеопоток из аудитории в режиме онлайн, а между экзаменами — архивные видео из офлайна.
Для сравнения: один наблюдатель может следить максимум за четырьмя аудиториями одновременно, а алгоритм может обрабатывать видео из более чем 2000 аудиторий за один экзаменационный день. В дальнейшем применение искусственного интеллекта во время экзаменов может позволить полностью исключить человеческий фактор и оставить онлайн-наблюдателей только для верификации нарушений, выявленных нейросетью. В 2022 году «машинное зрение» выявило почти 12 тысяч нарушений, но далеко не все были подтверждены после проверки. Как считает Оксана Решетникова, директор Федерального института педагогических измерений, к 2030 году ЕГЭ будут проводить с использованием планшетов и других гаджетов, а бумажные бланки останутся в прошлом, задания будут передавать в аудитории в день экзамена по защищенным каналам, а проверка заданий полностью станет задачей искусственного интеллекта». Вывод: как видите, использование искусственного интеллекта очень активно внедряется в сферу образования, в частности — используется на ЕГЭ. Технологии наступают на пятки классическим форматам. Именно по этой причине я ещё раз призываю всех выпускников готовиться к ЕГЭ самостоятельно и качественно. Подписывайтесь на мой блог. Узнавайте все новости экзаменов и приёмных кампаний первыми!
Вы находитесь в разделе «Блоги». Мнение автора может не совпадать с позицией редакции.
Как искусственный интеллект захватывает мир — нейросети в 2023 году
Подборка телеграмм каналов о последних технологических достижениях в области искусственного интеллекта и нейросетей. Помимо этого, помочь в решении проблемы может сам искусственный интеллект, а точнее — ИИ-детекторы сгенерированного контента. Лекции читают сооснователь «Курсеры», исследователь искусственного интеллекта Эндрю Ын и сотрудница OpenAI Иса Фулфорд — так что лайфхаки практически из первых рук. Основы искусственного интеллекта и нейронные сети от корпорации «Синергия».
Бесплатные нейросети и курсы по ИИ
Всех желающих на практике освоить базовые алгоритмы машинного обучения в области компьютерного зрения. Начальные требования Курс рассчитан на слушателей, которые делают первые шаги в области машинного обучения. Что нужно, чтобы приступить к курсу? Иметь базовые знания в области математической статистики. Быть готовым программировать на Python. Наши преподаватели.
Авторы курса — эксперты Samsung AI Center, занимающиеся задачами машинного зрения — передают свой практический опыт и интуитивное понимание принципов работы нейронных сетей для компьютерного зрения.
А еще этот онлайн-курс является частью трека по искусственному интеллекту социально-образовательной программы для вузов «IT Академия Samsung», которая стартовала в 2019 году и в настоящий момент включает 19 вузов-партнеров. Если ваш вуз хочет вступить в программу «IT Академия Samsung», пишите нам по адресу info innovationcampus. Как мы этого добьёмся? Для начала, мы пройдём основы нейронных сетей: как же какая-то абстрактная модель мышления, помещённая в компьютер, позволила обычным программистам просто так взять, и решить нерешённую ранее задачу зрения роботов. Мы изучим архитектуру и алгоритмы настройки нейросетей, приобретём глубокое понимание всего, что происходит после нажатия "Запустить обучение".
Если чиновники образования готовы видеть в новой технологии не опасность, а возможности, значит, у отечественной школы есть шанс измениться к лучшему. Искусственный интеллект уже кардинально меняет рынок труда и сферу услуг, так что трансформация нынешней системы образования всего лишь вопрос времени. Однако существуют некоторые проблемы, которые могут возникнуть при использовании нейросетей в образовании. Хотя он эффективен в решении определённых задач, ИИ может приводить и к негативным последствиям для обучения. Например, преподаватели могут использовать его для оценивания знаний учащихся, но это может привести к предвзятости и дискриминации. Например, создание индивидуальных учебных программ с помощью нейросети может привести к тому, что учащиеся будут получать только те материалы, которые соответствуют их интересам и уровню знаний. Это может нивелировать разнообразие в учебном процессе и снизить мотивацию. Использование нейросети в образовании может привести к утечке персональных данных учащихся, если учителя не будут должным образом защищать данные или если станут применять ИИ для сбора данных без согласия ребят. Однако необходимо осторожно подходить к внедрению нейросетей в образование в целом и в рутину каждого ученика, учитывая позитивные аспекты и потенциальные риски этих технологий. Баланс между инновациями и традиционными методами обучения — ключевой фактор для успешного влияния ИИ на развитие и обучение детей. Для достижения такого баланса важно: Активное участие взрослых. Родители и педагоги должны поддерживать ребёнка и стимулировать его мотивацию, а также помогать развивать социальные навыки. Ограничение времени. Важно ограничить время, которое ребёнок проводит с устройствами на базе ИИ, чтобы сохранить баланс между цифровым и реальным миром. Обучение навыкам критического мышления. Развитие критического мышления и аналитических способностей должно оставаться ключевой задачей в образовании. Бот пишет шаблонные сочинения, за которые учителя ставят высокие баллы, потому что школу устраивает шаблонность. Ученики вместо собственных мыслей переписывают формулировки ИИ, потому что школа недостаточно мотивирует их думать. Школьники ищут самый лёгкий путь, так как им зачастую важнее получить высокие баллы, а не знания. И если искусственный интеллект разрушит эту систему — так ли уж это плохо? Ему нужны исследователи, первооткрыватели — люди, способные мыслить нестандартно. Ведь нейросети не способны совершить научное открытие или написать произведение, которое изменит общество: они лишь компилируют всё, что создано человечеством до них.
Ее можно пройти бесплатно. Вторая часть курса посвящена использованию ChatGPT в рабочих процессах. Каждую тему предлагают отработать на тестах и упражнениях. Вторая часть курса доступна только по подписке, но в ней больше специфических запросов. Источник: deeplearning. Курс ориентирован на разработчиков и рассказывает, как использовать большие языковые модели — в том числе как построить своего чат-бота. Но начальные уроки понятны без технического бэкграунда: там разъясняют принципы построения хороших промптов, дают много примеров применения чат-бота — от проверки грамматики до автоматической отправки писем.
Андрей Комиссаров: Нужно держать глаза открытыми
Ажиотаж вокруг гаджета спал быстрее, чем ожидалось, а владельцы перепродают топовую модель очков Apple с ощутимыми скидками. В их числе работники колл-центров. Уже сейчас некоторые компании заменяют персонал служб поддержки по телефону генеративным ИИ и буквально через год в отрасли, возможно, будут использоваться только чат-боты на базе ИИ. Согласно данным Gartner в 2022 году в индустрии центров поддержки клиентов работало около 17 млн человек. Перед стартом состоялся показательный соревновательный заезд между Даниилом Квятом на обычном болиде и беспилотником. Выручка Intel больше не снижается, и компания остаётся крупнейшим производителем процессоров для ПК и ноутбуков. Но продажи в I квартале не оправдали ожиданий аналитиков, и собственный прогноз Intel на текущий квартал отражает слабый спрос. Это непростой момент для гендиректора Пэта Гелсингера Pat Gelsinger который находится у руля уже четвёртый год.
Проблемы Intel накапливались десятилетиями. Уязвимость затрагивает неисчислимое множество процессоров, а её устранение грозит катастрофическим снижением производительности. Компания переложила вину на производителей материнских плат, которые при разработке BIOS не последователи спецификациям процессоров и направленным им рекомендациям. Компания отрабатывает технологию захвата и свода в атмосферу ненужного хлама в окружении Земли, чтобы запускам ракет и спутникам ничего не угрожало.
А ещё есть сервер, который обрабатывает видео: нейросети следят, чтобы полки в магазине всегда были заполнены товаром. Если где-то мало помидоров или детского питания, нейронка сигнализирует человеку — и он добавляет товар. Вернёмся от помидоров к Шедевруму.
Как у вас распределены роли? В Шедевруме есть две команды. Мои ребята — это исследователи машинного обучения. Они отвечают за то, чтобы как можно лучше обучать сеть генерировать картинки, видео и другой контент. А есть команда, которая занимается приложением. Она следит за тем, чтобы всё классно работало, было красиво, придумывает продуктовое развитие — это команда Николая. Недавно Шедеврум научился генерировать короткие видеоролики!
Нейросеть создаёт видео длиной четыре секунды с частотой 24 кадра в секунду. После публикации ими можно поделиться с друзьями или сохранить в формате MP4. Чтобы получился ролик, сперва нужно описать текстом то, что хочется увидеть. В ответ приложение предложит четыре варианта первого кадра и набор анимационных эффектов для создания движения. Нейронка берёт за основу выбранное пользователем изображение, создаёт набор его изменённых версий и объединяет всё выбранным эффектом. Сейчас их семь: зум приближение , таймлапс ускоренная перемотка , полёт, панорама, вращение, подъём и морфинг постепенное изменение. А какие сотрудники тебе всегда нужны в команду?
И где их найти? Вот три группы специалистов, которых я всегда жду. Machine learning research инженеры, чтобы выдвигать гипотезы, писать код по их имплементации, проверять их, читать статьи и генерировать свои идеи по улучшению нейросетей. Их главная задача — развивать область генеративных моделей, проводить нетривиальные эксперименты и исследовать новые подходы в диффузионных моделях. Их задача — писать код, чтобы всё работало. В то время как ML-инженеры разрабатывают модели обучения машин, MLOps-инженеры программируют весь цикл машинного обучения: от разработки до внедрения и поддержки. Этим специалистам должно быть интересно работать над высоконагруженными сервисами, использующими нейросети, а также развивать экосистему инструментов вокруг новейшей и динамично развивающейся области генеративных моделей.
Аналитики, поскольку работа с данными критически важна. Мы ищем специалистов, чтобы улучшить данные для обучения: мы комбинируем ML- и DS-методы с ручной разметкой, пробуем разные подходы для файнтюна финальной модели, создаём инструменты для оценки качества, сравнения с конкурентами и поиска точек роста. В чём конкретно заключается твоя работа над нейросетью? Я сейчас собираю команду, которая будет работать над улучшением модели генерации.
Пройти обучение 4. Создайте свою первую нейросеть от Нетологии Ещё одна бесплатная программа, где вы сможете познакомиться с основами искусственного интеллекта, создать несколько нейронных сетей и начать свой путь дата-сайентиста, если знакомство с новыми технологиями пройдет успешно. Для кого: всех, кто интересуется IT. Чему научат: расскажут об устройстве нейросетей, познакомят с понятиями AI, ML, DL, настраивать нейронки с помощью весов для решения операции. Пройти обучение 5. Machine Learning. Если вы начинающий дата-сайентист, то советуем прокачаться хотя бы до уровня Middle-специалиста, чтобы повысить уровень жизни и обрести уверенность в завтрашнем дне. Сделать это можно всего за 5 месяцев на курсе от онлайн-школы OTUS. Для кого: практикующих специалистов в Data Science. Пройти обучение 6. Искусственный интеллект для руководителей от Агентства искусственного интеллекта Теоретический курс от тех, кто в числе первых внедряет умные решения на территории РФ в самых разных сферах — от создания цифровых копий людей до систем поддержки принятия решений в медицине. Программа заточена под корпоративное обучение и включает в себя 4 образовательных модуля по 1. Для кого: владельцев и сотрудников современного бизнеса. Чему научат: пониманию того, что есть ИИ, разбираться в основных интеллектуальных технологиях и чат-ботах, применению новых технологий в жизни и деле.
Мягких , И. Трусов , М. Бурова Уровень сложности: для начинающих Сертификат: выдается стоимость — 3600 руб. Необходимые навыки: рекомендуется разбираться в основах информатики и статистики, уметь программировать и анализировать данные с помощью Python. Кому подходит: курс рассчитан на слушателей без специальной подготовки в области ИИ. Для успешного освоения материала достаточно базовых знаний математики, статистики и программирования. Программа рассчитана на 12 недель и включает в себя видеолекции ведущих преподавателей НИУ «Высшая школа экономики», практические задания, тесты для самопроверки. Вот главные темы курса: Основные понятия и определения искусственного интеллекта. Базовые методы машинного обучения: линейная регрессия, логистическая регрессия, деревья решений, метод ближайших соседей.
Яндекс, ВШЭ и Сириус запустили бесплатный курс по ИИ для школьников
Ключевые спикеры в сфере технологий искусственного интеллекта и машинного обучения. Программа обучения по искусственному интеллекту ПРОДВИНУТЫЙ УРОВЕНЬ. Основы искусственного интеллекта и нейронные сети от корпорации «Синергия». Очень интересно сравнивать выводы искусственного интеллекта с классическими критиками и строить своего рода нейросеть. Конечно, это мотивирует учащихся построить план обучения нейросети. Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение.
Каталог нейросетей
Использование искусственного интеллекта (ИИ) в школах набирает обороты во всем мире, Россия не исключение. Если вам интересно познакомиться со спецификой технологий обучения нейросетей, а возможно и принять участие в развитии передовых технологий, регистрируйтесь на вебинар «Кто и как обучает искусственный интеллект». Курс "Нейросети для Digital Art" обучает созданию высококачественного контента с помощью искусственного интеллекта. ChatGPT — это диалоговая программа на базе искусственного интеллекта, которая обучает сама себя по всей мировой базе знаний, может отвечать текстом почти как живой человек (причём на огромном множестве языков, включая русский), решать вопросы любой сложности и. Выдающийся преподаватель иностранного языка и автор собственной методики обучения рассказала о том, как искусственный интеллект меняет образование. Нейросети и ИИ-инструменты, а также курсы которыми можно пользоваться бесплатно.
Что такое нейросети: на что способны, как работают и кому нужны
Тем не менее, по мере создания более мощных ИИ-систем, неравенство будет расти. Вам будет интересно: Что будет, когда Искусственный интеллект достигнет пика своего развития? Еще больше роботов Переход от использования множества небольших моделей для выполнения разнообразных задач к единым неизбежен. Это подтверждают такие мультимодальные модели, как GPT-4 и Gemini от Google DeepMind, способные решать как визуальные, так и лингвистические задачи. Исходя из этого можно предположить, что то же самое произойдет и с роботами — зачем обучать одного переворачивать блинчики, а другого открывать двери, если можно создать одну универсальную многозадачную модель? За примерами не нужно далеко ходить — несколько примеров работы в этой области появились в 2023 году. В июне DeepMind выпустила Robocat обновление прошлогоднего Gato , который генерирует собственные данные методом проб и ошибок, чтобы научиться управлять множеством различных роботизированных рук вместо одной конкретной руки.
Умных роботов в 2024 году станет еще больше В октябре компания выпустила еще одну универсальную модель для роботов под названием RT-X и большой новый набор обучающих данных общего назначения в сотрудничестве с 33 университетскими лабораториями. И хотя существует множество проблема в нехватке данных, ученые разрабатывают методы, которые позволяют роботам все лучше обучаться методом проб и ошибок. Словом, роботов особенно умных с каждым годом будет становиться все больше. Переход к деталям В меняющемся ландшафте искусственного интеллекта главное — быть на шаг впереди. Это означает, что предприятия как и государства, инвестирующие в отрасль , которые принимают новые тенденции и адаптируются к ним, не только улучшат свою деятельность, но и проложат путь к беспрецедентному росту и инновациям. ИИ будет развиваться и дальше, как бы мы этому не противились Также отметим, что будущее ИИ в 2024 году действительно многообещающее и включает не только вышеописанные пункты, но и автоматизацию электронной почты, генеративного и разговорного ИИ, а также роботизированных технологий.
Можно с уверенностью сказать, что в текущем году ИИ станет еще более конкретным во всех смыслах этого слова.
В зависимости от программы: свидетельство, сертификат или удостоверение о повышении квалификации. Для частных лиц при оплате в кредит: от 2027 руб. Для организаций: 39 990 руб. Machine Learning. По окончании вы получите уровень Middle и сможете претендовать на более высокую должность.
Для успешного завершения нужно знать Python, понимать алгоритмы машинного обучения, теорию вероятностей и математическую статистику. Продолжительность курса: 5 месяцев. Обширную базу знаний для решения сложных нестандартных задач, связанных с временными рядами, рекомендательными системами и т. Поддержку и консультации преподавателей-практиков в течение обучения. Помощь в трудоустройстве — ваше резюме будет размещено в базе OTUS и его увидят партнеры компании. Сертификат об окончании курса. В рассрочку: от 8500 руб.
При оплате сразу всей суммы: 85 тыс. Нейросети для дизайнеров от «Логомашина» Специальный курс для начинающих и опытных дизайнеров по использованию нейросетей в работе. Как пользоваться, как легализовать, какие есть юридические тонкости. Продолжительность программы три месяца, доступ к лекциям сохраняется на год. Вы получите: Навыки правильного составления промптов для нейросети. Перечень лучших нейросетей для генерации изображений. Пошаговую инструкцию по регистрации и настройкам.
Уроки по созданию консистентного персонажа. Подробный разбор использования Midjourney. Сертификат об окончании курса, есть возможность получить удостоверение о повышении квалификации. При оплате в рассрочку на 12 месяцев — 4900 руб. Искусственный интеллект для E-commerce от iWENGO Программа дает практические навыки по использованию ИИ в E-commerce: для улучшения сервиса, товара или услуг, повышения клиентского опыта и делегирования рабочих задач нейросетям. Подходит для начинающих. Продолжительность курса: 36 часов.
Вы получите: Практические навыки применения нейросетей для роста продаж и привлечения внимания клиентов. Кейсы по разработке маркетинговых стратегий с помощью ChatGPT, анализу отзывов клиентов, составлению опросов на сайте. Бонус — мини-курс «Нейромаркетинг» по изучению поведения клиентов и методов воздействия на него. При покупке в рассрочку от 4992 руб. При оплате сразу 59 900 руб. Сколько времени нужно, чтобы начать работу с ИИ? Срок зависит от ваших целей, способа обучения.
В сети достаточно информации для самообучения, но ее много, она разрозненная и, чтобы найти хороший источник, структурировать и упорядочить новые знания, нужно от нескольких месяцев до года. Учебные программы создаются экспертами на основе их уникального опыта. В них нет «воды», только концентрированная выжимка самого ценного. Информация поясняется на примерах, сразу же идут практические задания: чтобы вы могли отработать новые навыки и довести их до автоматизма. Можно выбрать общий курс или более узкую специализацию для решения конкретной задачи. Для самостоятельного обучения нужна сила воли, терпение, большая мотивация. Когда вы занимаетесь на платных курсах, вас поддерживают другие студенты и кураторы.
Из-за ограниченных возможностей такие нейронные сети в наше время практически не используются. Сигнал поступает во входной слой и сразу же отправляется к выходному, где происходят вычисления. Связь между нейронами входного и выходного слоев обеспечивают синапсы. Помимо входного и выходного слоев, в таких нейронных сетях есть еще несколько скрытых промежуточных. Обработка информации и вычисления производятся на нескольких этапах, поэтому решения, предлагаемые такими сетями, более точные. В структуру таких нейросетей входят два дополнительных слоя - сверточные и объединяющие. Сверточные нейронные сети используются для обработки изображений, картинок и фото. В эту группу входят нейросети, способные что-то создавать. Это, к примеру, генераторы картинок или текстов.
Еще одна классификация делит нейросети на однонаправленные и реккурентные в зависимости от распределения данных по синапсам: Однонаправленные прямого распространения. Сигнал движется от входного слоя к выходному, обратного движения нет. Нейросети такого типа используют для распознавания речи, кластеризации, составления прогнозов. Реккурентные с обратными связями. Реккурентные нейронные сети предполагают, что любое количество сигналов может перемещаться в разных направлениях, в том числе от выхода к входу. По типам нейронов сети могут быть однородными или гибридными. Первые состоят из нейронов одного типа, вторые сочетают несколько классов нейронов. По характеру настройки синапсов нейронные сети бывают с фиксированными либо с динамическими связями. Сферы применения нейросетей Разные варианты нейросетей создаются для решения нескольких типов различных задач: Задачи Классификация — отнесение объектов к нужному классу.
Регрессия — предсказывание результата в виде чисел например, стоимости дома в зависимости от его площади и района, в котором он расположен. Распознавание — выделение объекта среди огромного множества других похожих пример - сеть может выделить конкретное лицо в толпе. Кластеризация — разделение объектов на несколько групп по какому-либо признаку, неизвестному ранее. Это, например, разбивка документов на разные классы. Генерация — рождение чего-то нового в рамках заданной тематики. Прогнозирование — на основе полученных данных искусственный интеллект формулирует прогнозы по заданной теме на определенное время. В зависимости от задачи, которую могут решать искусственные нейронные сети она у каждого своя , они используются в разных областях. Перечислим сферы, где они наиболее востребованы: Медицина. Искусственный интеллект помогает обрабатывать снимки и другие данные исследований и тем самым позволяет врачам устанавливать точный диагноз, при этом тратить меньше времени.
Преподаватели с помощью искусственных сетей имеют возможность быстрее проверять домашние задания, за короткое время составлять сложные презентации и планы уроков. Нейросети создают изображения, произведения литературы и музыку. Строительство и архитектура. Искусственный интеллект полезен застройщикам, чтобы выбрать материалы, прогнозировать время выполнения работ.
Стандартные компьютерные программы предполагают, что алгоритм для них пишет человек, то есть задает определенный набор действий, которые должны выполнить компьютеры. При использовании нейросети не нужно говорить ей, как решить задачу. Достаточно задать вводные данные, а способам решения задач нейронная сеть на основе искусственного интеллекта обучается сама, выявляя закономерности и обнаруживая на их основе способы решения задач Как появились нейросети Попытки математически описать сеть нейронов предпринимались еще в 1940-е годы. Идею создания нейронных сетей впервые предложили исследователи из Чикагского университета Уоррен Маккалоу и Уолтер Питтс. В 1950-е годы эта математическая модель была воссоздана психологом Корнеллского университета Фрэнком Розенблаттом с помощью компьютерного кода.
Розенблатт был автор перцептрона — прототипа современных нейросетей. Даже такая элементарная структура в те годы могла обучаться и самостоятельно решать простые задачи. Маккалоу и Питтс Однако для создания моделей мощных сетей на тот момент было недостаточно, поэтому их развитие замедлилось. Оно возобновилось только в 2010-е годы, с развитием компьютерных технологий и появлением мощных компьютеров. Следующим этапом развития стало появление нейросетей с искусственным интеллектом. Структура нейросети Структура Главное отличие нейросетевых моделей от классических заключается в их структуре. Основные элементы, из которых он состоит — искусственные нейроны и связи между ними. Искусственные формальные нейроны Искусственные нейроны также называются словом «узлы» — элементарные вычислительные единицы, связанные между собой. Они представляют собой нелинейные функции с одним аргументом.
Нейрон получает общую информацию, производит вычисления и передает данные дальше. Каждый нейрон имеет два параметра: входные данные input data и выходные данные output data. Синапс Синапсы — соединения, которые используются для того, чтобы отправлять сообщения между нейронами. Каждое из них имеет определенный вес. Это число, на которое умножается значение входящего сигнала, коэффициент, определяющий взаимосвязь между нейронами. Чем это значение выше, тем более важной является связь между узлами. Если значение веса на выход превышено, узел активируется и отправляет данные следующему нейрону. Если показатели значений ниже, передача данных не происходит — в этом случае говорят об упреждающей связи, когда данные проходят только в одном направлении. Таким образом, проходя через синапсы, сигнал ослабевает, усиливается либо остается равным и неизменным, что в конечном итоге влияет на результат.
Мозг системы — матрица весов, то есть все веса нейронной сети. Именно благодаря им информация обрабатывается и передается дальше. Слои Нейронов в нейросети много, поэтому они объединяются в слои: Входной, куда поступают данные. Они могут иметь любой формат — файлы, тексты, музыка, картинки, видео и другие. Скрытые, в которых производятся вычисления и обработка. Обычно скрытых слоев не больше трех. Выходной — отсюда выходят результаты. Таким образом, чем большее число слоев в нейронной сети, тем сложнее задачи, с которыми она может справляться.