Новости плазменный реактор

Указ об этом подписал президент Владимир Путин Федеральный проект "Термоядерные и плазменные технологии". При плазменной обработке, в частности, образуется угарный газ, который надо тщательно дожигать или пускать в переработку в химическую промышленность», — объяснил ученый. В Курчатовском институте состоялся физический запуск глубоко модернизированного гибридного термоядерного реактора Т-15МД. Кубок Жизни 1, CO2, CuO2, CH3, ZnO, MgO. В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах.

Британский термоядерный реактор сгенерировал первую плазму

Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции. Снизить издержки переработки такого сырья можно за счет использования плазменных реакторов, в которых химические реакции осуществляются с участием низкотемпературной. Они создают магнитное поле вокруг плазменного тора индукцией 11,8 Тл и запасают энергию 41 гигаджоулей. В последний день 2021 года китайские учёные сообщили, что их опытный термоядерный реактор EAST нагрел плазму до 70 миллионов градусов и удерживал её 1056 секунд.

Впервые в мире термоядерную плазму протестировали в токамаке нового поколения

Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон. Все гиротроны предполагалось поставить в ITER в начале 2018 года [27]. Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза.

Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм. Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28].

Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы.

Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать.

Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии. Теперь быстродвижущийся ион следует снова превратить в нейтральный атом. Если этого не сделать, ион будет отклонён магнитным полем токамака. Поэтому к разогнанному иону следует присоединить электрон.

Для деионизации ион проходит через ячейки, наполненные газом. Здесь ион, захватывая электрон у молекул газа, рекомбинирует. Не успевшие рекомбинировать ядра дейтерия отклоняются магнитным полем на специальную мишень, где тормозятся, рекомбинируют и могут быть использованы вновь. Требования к мощности «фабрики атомов» ITER настолько велики, что на этой машине впервые пришлось применить систему, которой не было на предшествующих токамаках.

Это система отрицательных ионов. На таких высоких скоростях положительный ион просто не успевает превратиться в нейтральный атом в газовых ячейках. Поэтому используются отрицательные ионы, которые захватывают электроны в специальном радиочастотном разряде в среде плазмы дейтерия, экстрагируются и разгоняются высоким положительным потенциалом 1 МВ по отношению к источнику ионов , затем нейтрализуются в газовой ячейке. Оставшиеся заряженными ионы отклоняются электростатическим полем в специальную охлаждаемую водой мишень.

Читайте «Хайтек» в Исследователи из университета Тохоку и Австралийского национального университета обнаружили, что спонтанно возбуждаемые плазменные волны вызывали перенос намагниченных электронов, который может решить проблему «отрыва плазмы» в двигателях с магнитным соплом. В радиочастотных двигателях с магнитным соплом последнее направляет и ускоряет плазму, позволяя космическим кораблям создавать тягу. Технология, использующая электрическую тягу, демонстрирует большой потенциал для открытия новой эры космических путешествий. Однако дальнейшему развитию мешала так называемая проблема «отрыва плазмы», объясняют ученые. Иллюстрация работы плазменного двигателя с магнитным соплом.

Изображение : Kazunori Takahashi, Tohoku University Поскольку силовые линии магнитного поля всегда образуют замкнутые петли, те, которые находятся внутри магнитных сопел, неизбежно возвращаются к конструкции двигателя.

Размером с девятиэтажное здание даже недостроенная установка представляет собой фантастическое зрелище. Кроме проведения испытаний России самой поручено изготовить 25 узлов. Среди них самый крупный элемент — суперпроводниковая катушка для магнитного удержания плазмы. В феврале готовую и испытанную 200-тонную деталь сначала по морю, а потом по земле доставили из Петербурга во Францию. Какие бы не были сложности сейчас в международных отношениях, это никак не влияет на нашу работу. Человеческие отношения никак не поменялись». Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год. Еще один шаг на этом сложнейшем научном пути сегодня сделан в Петербурге.

Рогалева: на кафедре Общей физики и ядерного синтеза НИУ МЭИ разрабатываются системы термоядерных реакторов и решаются проблемы диагностики плазмофизических процессов; сегодня наши ученые решают глобальные вопросы, участвуют в экспериментальных разработках международного уровня и вносят существенный вклад в развитие атомных энергетических установок; Россия занимает одну из ключевых позиций в реализации международного проекта ИТЭР; еще в 1950 г. Сахаров, преподававший в МЭИ на кафедре электрофизики, предложил использовать магнитное поле для удержания плазмы с целью достижения управляемого термоядерного синтеза, а сейчас уже мы смогли найти многие решения этих проблем и предложений. Сейчас в НИУ МЭИ проводятся экспериментальные исследования и испытания не только в плазменной установке, но и разработки и испытания эффективных методов охлаждения внутрикамерных компонентов будущего токамака-реактора.

НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР

Выдано Роскомнадзор. Учредитель — федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор — Панина Елена Валерьевна. Все права на любые материалы, опубликованные на сайте, защищены в соответствии с российским и международным законодательством об авторском праве и смежных правах.

И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам.

Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций? Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны. Причем не только в денежном или техническом плане, но и в интеллектуальном.

А практическая польза - это освоение здесь, на родине, новых технологий и производства высочайшего качества. ИТЭР - это легитимная возможность "приземлить" у себя дома современные, в том числе уникальные зарубежные технологии, в создание которых вложились ведущие мировые разработчики. Мы получаем законное право использовать их в национальных целях. Сегодня ИТЭР - реальный драйвер технологического развития.

И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. Заголовок в газете "Солнце в морозильнике" - это не сильное преувеличение к тому, что всем миром строят и обещают показать во французском Кадараше? Виктор Ильгисонис: Имеется в виду, полагаю, сравнение температур горячей плазмы внутри токамака и сверхпроводника в его магнитной системе?

Если так, то это образное сравнение серьезно не дотягивает до итэровских реалий: плазма ИТЭРа должна быть в десять раз горячее солнечного ядра, а температура в его криостате - в тридцать раз ниже, чем в морозильнике! А в космосе, если сумеем "приручить" термояд, он какие открывает для человека возможности? Виктор Ильгисонис: Здесь вы, что называется, бьете в самую точку. Я уверен, что истинное место термояда - как раз в космосе.

Просто его там будет легче осуществить! Нам не понадобятся ни громоздкие вакуумные камеры со сложной системой откачки, ни дорогостоящий криостат со всеми сопутствующими системами. Да, придется несколько отойти от привычных для Земли схем, понадобятся идеи и эксперименты, но это будет совершенно новый уровень энергооснащения наших космических аппаратов. Судите сами, сегодня на МКС потребителям доступны лишь несколько десятков киловатт мощности, которых, конечно же, недостаточно для серьезной работы на орбите и тем более для межпланетных полетов.

Эту тему надо начинать разрабатывать как можно скорее, не дожидаясь осуществления "земного" термояда.

Одновременно, под влиянием порождаемой ядерным топливом радиации в воде происходит процесс радиолиза, в результате которого образуются химически активные ионы и радикалы продукты развала молекул воды. Итак, вода, окружающая топливный элемент в реакторе, нагрета до высокой температуры, находится под огромным давлением и при этом насыщена химически активными частицами. Надо ли говорить, насколько агрессивна такая среда по отношению ко всему, с чем она соприкасается? Особенно несладко приходится как раз оболочкам твэлов. Водная среда наносит ей двойной удар: кислород создает подверженный растрескиванию оксидный слой на поверхности оболочки, а водород, проникая в цирконий, делает его более хрупким, что тоже способствует развитию трещин.

Из-за недостаточной коррозионной стойкости оболочки, топливо отрабатывает лишь небольшую долю своего ресурса, прежде чем твэл приходится извлекать из реактора. А повышение мощности реакторов вообще выглядит несбыточной мечтой, поскольку оно сопряжено с увеличением температуры активной зоны реактора, что неизбежно приведет к резкому ускорению коррозионных процессов в оболочках твэлов. Таким образом, перспективы развития всего направления легководных реакторов при нынешних материалах оболочек твэлов представляются туманными. Ученые всего мира начали работать над усовершенствованием материалов оболочек еще в середине XX века, и эти работы продолжаются до сих пор. Разрабатываются новые коррозионностойкие циркониевые сплавы, способные эффективнее сопротивляться агрессивному воздействию теплоносителя. Кроме того, рассматриваются различные варианты обработки поверхности циркониевых оболочек твэлов и нанесения на них защитных покрытий.

Однако появление тех или иных удачных технологических решений может занимать даже не годы, а десятилетия. Почему так долго?

Концептуальная основа технологии была разработана в Вашингтонском университете UW совместно с сотрудниками из Ливерморской национальной лаборатории Лоуренса. Нельсон Brian A. Nelson объединились с предпринимателем и инвестором Бенджем Конвеем Benj Conway , чтобы в 2017 году стать соучредителями Zap Energy, ускорить, и, в конечном счёте, коммерциализировать исследование.

Сейчас в компании работает более 60 сотрудников в Сиэтле, Эверетте и Мукилтео, штат Вашингтон. Команда Zap Energy добилась быстрого прогресса с тех пор, как эта технология вышла за пределы лаборатории, особенно с недавним ростом команды и инвестиций». В термоядерном реакторе Zap Energy используется метод Z-pinch, когда плазменный шнур, несущий электрический ток, генерирует магнитное поле, которое удерживает и сжимает — «зажимает» — плазму. Условия для термоядерной реакции Чем больший ток разряда Z-Pinch, тем горячее и плотнее будет плазма, поэтому переход к все более и более высоким токам является ключевой частью продвижения синтеза Z-Pinch.

Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы

Катушка полоидального поля нужна для удержания плазмы в термоядерном реакторе ИТЭР. Термоядерный реактор ИТЭР возводят уже несколько десятков лет недалеко от Марселя. Чтобы продлить существование плазмы, загрязненный поток направляют на специальный элемент реактора, дивертор. По сути, Plasma Liner Experiment – это реактор, включающий в себя 36 плазменных «пушек», окружающих сферическую камеру. Стартап по разработке термоядерного реактора General Fusion из Канады завершил очередной раунд сбора инвестиций, в этот раз собрав 65 миллионов долларов. Исследователи использовали метрику под названием H98 (y, 2) для оценки эффективности, с которой реактор токамака удерживает плазму.

НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР

Поэтому со стороны материаловедов давно назрел запрос на какой-то экспресс-метод коррозионных испытаний. ТВС, загруженная в активную зону реактора Как можно ускорить процесс? Но как ускорить коррозионные испытания материалов, если даже в сверхагрессивной среде водного теплоносителя процесс коррозии оболочек твэлов занимает годы? Что может быть еще агрессивнее? Это плазма. Если поместить испытательный образец в частично ионизованную низкотемпературную плазму, то поток химически активных ионов и радикалов, контактирующих с поверхностью объекта, окажется даже более интенсивным, чем это бывает в активной зоне легководного реактора. Если зажечь плазму в парах воды, то на образец, помещенный в нее, будет воздействовать тот же самый ансамбль частиц, что и в водном теплоносителе реактора, но при этом гораздо интенсивнее за счет большего вклада от ионов и радикалов.

В результате, сохраняя неизменными механизмы оксидирования и наводороживания то есть насыщения водородом циркониевых сплавов, плазменное облучение заставит протекать эти процессы существенно быстрее по сравнению не только с водной средой автоклава, но и с реальными условиями реактора. Будущая технология открывает широкие возможности Ученые кафедры физики плазмы Института ЛаПлаз при поддержке Института промышленных ядерных технологий НИЯУ МИФИ работают над тем, чтобы сделать технологию ускоренных плазменных испытаний реальностью. На данный момент им удалось уже значительно продвинуться в этом направлении. В частности, была экспериментально подтверждена гипотеза о воспроизводимости результатов автоклавных испытаний отдельных циркониевых сплавов при плазменном облучении. При этом были найдены режимы облучения, позволяющие ускорить процессы оксидирования и наводороживания циркониевых сплавов в десятки и сотни раз. Сейчас ученые углубляются в изучение физических особенностей протекания процессов оксидирования и наводороживания при плазменном воздействии на сплавы различного состава и различной обработки поверхности, для того, чтобы определить границы применимости плазменного метода и найти режимы облучения, позволяющие достоверно воспроизводить в ускоренном режиме результаты автоклавных испытаний для широкого спектра вариантов модификации сплавов.

Фото из гида «Энергия атома», приуроченного к 75-летию атомной промышленности От чего страдают материалы? Твэл представляет собой установленные друг на друга таблетки из диоксида урана, окруженные герметичной оболочкой из сплава циркония. Оболочка твэла омывается теплоносителем и служит защитой для топлива. В самом распространенном типе реактора, который у нас в стране называется ВВЭР водо-водяной энергетический реактор , а на Западе PWR pressurized water reactor , в качестве теплоносителя используется вода. При этом в активной зоне реактора вода нагревается до 360 С — однако не закипает и не превращается в пар, поскольку находится под огромным давлением порядка 170 атмосфер. Одновременно, под влиянием порождаемой ядерным топливом радиации в воде происходит процесс радиолиза, в результате которого образуются химически активные ионы и радикалы продукты развала молекул воды. Итак, вода, окружающая топливный элемент в реакторе, нагрета до высокой температуры, находится под огромным давлением и при этом насыщена химически активными частицами. Надо ли говорить, насколько агрессивна такая среда по отношению ко всему, с чем она соприкасается? Особенно несладко приходится как раз оболочкам твэлов. Водная среда наносит ей двойной удар: кислород создает подверженный растрескиванию оксидный слой на поверхности оболочки, а водород, проникая в цирконий, делает его более хрупким, что тоже способствует развитию трещин.

Из-за недостаточной коррозионной стойкости оболочки, топливо отрабатывает лишь небольшую долю своего ресурса, прежде чем твэл приходится извлекать из реактора. А повышение мощности реакторов вообще выглядит несбыточной мечтой, поскольку оно сопряжено с увеличением температуры активной зоны реактора, что неизбежно приведет к резкому ускорению коррозионных процессов в оболочках твэлов. Таким образом, перспективы развития всего направления легководных реакторов при нынешних материалах оболочек твэлов представляются туманными.

Об этом сообщил научный сотрудник Института физики плазмы при Академии наук Китая агентству Синьхуа. На этот научный проект потрачено уже более 943 миллиарда долларов, но его успех позволит получить Поднебесной доступ к дешевой и чистой энергии, которая не оставляет опасных отходов, а сырье для её производства находится на Земле практически в безграничных количествах.

На этот научный проект потрачено уже более 943 миллиарда долларов, но его успех позволит получить Поднебесной доступ к дешевой и чистой энергии, которая не оставляет опасных отходов, а сырье для её производства находится на Земле практически в безграничных количествах. В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах, но информация о ходе таких экспериментов публикуется крайне редко.

Во Франции стартовала последняя фаза сборки крупнейшего в мире термоядерного реактора

Этот реактор использует магнитные поля от сверхпроводящих катушек для удержания ионизированного газа в вакуумной камере в форме пончика, с целью стимулирования слияния. Вот что касается ее плазменного тока (течения электрического тока по плазме), тут проектные параметры действительно больше, чем на других российских токамаках. Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции. Собираем плазменные реакторы Кеше. Изготавливаем Тензорные кольца, гармонизаторы и нановосьмерки.

Как плазменные технологии помогут ускорить развитие ядерных реакторов

Таким образом, для поддержания ядерных термоядерных реакций, которые включают поддержание стабильной температуры плазмы в сотни миллионов градусов по Цельсию, более горячей, чем даже ядро Солнца, необходимы сложные многослойные системы для управления катушками. Однако в новом исследовании исследователи показывают, что система ИИ может сама контролировать выполнение задачи. Исследователи обучили свою систему искусственного интеллекта на симуляторе токамака, в котором система путем проб и ошибок обнаружила, как справляться со сложностями магнитного удержания плазмы. После своего тренировочного окна ИИ перешел на следующий уровень — применяя в реальном мире то, чему он научился в симуляторе.

Как пояснил Гаспарян, это перспективный источник энергии, который считается будущим энергетики — запас топлива для него практически неисчерпаем. Работы ведутся по всему миру. Сейчас всё внимание приковано к международному проекту ITER Международный экспериментальный термоядерный реактор. Россия получила ценный опыт при разработке отдельных элементов проекта. С учетом него сейчас проектируется установка ТРТ токамак с реакторными технологиями », — рассказал специалист.

Такие сборки используются в реакторах типа ВВЭР. Фото из гида «Энергия атома», приуроченного к 75-летию атомной промышленности От чего страдают материалы? Твэл представляет собой установленные друг на друга таблетки из диоксида урана, окруженные герметичной оболочкой из сплава циркония. Оболочка твэла омывается теплоносителем и служит защитой для топлива. В самом распространенном типе реактора, который у нас в стране называется ВВЭР водо-водяной энергетический реактор , а на Западе PWR pressurized water reactor , в качестве теплоносителя используется вода. При этом в активной зоне реактора вода нагревается до 360 С — однако не закипает и не превращается в пар, поскольку находится под огромным давлением порядка 170 атмосфер. Одновременно, под влиянием порождаемой ядерным топливом радиации в воде происходит процесс радиолиза, в результате которого образуются химически активные ионы и радикалы продукты развала молекул воды. Итак, вода, окружающая топливный элемент в реакторе, нагрета до высокой температуры, находится под огромным давлением и при этом насыщена химически активными частицами. Надо ли говорить, насколько агрессивна такая среда по отношению ко всему, с чем она соприкасается? Особенно несладко приходится как раз оболочкам твэлов. Водная среда наносит ей двойной удар: кислород создает подверженный растрескиванию оксидный слой на поверхности оболочки, а водород, проникая в цирконий, делает его более хрупким, что тоже способствует развитию трещин. Из-за недостаточной коррозионной стойкости оболочки, топливо отрабатывает лишь небольшую долю своего ресурса, прежде чем твэл приходится извлекать из реактора. А повышение мощности реакторов вообще выглядит несбыточной мечтой, поскольку оно сопряжено с увеличением температуры активной зоны реактора, что неизбежно приведет к резкому ускорению коррозионных процессов в оболочках твэлов.

Оказалось, что токамак Глобус-М2 эффективно использует магнитное поле и многократно превосходит установки предыдущего поколения. От этого параметра зависят показатели выработки энергии и экономическая производительность термоядерного реактора. Такие установки позволят снизить стоимость термоядерного реактора-токамака такого как ИТЭР, который сейчас строят во Франции и скорее внедрить технологии управляемого термоядерного синтеза в энергетику, подарив человечеству еще один альтернативный источник энергии. Исследование проведено при поддержке гранта Президентской программы Российского научного фонда РНФ и опубликовано в журнале Nuclear Fusion. Токамак Глобус-М2 с подключенными источниками дополнительного нагрева. Вид сверху «Эксперименты показали, что в токамаке Глобус-М2 устойчивость плазмы выше, возрастают давление и эффективность использования магнитного поля. Благодаря этому растет экономическая производительность реактора. Исследования плазмы на Глобус-М2 проводятся при температуре выше 10 миллионов градусов, и в этих условиях получена рекордная для компактных сферических токамаков плотность плазмы. По сравнению с установкой предыдущего поколения — токамаком Глобус-М — температура плазмы возросла вчетверо, а эффективность удержания — втрое.

Россия отправила во Францию катушку для получения плазмы в термоядерном реакторе

Фото: sciencealert. Это тороидальная установка со сферической вакуумной камерой. В ней формируется и удерживается плазма, пишет ScienceAlert. От классических термоядерных электростанций ST40 отличается размерами.

Например, там будут использоваться высокотемпературные сверхпроводники, которые пока нигде не применялись. Они используются при изготовлении катушек.

Аналогичные разработки ведутся в США и в Великобритании. Гаспарян уточнил, что термоядерный реактор безопаснее, потому что в обычном происходит самоподдерживающаяся реакция деления, которая в случае аварии, как на «Фукусиме», может приводить к нежелательным последствиям. В термоядерном реакторе такого сценария быть не может.

Если вы решили зарегистрироваться в нашем Мегаполисе, то вам придется немного потрудиться и ответить на несколько вопросов. И даже постараться вставить две собственные фотки. А я понимаю, что это не просто. Ох как не просто...

Один мой приятель позвонил мне по этому поводу и стал ругаться. Типа: «Ну зачем все так сложно? Может тебе еще и размер ботинок написать?!

Таким образом, для поддержания ядерных термоядерных реакций, которые включают поддержание стабильной температуры плазмы в сотни миллионов градусов по Цельсию, более горячей, чем даже ядро Солнца, необходимы сложные многослойные системы для управления катушками. Однако в новом исследовании исследователи показывают, что система ИИ может сама контролировать выполнение задачи. Исследователи обучили свою систему искусственного интеллекта на симуляторе токамака, в котором система путем проб и ошибок обнаружила, как справляться со сложностями магнитного удержания плазмы. После своего тренировочного окна ИИ перешел на следующий уровень — применяя в реальном мире то, чему он научился в симуляторе.

Проблема термоядерного реактора оказалась преимуществом для плазменного двигателя

Ученые НИУ «МЭИ» запустили уникальную плазменную установку ПЛМ для испытания материалов термоядерного реактора и отработки технологий плазменного двигателя. Им удалось разогреть плазму в собственном термоядерном реакторе HL-2M Tokamak (EAST), размещенном в городе Хэфэй. Наконец удалось получить плазменный разряд с температурой в 40 млн градусов по Цельсию, что вдвое выше температуры в центре Солнца. Обслуживающие реактор JT-60SA специалисты пока не сообщили о параметрах полученной в реакторе плазмы. НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе.

Похожие новости:

Оцените статью
Добавить комментарий