Новости сколько кадров видит человек в секунду

Исследователи сообщают о том, что некоторые люди обладают способностью воспринимать мир с более высокой "частотой кадров" по сравнению с другими.

Сколько кадров в секунду (FPS) может видеть человеческий глаз

FPS это кадры в секунду которые отображаются матрицей монитора. Вы знаете частоту кадров (1 кадр в секунду, 10 кадров в секунду, 30 и т. д.), но сколько кадров вам нужно для надежного захвата? Восприятие частоты кадров у разных людей может различаться. В цифровом кинематографе частота кадров также принята во всем мире равной 24 кадра в секунду как наиболее соответствующая эстетике профессионального художественного кино и не требующая неприемлемых объёмов данных. Читала где-то, что человеческий глаз может видеть от 24 до 30 кадров в секунду.

Сколько кадров в секунду видит человеческий глаз?

В прошлом эксперты утверждали, что максимальная способность большинства людей обнаруживать мерцание находится в диапазоне от 50 до 90 Гц, или что максимальное количество кадров в секунду, которое может видеть человек, составляет около 60. А сколько кадров в секунду видите вы? Возможности зрения и то, сколько кадров в секунду видит человек, до сих пор не полностью изучены.

Публикации

  • Выявлена суперспособность некоторых людей видеть больше изображений каждую секунду - МК
  • Сколько кадров в секунду реально видит человеческий глаз?
  • Некоторые геймеры могут видеть больше кадров в секунду и иметь преимущество в играх
  • T-CUP: самая быстрая в мире камера снимает 10 триллионов кадров в секунду

Аспекты человеческого зрения: что говорят эксперты

  • Выявлена суперспособность некоторых людей видеть больше изображений каждую секунду - МК
  • Что Такое Частота Кадров и Какую Выбрать?(2024)
  • Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз)
  • Что такое частота кадров видео и почему это должно вас волновать
  • Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
  • Сколько кадров видит человек за 1 секунду: интересные факты

Сколько кадров в секунду реально видит человеческий глаз?

То есть означает, что человек может распознавать число кадров намного более 24. Учеными было исследовано периферийное зрение. Обнаружилось, что оно имеет отличие от прямого зрения по частоте изображения. Поэтому при создании шлемов используют значения не 30-60 Герц, как для телевизора, а выше — 90 Герц. В пятидесятых годах прошлого века выпустили американский фильм, в котором во многих кадрах были вставлены надписи «Ешь попкорн, пей Кока-колу». Так встраивали кадры, которые распознавались только на бессознательном уровне. Маркетинговая компания, которая занималась этим исследованием, рассказала, что продажа попкорна и кока-колы после этого выросла во много раз. В американском телевидении было исследование на тему содержания 25 кадра.

В одном популярном американском телешоу вставляли 350 раз на высокой скорости слова «Звони прямо сейчас». Но никто так и не позвонил. В конце телешоу ведущий рассказал, что в шоу содержалось послание, и попросил прислать правильный ответ про содержание. Было прислано множество писем, но ни одно из них не содержало правильного ответа. Подробно о восприимчивости глаз Первые немые фильмы, упомянутые в начале статьи, снимались в режиме 16 кадров в секунду. Это позволяло расходовать пленку по минимуму 1 фут в секунду , не теряя эффекта движения на экране. Кроме того, так было удобнее подсчитывать необходимое для фильма количество пленки.

Выглядели эти фильмы совсем не так, как современные: движения актеров были резкими, ускоренными, им явно недоставало плавности и легкости. Но в то время люди воспринимали их практически как реальность. Таким образом, понятно, что при количестве кадров в секунду, равном 16, человеческий глаз уже принимает их за движение. Несмотря на то, что они могут казаться немного резкими, ускоренными или угловатыми, глаз и мозг не могут различить отдельные изображения, принимая их за одно целое — движение. Когда кино стало звуковым, количество кадров увеличилось. Это потребовалось, чтобы можно было записывать звук на специальную дорожку рядом с кадрами. С этим нововведением движения актеров на экране стали более плавными и естественными, глазу зрителя стало проще воспринимать их.

Изобретенный чуть позже 24-кадровый режим, был оптимален и технически, и эстетически. Но со временем количество кадров только увеличивалось, а качество съемки улучшалось. Сегодня обычное видео — это примерно 60 кадров в секунду, а видео в формате 3D — 90 кадров. Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось.

Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно. То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97?

Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду.

Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы. Что происходит, когда мы видим 25 кадр?

Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта.

Этот метод настолько хорош, что, по сути, для зрительной терапии используются игры. Итак, прежде чем кто-то рассердится на исследователей, которые говорят о скорости FPS, которую может видеть человеческий глаз, мы должны иметь в виду, что исследования показывают, что у геймеров есть зрение, уровень внимания и способность отслеживать движущиеся объекты намного лучше, чем « человек, не являющийся геймером. Восприятие движения Теперь перейдем к некоторым числам. Первое, о чем следует подумать, - это частота мерцания изображений: большинство людей воспринимают мерцающий источник света как постоянное освещение со скоростью от 50 до 60 раз в секунду, или герц. Вот почему почти все люди воспринимают монитор 60 Гц как постоянное изображение, а не как мерцающий свет , что и есть на самом деле. Но это лишь часть головоломки, когда дело доходит до восприятия плавных образов в игре.

Это потому, что игры генерируют движущиеся изображения и, следовательно, вызывают различные визуальные системы, которые просто обрабатывают свет. Пример можно найти в так называемом законе Блоха. Этот закон гласит, что существует компромисс между интенсивностью и продолжительностью вспышки света, которая длится менее 100 мс. Он может иметь невероятно яркую наносекунду света и будет выглядеть так же, как десятая часть секунды тусклого света. Как правило, люди не могут различить слабые, короткие, яркие и длинные раздражители в течение десятых долей секунды. Но хотя человеческому глазу трудно различать световые вспышки длительностью менее 10 мс, мы можем воспринимать артефакты и движения невероятно быстро. Это будет зависеть от того, как воспринимаются различные формы движения: если вы сидите неподвижно и начинаете наблюдать, как вещи движутся перед вами, вы будете воспринимать это намного лучше, чем если бы вы делали это во время ходьбы, поскольку стимулы Они разные.

Если бы у человека было 24 кадра наше движения не были бы плавными! У человека нет измерения фпс, мозг человека по игровым меркам отдаёт 95 FPS, а если сказать не сравнивая с движениями из игры и её плавностью, то у человека скажем так нету кадров в секунду, есть лишь реальная картинка происходящего! А значит перевёрнутая цифра восемь-бесконечность. Надеюсь моя теория когда-нибудь будет верна Сигма 3Знаток 376 2 года назад Не может быть бесконечности. Банальный пример - потряси рукой настолько быстро, насколько можешь. Изображение руки будет не чётким, а значит мы видим не так быстро, как двигается рука, наверное. Надеюсь понятно.

Сколько FPS видит человеческий глаз? Это необходимое количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков.

Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Допустим играя в шутер вы можете воспринимать 220 кадров и более. Важным фактором в подаче изображения, естественно, является монитор.

Сколько всё же кадров в секунду способен воспринимать человеческий глаз?

До 60 fps: исследование наглядно показало возможности человеческого глаза - Hi-Tech В статье подробно разбирается вопрос: сколько кадров в секунду видит человеческий глаз.
Сколько человеческий глаз видит кадров в секунду? Возможности зрения и то, сколько кадров в секунду видит человек, до сих пор не полностью изучены.

Как устроен человеческий глаз

  • «Сколько fps воспринимает человеческий глаз?» — Яндекс Кью
  • Аспекты человеческого зрения: что говорят эксперты
  • Для чего это нужно?
  • Как наш мозг обрабатывает реальность

Сколько видит ФПС человеческий глаз?

Затем фоторецепторные клетки в задней части глаза превращают свет в электрические сигналы, а клетки, известные как палочки и колбочки, улавливают движение. Зрительный нерв передает электрические сигналы в мозг, который преобразует их в изображения. Реальность и экраны Когда вы смотрите бейсбол с трибун или наблюдаете за ребенком, едущим на велосипеде по тротуару, ваши глаза - и ваш мозг - обрабатывают визуальные данные как один непрерывный поток информации. Но если вы смотрите фильм по телевизору, смотрите видео на YouTube на своем компьютере или даже играете в видеоигру, все немного по-другому. Мы привыкли смотреть видео или шоу, которые воспроизводятся с частотой от 24 до 30 кадров в секунду. Фильмы, снятые на пленку, снимаются с частотой 24 кадра в секунду. Это означает, что каждую секунду перед вашими глазами мелькают 24 изображения. Телевизоры и компьютеры в вашем доме, вероятно, имеют более высокую «частоту обновления», что влияет на то, что вы видите и как вы это видите. Частота обновления - это количество раз, когда ваш монитор обновляет новые изображения каждую секунду.

Если частота обновления монитора вашего настольного компьютера составляет 60 Гц что является стандартным , это означает, что он обновляется 60 раз в секунду. Один кадр в секунду примерно соответствует 1 Гц. Когда вы используете компьютерный монитор с частотой обновления 60 Гц, ваш мозг обрабатывает свет от монитора как один непрерывный поток, а не как серию постоянных мерцающих огней. Более высокая частота обычно означает меньшее мерцание. Некоторые исследования показывают, что человеческий глаз может обнаруживать более высокие уровни так называемой «частоты мерцания», чем считалось ранее.

То есть, банально видим менее «смазанные» и более четкие кадры из-за меньшей инерционности матрицы. Изображение на экране становится более реалистичным и менее «мыльным», особенно что касается движущихся объектов — будь то прокручиваемый в окне браузера текст или окружающие персонажа предметы в игровой 3D сцене. У меня есть дисплеи и с частотой 60Гц, и с частотой 75Гц, и с частотой 144Гц. А уж работа за 144Гц монитором и вовсе не идет ни в какое сравнение с 60Гц случаем. Замечу, что когда я сидел только за 60Гц монитором, то, конечно, не замечал его недостатков.

Однако после появления в доме 144Гц дисплея, как только я снова садился за старый 60Гц монитор, то буквально сразу замечал, как неприятно он «мылит картинку» даже при банальном скроллинге текста и изображений, не говоря уже за игры. В общем, работать за 60Гц монитором после 144Гц дисплея уже не хочется. За 75Гц монитор со 144Гц дисплея пересаживаться уже легче, хотя и там разница ощущается. Итак, первое важное преимущество мониторов с высокой частотой смены кадров — они позволяют достичь намного лучшего визуального качества изображения, благодаря снижению размытости движущихся объектов и лучшей четкости динамичного изображения. И это огромный реальный плюс, в том числе очень важный в играх. Второе преимущество высокочастотных мониторов — они дают возможность более полно «раскрыть потенциал» игровых видеокарт. По аналогии, это, как если бы вы делали себе два бутерброда с икрой, один съедали, а второй просто выбрасывали, зря потратив продуты. Точно таким же образом и ваш компьютер, вычисляя 120 кадров в секунду, понапрасну тратит половину энергии впустую, так как из этих 120 кадров вы реально увидите только половину.

Для съемки видео ютуберы использовали камеру из Калифорнийского технологического института. Читайте «Хайтек» в Авторы канала Slow Mo Guys задались вопросом, смогут ли они заснять «самую быструю вещь, о которой известно человечеству». Это, конечно же, свет, движущийся с абсолютной скоростью Вселенной: 300 000 километров в секунду. Для этого им понадобилось специализированное оборудование, которое они нашли в Калифорнийском технологическом институте.

Конечно, это кажется нелогичным — почему в результате добавления дополнительных мерцаний нам кажется, что их стало меньше? Задача в том, чтобы уменьшить период затемнения, который оказывает непропорциональный эффект на зрительную систему. Порог слияния мерцания тесно связанный с инерцией зрительного восприятия описывает эффект от этих затемнений. Вся концепция в целом немного сложнее, но на практике вот как можно избежать мерцания: Использовать иной тип дисплея, где нет затемнения между кадрами, то есть он постоянно отображает кадр на экране. Применить постоянные, неизменяемые фазы затемнений с продолжительностью менее 16 мс Мерцающие ЭЛТ Мониторы и телевизоры ЭЛТ работают, направляя электроны на флуоресцентный экран, где содержится люминофор с низким временем послесвечения. Насколько мало время послесвечения? Настолько мало, что вы никогда не увидите полное изображение! Вместо этого в процессе электронного сканирования люминофор зажигается и теряет свою яркость менее чем за 50 микросекунд — это 0,05 миллискунды! Для сравнения, полный кадр на вашем смартфоне демонстрируется в течение 16,67 мс. Так что единственная причина, почему ЭЛТ вообще работает — это инерция зрительного восприятия. Из-за длительных тёмных промежутков между подсветками ЭЛТ часто кажутся мерцающими — особенно в системе PAL, которая работает на 50 Гц, в отличие от NTSC, работающей на 60 Гц, где уже вступает в действие порог слияния мерцания. Чтобы ещё более усложнить дело, глаз не воспринимает мерцание одинаково на каждом участке экрана. На самом деле периферийное зрение, хотя и передаёт в мозг более размытое изображение, более чувствительно к яркости и обладает значительно меньшим временем отклика. Вероятно, это было очень полезно в древние времена для обнаружения диких животных, прыгающих сбоку, чтобы вас съесть, но это доставляет неудобства при просмотре фильмов по ЭЛТ с близкого расстояния или под странным углом. Размытые ЖК-дисплеи Жидкокристаллические дисплеи LCD , которые классифицируются как устройства выборки и хранения , на самом деле довольно удивительные, потому что у них вообще нет затемнений между кадрами. Текущее изображение непрерывно демонстрируется на нём, пока не поступит новое изображение. Позвольте повторить: На ЖК-дисплеях нет мерцания, вызванного обновлением экрана, независимо от частоты обновления. Но теперь вы думаете: «Погодите, я недавно выбирал телевизор, и каждый производитель рекламировал, чёрт побери, более высокую частоту обновления экрана! Зрительное размытие в движении Производители ЖК-дисплеев всё повышают и повышают частоту обновления из-за экранного или зрительного motion blur. Так и есть; не только камера способна записывать размытие в движении, но ваши глаза тоже могут! Прежде чем объяснить, как это происходит, вот две сносящие крышу демки , которые помогут вам почувствовать эффект нажмите на изображение. В первом эксперименте сфокусируйте взгляд на неподвижном летающем инопланетянине вверху — и вы будете чётко видеть белые линии. А если сфокусировать взгляд на движущемся инопланетянине, то белые линии волшебным образом исчезают. С сайта Blur Busters: «Из-за движения ваших глаз вертикальные линии при каждом обновлении кадра размываются в более толстые линии, заполняя чёрные пустоты. Дисплеи с малым послесвечием такие как ЭЛТ или LightBoost устраняют подобный motion blur, так что этот тест выглядит иначе на таких дисплеях». На самом деле эффект отслеживания взглядом различных объектов никогда невозможно полностью предотвратить, и часто он является такой большой проблемой в кинематографе и продакшне, что есть специальные люди, чья единственная работа — предсказывать, что именно будет отслеживать взгляд зрителя в кадре, и гарантировать, что ничто другое ему не помешает. Во втором эксперименте ребята из Blur Busters пытаются воссоздать эффект ЖК-дисплея по сравнению с экраном с малым послесвечием, просто вставляя чёрные кадры между кадрами дисплея — удивительно, но это работает. Как показано ранее, motion blur может стать либо благословением, либо проклятием — он жертвует резкостью ради плавности, а добавляемое вашими глазами размытие всегда нежелательно. Так почему же motion blur — настолько большая проблема для ЖК-дисплеев по сравнению с ЭЛТ, где подобных вопросов не возникает? Вот объяснение того, что происходит, если краткосрочный кадр полученный за короткое время задерживается на экране дольше, чем ожидалось. Она удивительно точна и актуальна для статьи 15-летней давности: При адресации пикселя он загружается с определённым значением и остаётся с этим значением светового выхода до следующей адресации. С точки зрения рисования изображения это неправильно. Конкретный экземпляр оригинальной сцены действителен только в конкретное мгновение. После этого мгновения объекты сцены должны быть перемещены в другие места. Некорректно удерживать изображения объектов в неподвижных позициях, пока не придёт следующий образец. Иначе выходит, что объект как будто внезапно перепрыгивает в совершенно другое место. И его вывод: Ваш взгляд будет пытаться плавно следовать за передвижениями интересующего объекта, а дисплей будет удерживать его в неподвижном состоянии весь кадр. Результатом неизбежно станет размытое изображение движущегося объекта. Вот как! Получается, что нам нужно сделать — так это засветить изображение на сетчатку, а затем позволить глазу вместе с мозгом выполнить интерполяцию движения. Дополнительно: так в какой степени наш мозг выполняет интерполяцию, на самом деле? Никто не знает точно, но определённо есть много ситуаций, где мозг помогает создать финальное изображение того, что ему показывают. Взять хотя бы для примера этот тест на слепое пятно : оказывается, существует слепое пятно в том месте, где оптический нерв присоединяется к сетчатке. По идее, пятно должно быть чёрным, но на самом деле мозг заполняет его интерполированным изображением с окружающего пространства.

Какое количество кадров в секунду воспринимает человеческий глаз

Если человеческийглазвидит только 24 кадра в секунду, то почему видео в 60 fps кажутся нам плавнее? Однако к возможностям человеческого глаза это не имеет никакого отношения — в отдельных ситуациях наш глаз способен видеть 400 и более кадров в секунду. Человек воспринимает около 24 кадров в секунду. Это означает, что при просмотре видео с частотой кадров 24 кадра в секунду, изображение будет восприниматься как непрерывное движение. В Массачусетском технологическом институте создали камеру, способную снимать со скоростью триллион кадров в секунду.

Сколько кадров в секунду видит человеческий глаз? Что такое FPS?

Профессор Кевин Митчелл, нейробиолог из Тринити-колледжа в Дублине, сказал: Мы считаем, что индивидуальные различия в скорости восприятия могут проявляться в высокоскоростных ситуациях, где может потребоваться находить или отслеживать быстро движущиеся объекты, например, в спортивных играх с мячом, или в ситуациях, когда визуальные сцены быстро меняются, например, в состязательных видеоиграх. У них может быть преимущество перед другими еще до того, как они возьмут ракетку и ударят по теннисному мячу или возьмут контроллер и зайдут в какой-нибудь фантастический мир. Хотя исследование интересное, стоит учесть, что восприятие частоты кадров — это еще не все. Недостаточно просто фиксировать высокую частоту, необходимо отслеживать движение и реагировать соответствующим образом.

Это требует переобучения мозга. Некоторые зрители не замечают никаких проблем после десяти минут просмотра «Хоббита», но другие абсолютно не переносят HFR. Камеры и CGI: история motion blur Но если 24 FPS называют едва переносимым фрейрейтом, то почему вы никогда не жаловались на прерывистость видео, выходя из кинотеатра? Оказывается, в видеокамерах есть встроенная функция — или баг, если хотите — которой не хватает в CGI в том числе в анимациях CSS! После того, как вы видели motion blur, его отсутствие в видеоиграх и в софте становится до боли очевидным. Motion blur, как определяется в Википедии, это … видимая тянучка быстро движущихся объектов в неподвижном изображении или последовательности изображений, таких как кинофильм или анимация. Она происходит, если записываемое изображение изменяется во время записи одного кадра либо из-за быстрого движения, либо при длительной экспозиции.

В данном случае картинка лучше тысячи слов. Используются с разрешения. All rights reserved. Motion blur использует хитрость, изображая много движения в одном кадре, жертвуя детализацией. Но как изначально появляется motion blur? Это значит, что выдержка закрыта в течение такого же времени, что и открыта. При быстром движении и действии перед камерой частота кадров недостаточно высока, чтобы успеть за ними, а изображения размываются в каждом кадре из-за времени экспозиции. Вот графика, упрощённо объясняющая процесс. Изображения Hugo Elias. Классические кинокамеры используют обтюратор вращающийся секционированный диск — прим.

Вращая диск, вы открываете затвор на контролируемый промежуток времени под определённом углом и, в зависимости от этого угла, изменяете время экспозиции. Если выдержка маленькая, то на плёнку запишется меньше движения, то есть motion blur будет слабее; а если выдержка большая, то запишется больше движения и эффект проявится сильнее. Обтюратор в действии. Via Википедия Если motion blur — такая полезная вещь, то почему кинематографисты стремятся от него избавиться? Ну, при добавлении motion blur вы теряете детализацию; а избавившись от него — теряете плавность движений. Так что когда режиссёры хотят снять сцену с большим количеством деталей, вроде взрыва с большим количеством вылетающих частиц или сложной сцены с действием, они часто выбирают маленькую выдержку, которая уменьшает размытие и создаёт чёткий эффект кукольной мультипликации. Визуализация захвата Motion Blur. Via Википедия Так почему бы его просто не добавить? Motion blur значительно улучшает анимацию в играх и на веб-сайтах даже на низких фреймрейтах. К сожалению, его внедрение слишком дорого обходится.

Если для выпуска приемлемого материала на 24 FPS вам нужно делать рендеринг на 96 FPS, то вместо этого вы можете просто поднять фреймрейт, так что зачастую это не вариант для контента, который рендерится в реальном времени. Исключениями являются видеоигры, где заранее известна траектория движения объектов, так что можно рассчитать приблизительный motion blur , а также системы декларативной анимации вроде CSS Animations и, конечно, CGI-фильмы как у Pixar. Чтобы не путать их, мы используем Гц для частоты обновления и FPS для фреймрейта. Если вы задаётесь вопросом, почему на вашем ноутбуке так некрасиво выглядит воспроизведение дисков Blu-Ray, то часто причина в том, что фреймрейт неравномерно делится на частоту обновления экрана в противоположность им, DVD конвертируются перед передачей. Да, частота обновления и фреймрейт — не одно и то же. Согласно Википедии, «[.. Так что фреймрейт соответствует количеству отдельных кадров на экране, а частота обновления соответствует числу раз, когда изображение на экране обновляется или перерисовывается. В идеальном случае частота обновления и фреймрейт полностью синхронизированы, но в определённых ситуациях есть причины использовать частоту обновления в три раза выше фреймрейта, в зависимости от используемой проекционной системы. Новая проблема у каждого дисплея Кинопроекторы Многие думают, что во время работы кинопроекторы прокручивают плёнку перед источником света. Но в таком случае мы бы наблюдали непрерывное размытое изображение.

Вместо этого для отделения кадров друг от друга здесь используется затвор , как и в случае с кинокамерами. После отображения кадра затвор закрывается и свет не проходит до тех пор, пока затвор не откроется для следующего кадра, и процесс повторяется. Затвор кинопроектора в действии. Из Википедии. Однако это не полное описание. Эти затемнения между кадрами разрушат иллюзию. Для компенсации проекторы на самом деле закрывают затвор два или три раза на каждом кадре.

В сети есть куча экспериментов подтверждающих это. Самый популярный заключается в том, что подопытному показывают 200 однотипных кадров и 1 кадр из этих 200 сильно отличается от остальных. Почти всё люди, которые работают в сфере, создающую тяжелую зрительную нагрузку, были способны увидеть этот отличный ото всех кадр. А некоторые смогли даже рассмотреть подробности этого кадра. Причем ставили этот самый заветный кадр в разные места, в начало ряда, в середину, конец. Во всех случаях результат был одинаков. К сожалению, в силу этических норм, я не могу оставить вам ссылки на подобного рода эксперименты, но я думаю, вы легко сможете найти их в сети сами. Так, что единственный вывод, который можно сделать, заключается в том, что для каждого человека количество максимально воспринимаемых кадров абсолютно разное и навык этот поддается развитию. Более того, разные рецепторы сетчатки глаза имеют разное восприятие и неравномерно распределены по глазу. Например, в силу эволюционных особенностей нашего глаза, периферическое зрение является более чувствительным к различным изменениям в окружении, но хуже различает цвета и объекты. Поэтому назвать определенное значение, отвечающее на поставленный вопрос, попросту невозможно. Надеюсь с этим вопросом покончено, идем дальше. Очень часто я слышу утверждение: человеческий глаз не способен увидеть больше 24 16 или любое другое число, в зависимости от степени заблуждения автора кадра в секунду! Откуда берутся все эти загадочные числа? Самые распространенные в этом вопросе это числа 24 и 16. В самом первом абзаце я упомянул число 16, которое является необходимым минимумом для восприятия ряда кадров, как анимация. Это самое число было взято на заре кинематографа за основу. Тогда посчитали, что 16 кадров в секунду не будут вызывать дискомфорта у зрителя при просмотре фильмов и в таком случае затраты на пленку будут минимально возможными. Чуть позже это число переросло во всем вам известное 24, которое стандартизировала Американская Академия искусств, в далеком 1932 году. В общем, эти числа являются стандартами кинематографа и телевидения и не имеют ничего общего с максимально возможным человеческим восприятием. Сейчас, ныне популярная кинематографическая система IMAX показывает изображение в 48 кадров в секунду. Но почему то никто не говорит, что человек не видит больше 48 кадров.

Наука Британские ученые нашли способных видеть 60 кадров в секунду людей Британские ученые, представляющие Тринити-колледж в Дублине, нашли необычных людей, способных видеть 60 кадров в секунду. Скорость их зрения намного больше, чем у большей части населения. Ученые оценивают временное разрешение зрения при помощи специального теста. Он выявляет порог слияния мерцаний, при котором вспышки соединяются в луч. Считалось, что люди перестают различать мерцания, превышающие 50-90 герц.

Количество кадров в секунду, видео примеры - FPS

Кроме того, наш «внутренний» FPS динамичный, поскольку работает по отличным от монитора принципам. Отвечая на вопрос, есть ли смысл в мониторах с высокой герцовкой — безусловно, есть. Чем выше частота обновления монитора, тем раньше вы сможете увидеть противника за счёт меньших задержек.

Зачем нужно знать о частоте мерцания? Это может отвлекать, если вы можете воспринимать частоту мерцания, а не один непрерывный поток света и изображений. Итак, сколько FPS может увидеть человеческий глаз? Вы можете задаться вопросом, что происходит, если вы смотрите что-то с действительно высокой частотой кадров. Вы действительно видите все те кадры, которые мелькают? В конце концов, ваш глаз не движется со скоростью 30 изображений в секунду. Короткий ответ: возможно, вы не сможете сознательно регистрировать эти кадры, но ваши глаза и мозг могут их осознавать. Например, возьмем скорость 60 кадров в секунду, которую многие считают верхним пределом.

Некоторые исследования показывают, что ваш мозг на самом деле может распознавать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты. Например, авторы исследования 2014 года из Массачусетского технологического института обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд - это очень высокая скорость обработки. Это особенно быстро по сравнению с принятыми 100 миллисекундами, которые использовались в более ранних исследованиях. Тринадцать миллисекунд переводятся примерно в 75 кадров в секунду. Есть ли тест FPS человеческого глаза? Некоторые исследователи показывают человеку быстрые последовательности изображений и просят дать ответы, чтобы увидеть, что они смогли обнаружить.

Соответственно для обеспечения нужного уровня реалистичности хватает меньшего FPS. Выводы Принимая во внимание чрезвычайную сложность постобработки сигналов человеческим мозгом, указать точное значение фпс, воспринимаемое нами, с точностью до единицы попросту невозможно. Можно оттолкнуться только от физического предела восприятия в 20 мс, что равнозначно 50 FPS. В тоже время учитывать, что края монитора захватываются частью периферийного зрения, где чувствительность рецепторов выше, но как мы поняли в этой области изображения разработчики игр научились обманывать зрительную систему. В итоге рациональным является остановиться на 60 FPS взяв 10 FPS про запас для просмотра видеоряда в котором нет эффекта размытия по краям. Передовая технология 3D-Vision, поддерживающая 120 Гц то есть по 60 Гц на глаз Несмотря на это повышенная частота способна действительно улучшить восприятие картинки. Почему так происходит и почему это никак не связано с FPS, который воспринимает человеческий глаз, вы можете узнать ответ дальше. Восприятие картинки на мониторах 120 Гц лучше? В интернете в последнее время стала очень популярна тема о 120 Гц мониторах. Часто в этих темах озвучивается идея о том, что на 120 Гц мониторах изображение выглядит лучше даже без 3D-очков. Действительно ли человек способен заметить разницу? Картинка на 120 Гц мониторе выглядит более плавной Как ни странно, но это действительно так. На первых взгляд можно заподозрить противоречие: в одной статье я писал, что максимум — 60 FPS А сейчас говорю, что мы замечаем разницу между 60 и 120 Гц. Как так? Дело в том, что подобные сравнения некорректны. Гц и FPS это совершенно разные величины и они не тождественны, как подразумевают многие пользователи.

Процессор телевизора на основе изображения двух соседних кадров вычисляет промежуточный кадр и таким образом увеличивает видимую плавность движения на экране. Качественная интерполяция движений в телевизорах обычно начинается с серии не ниже средней или высокой. У разных производителей есть собственные наработки DNM, Motion Plus создающие промежуточные кадры «на лету». Качество каждого из решений может значительно различаться и требует дополнительных вычислительных ресурсов. Обратной стороной прогресса стал эффект мыльной оперы, воспринимаемый некоторыми зрителями. При демонстрации отрывков из довоенных фильмов вы наверняка замечали неестественно высокую скорость происходящего на экране — это следствие соответствующей частоты кадров. Затем, при появлении звука в фильмах для размещения аудиодорожки число кадров увеличили до 24 иначе звук был слишком искажен , это значение остаётся актуальным по сегодняшний день. Впрочем, если уж быть точным, то в кинозалах показывают фильмы не с 24, а 48 кадрами в секунду. Это связано с работой одной из деталей проектора, обтюратора — механического устройства для периодического перекрывания светового потока в момент движения кинопленки в кадровом окне. То есть, грубо говоря, каждый второй кадр — просто «пустой», а мелькание практически незаметно. Благодаря «инертности» восприятия визуальной информации нашими глазами, обтюратор нивелирует «рывки» при переходе от одного кадра к другому. Тем не менее в кинематографе уже не одно десятилетие идут разговоры о необходимости перехода с привычного стандарта 24 кадра в секунду. Но этому мешал ряд проблем, связанных в основном с технологическими сложностями. Однако в последние годы, когда фильмы стали всё чаще снимать и показывать в залах при помощи цифрового оборудования, задача в этом плане существенно упростилась. Но есть ещё один аспект, касающийся кинематографичности видеоряда. Становится заметна искусственность декораций и визуальных эффектов, создаётся впечатление, что вы присутствуете на театральной постановке или прямо в студии, где снимают фильм. Это отрицательным образом влияет на аутентичность кинокартины, зачастую сводя на нет некоторые режиссёрские и операторские приёмы. Зато всё это нисколько не отменяет всех тех положительных свойств, какими обладает видео с высокой частотой кадров. Это и потрясающая плавность изображения, и естественность картинки — прямо как в реальной жизни, что создаёт отличный эффект присутствия и веры в происходящее. И наконец, большее число кадров нивелирует мерцание особенно заметное по краям экрана , снижая утомляемость глаз. Джеймс Кэмерон, главный киноноватор на нашей планете, заставивший весь мир полюбить 3D, всерьёз пообещал совершить ещё одну революцию в индустрии. Его следующие проекты «Аватар-2» и «Аватар-3» будут сняты в формате 60 кадров в секунду и наглядно продемонстрируют человечеству все достоинства подобной технологии. Однако Питер Джексон со своим «Хоббитом» собрался опередить режиссёра «Титаника» — уже в конце этого года мы сможем посмотреть картину по роману Толкиена с 48 полноценными кадрами в секунду. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы. Что происходит, когда мы видим 25 кадр? Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта. На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует. На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить. В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько. Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения. Комфортное число FPS для игр и кино В чем отличие между fps в играх и кадрами в кино В кино, в отличии от видеоигр используется постоянная частота кадров, которая неизменна на протяжении всего фильма. Исключение могут составлять сцены с замедленной, либо ускоренной съемкой, которые, как правило, занимают очень малую часть времени. Из-за сохраняющейся периодичности зрение и мозг адаптируются, тем самым на время утрачивая способность, воспринимать происходящее в виде отдельных кадров, фрагментов. В видеоиграх все немного иначе. Постоянная чистота кадров невозможна, потому как все игровые локации «места» и сцены генерируются «создаются» в реальном времени. Помимо этого, различные локации обладают разным количеством объектов, качеством детализации. Кино снято в 2D, то есть обладает только шириной и высотой, а видеоигры предстают перед нашими глазами, в том виде, в котором мы видим, то есть в 3D. В видеоиграх за обработку изображения отвечают два основных компонента — видеокарта для обработки графики и процессор для расчётов. Игровой мир, неспособен загрузиться полностью сразу. Он подгружается частями, исходя из действий и передвижений игрока. Следовательно, количество объектов меняется в большую или меньшую сторону, что постоянно изменяет используемую мощность и нагрузку на компоненты. Вследствие чего, постоянно изменяется и частота кадров. Фиксированного значения не существует, возможны только рамки, между которыми происходят изменения. Существует минимальное, максимальное и среднее значение, которое будет отличаться в зависимости от игры и сцены. По причине постоянно изменяющегося количества кадров, мозг неспособен адаптироваться, что позволяет замечать даже незначительные изменения. В данном случае работает правило, чем больше, тем лучше, так как среднее значение может иметь к примеру пределы от 27к. Из чего следует, что 27 будет мало, а 40 и более достаточно для комфортного восприятия.

Исследование: не все люди видят разницу между 30 и 60 FPS

Инженеры исследовательского центра телекоммуникаций INRS Énergie Matériaux (Канада) разработали самую быструю в мире камеру, которая может снимать со скоростью 156,3 триллиона кадров в секунду. сколько кадров в секунду видит человек. Ответ на вопрос, сколько человеческий глаз видит кадров в секунду, такой – сколько угодно. Сколько кадров способен уловить человеческий глаз? Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю.

Что такое FPS в играх — и на что влияет частота кадров в секунду

30 кадров в секунду — на шесть кадров больше, чем 24 кадра в секунду, что означает, что за тот же промежуток времени устройству нужно обработать на 25% больше изображений. Есть опыты, которые позволяют выяснить, что люди видят разницу в освещённости в один фотон (на сколько то там милисекунд). в результате смены картинки в процессе движения человеку без разницы, сколько кадров в секунду образуется, изображение для него не поменяется. Сколько кадров в секунду видит человек, теперь вам известно. Большинство людей не видит особой разницы в плавности движений при съемке выше 60 кадров в секунду.

Похожие новости:

Оцените статью
Добавить комментарий