В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. К 1912 году итальянский статистик Коррадо Джини разработал алгебраическую интерпретацию кривой Лоренца: коэффициент, призванный указывать, насколько неравным является экономическое распределение.
Коэффициент Джини (индекс концентрации доходов, индекс неравенства)
- Related research and writing
- РБК: Росстат зафиксировал рост концентрации доходов в 2023 году
- Коэффициент Джини (распределение дохода)
- Экономика. 10 класс
Доверительный интервал коэффициента Джини. Что это?
Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур.
И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.
Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически.
У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию.
Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение.
Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области.
На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита.
Эти линии мы построили только для того, чтобы ориентироваться, к какой из этих крайностей ближе кривая Лоренца для страны Казыстан. Теперь, когда у нас есть с чем сравнивать, становится понятно: чем дальше от красной линии или чем ближе к синей линии находится кривая Лоренца — тем более неравномерно распределены доходы. Возникает вполне логичный вопрос: а нет ли какого-то количественного показателя, который бы показывал уровень неравенства?
Такой показатель есть, в 1912 году его вывел итальянский статистик Коррадо Джини 1884-1965 , в честь которого и назван коэффициент. Если мы представим себе, что площадь этого треугольника изображает совершенно неравномерное распределение доходов населения, то площадь фигуры между кривой Лоренца для Казыстана и кривой абсолютного равенства изображает неравенство в Казыстане. Тогда, если мы разделим неравенство Казыстана на абсолютное неравенство площадь треугольника АBC , то узнаем, какую долю неравенство в Казыстане составляет от абсолютного неравенства. Это и будет коэффициентом Джини для Казыстана, а метод расчета коэффициента называется геометрическим методом расчета.
Закрашенная площадь показывает степень неравенства в распределении доходов. Обозначим ее через M.
Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент.
Денежные доходы формируются за счет получения заработной платы, пенсий, стипендий, пособий, доходов от продажи товаров, произведенных в собственном хозяйстве, в виде платы за оказанные услуги, поступлений от продажи личного имущества, сдачи его в аренду. С точки зрения использования доходов выделяют: - Номинальный доход- доход, полученный из всех источников. Характеризуют уровень денежных доходов независимо от налогообложения и изменения цен. Данный вид дохода равен разнице между номинальным доходом и налогами. В условиях развитого рынка существование неравенства объективно задано тем, что рыночная система - это бесстрастный и жесткий механизм, который не знает благотворительности и вознаграждает людей лишь по конечной эффективности их деятельности. Таким образом, основными причинами в неравном распределении доходов являются, прежде всего: 1. Различия в способностях.
У людей разные физические и интеллектуальные способности от рождения, например, некоторые люди, наделены исключительными физическими способностями и могут получать за свои спортивные достижения большие деньги, а некоторые наделены предпринимательскими способностями и имеют способности к ведению бизнеса. Итак, люди, которые имеют талант в какой-то сфере жизнедеятельности, могут получать больше денег, чем другие, задействованные в данной сфере. Различия в образовании. Люди отличаются не только различиями в способностях, но и по уровню образования. Однако эти различия в большинстве своем являются результатом выбора самого человека.
Как рассчитать коэффициент Джини в Excel (с примером)
Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve. Почти во всех книгах и статьях почему-то приводятся примеры с почтовыми маркетинговыми кампаниями, что на мой взгляд является анахронизмом. Создадим искусственную бизнес-задачу из сферы free2play игр. У нас есть база данных пользователей когда-то игравших в нашу игру и по каким-то причинам отвалившихся. Мы хотим их вернуть в наш игровой проект, для каждого пользователя у нас есть некое признаковое пространство время в проекте, сколько он потратил, до какого уровня дошел и т.
Оцениваем модель коэффициентом Джини и строим Lift Curve: Предположим, что в рамках маркетинговой кампании мы тем или иным способом устанавливаем контакт с пользователем email, соцсети , цена контакта с одним пользователем — 2 рубля. Мы знаем, что Lifetime Value составляет 5 рублей. Необходимо оптимизировать эффективность маркетинговой кампании. Предположим, что всего в выборке 100 пользователей, из которых 30 вернется. Это провал кампании. Рассмотрим график Lift Curve. Мы в плюсе. Таким образом, Lift Curve позволяет нам наилучшим образом оптимизировать нашу маркетинговую компанию. Сортировка пузырьком Коэффициент Джини имеет довольно забавную, но весьма полезную интерпретацию, с помощью которой мы его также можем легко подсчитать.
Оказывается, численно он равен: где, число перестановок, которые необходимо сделать в отранжированном списке для того, чтобы получить истинный список целевой переменной, — число перестановок для предсказаний случайного алгоритма. Напишем элементарную сортировку пузырьком и покажем это: Комбинаторно несложно подсчитать число перестановок для случайного алгоритма: Видим, что мы получили значение коэффициента, как и в рассматриваемом выше игрушечном примере. Надеюсь, статья была полезна и развеяла некоторые мифы относительно этой метрики качества. ВВП на душу населения некоторым образом подобен средней температуре по больнице — в стране может быть и огромнейшее количество бедняков, и невероятно богатых людей, и небольшая прослойка среднего класса. То есть страна может иметь и сравнительно немалый ВВП, но тем не менее, и уровень образования, и средняя продолжительность жизни в ней будут иметь не радующие показатели. И в этой связи интересен Индекс человеческого развития. Что такое коэффициент Джини? Коэффициент Джини варьируется между нулем и единицей. Какова ситуация с неравенством распределения доходов в мире Мы видим, что среди стран с высоким уровнем дохода есть страны с широким средним классом, например, Скандинавские страны, страны Западной Европы.
В Швеции, Норвегии, Дании, Канаде относительно равномерное распределение доходов. Большая часть обоих Америк, за исключением Канады, это страны с неравномерным распределением доходов, отмечает специальный советник генсека ООН по вопросам борьбы с бедностью, прощения долгов беднейшим странам и контроля за распространением болезней в развивающихся странах Джеффри Сакс. Также неравенство присутствует в странах Африки и большей части Юго-Восточной Азии, по сравнению, например, с Индией. Но стремительное развитие экономики, расширение разрыва между теми, кто живет в городских районах, и теми, кто живет в довольно бедной сельской местности, привело к тому, что неравенство в Китае выросло до уровня, аналогичного тому, что отмечен в Соединенных Штатах. Существуют различные пути развития.
Институт политических исследований посчитал, что разрыв зарплат руководителей самых низкооплачиваемых работников в США составляет 670 раз.
При этом стремительный рост пришелся на пять лет - с 1995 по 2000 год, когда разрыв увеличился со 118 раз до 371 раза. В России наибольший рост разрыва зарплат пришелся примерно на тот же период - 1991-1994годы, когда страна перешла на рыночную модель экономики, отмечает доктор экономических наук директор Института психолого-экономических исследований Александр Неверов. Одна из причин этого явления - институты, которые позволяют богатым людям наращивать свои доходы. К плюсам такой системы можно отнести появление "компаний-единорогов" с миллиардными оборотами, таких как Apple, Google, Microsoft, Amazon, рассказывает Аникин. Но оборотной стороной становится экстремальное неравенство, когда доход руководителя компании в сотни раз отличается от зарплаты его самого низкооплачиваемого подчиненного. Экстремальное неравенство наносит серьезный урон экономике, констатирует Аникин.
Экстремальное неравенство искажает мотивы трудовой деятельности. Люди склонны к поиску быстрых социальных лифтов, а не к долгосрочным инвестициям в образование и навыки. В то же время статистика Росстата свидетельствует, что в России разрыв заработных плат неуклонно снижается.
Иным способом расчета коэффициента является геометрический метод.
А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни.
Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов.
Если они будут идентичны, то коэффициент Джини будет равен нулю и означать полное равенство между всеми группами населения. Если же площади будут максимально отличаться, то коэффициент неравенства составит 1. Это свидетельство полного дисбаланса между бедными и богатыми в обществе. Для детального расчета используют специальную формулу Брауна по которой можно рассчитать коэффициент Джини и составить рейтинг внутри страны, который распределен как по годам, так и по регионам на карте.
После получения этих цифр можно сопоставить рейтинг разных стран. Актуальные показатели Коэффициент Джини рассчитывается и в России. Эти цифры можно найти на страницах официального сайта Росстата. Здесь представлены следующие показатели, вплоть до 2018 года.
Задача №77. Расчёт коэффициента Джини
Словарь неравенства | В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. |
Коэффициент Джини - что это такое простыми словами | В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. |
Коэффициент Джини
Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. 10%, 30% населения, коэффициент Джини для распределения богатства) Россия опережает любую другую крупную страну. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини.
Кривая Лоренца
В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге.
Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там. Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот.
В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей.
В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца.
Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых.
Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.
Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой.
Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла.
Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление.
Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически.
У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем.
При этом планы по увеличению МРОТ позволяют сделать прогноз, что число бедных людей в России будет сокращаться и дальше, отмечает эксперт.
Максимальный уровень неравенства наблюдался в 2010 году. Де-факто это итог быстрых темпов обогащения ряда людей в 1990-е и 2000-е годы В то же время Аникин отмечает, что необходимо обращать внимание на экстремальный разрыв зарплат между топ-менеджментом и самыми низкооплачиваемыми работниками компаний, который способен демотивировать сотрудников. Институт политических исследований посчитал, что разрыв зарплат руководителей самых низкооплачиваемых работников в США составляет 670 раз.
При этом стремительный рост пришелся на пять лет - с 1995 по 2000 год, когда разрыв увеличился со 118 раз до 371 раза. В России наибольший рост разрыва зарплат пришелся примерно на тот же период - 1991-1994годы, когда страна перешла на рыночную модель экономики, отмечает доктор экономических наук директор Института психолого-экономических исследований Александр Неверов. Одна из причин этого явления - институты, которые позволяют богатым людям наращивать свои доходы.
К плюсам такой системы можно отнести появление "компаний-единорогов" с миллиардными оборотами, таких как Apple, Google, Microsoft, Amazon, рассказывает Аникин. Но оборотной стороной становится экстремальное неравенство, когда доход руководителя компании в сотни раз отличается от зарплаты его самого низкооплачиваемого подчиненного. Экстремальное неравенство наносит серьезный урон экономике, констатирует Аникин.
Его приговорили к двум с половиной годам исправительной колонии общего режима. Хамовнический районный суд Москвы арестовал на 10 суток автора блога «Заметки детского врача» Сергея Бутрия. Это произошло после его интервью Катерине Гордеевой признана Минюстом иностранным агентом. На Coinbase резко выросло количество пользователей на фоне курса биткоина выше 60 тыс. Некоторым из них сервис « обнулил » кошельки. В компании обещают устранить ошибку.
Минздрав России зарегистрировал двухкомпонентную вакцину от коронавируса «Спутник V» с обновленным составом. В 16 российских регионах зафиксировали нехватку вакцин от кори. Препараты производит компания «Нацимбио».
Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран. В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов.
Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства. В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини.
Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини? Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные. Что означает индекс Джини, равный 50?
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках.
Экономика. 10 класс
Коэффициент Джини (Gini coefficient) – количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини.
Неравенство и бедность
Уровень жизни , также уровень благосостояния, уровень потребления — степень удовлетворения материальных и духовных потребностей людей массой товаров и услуг, используемых в единицу времени. Совокупное предложение — общее количество товаров и услуг, произведённых в экономике в стоимостном выражении. Часто используется как синоним ВНП. В количественном плане характеризуется показателями, отражающими степень неравномерности распределения доходов. Различие в доходах имеет следствием неравномерность в распределении материальных и нематериальных благ и играет определяющую роль в существовании экономического неравенства. Предельный продукт англ. Предельный продукт того или иного ресурса выражается в физических единицах в отличие от товарного предельного продукта, выражаемого в денежной форме MRP. Поэтому в экономической литературе встречается иное, буквальное название этой величины — «физический объём... Индекс потребительских цен ИПЦ, индекс инфляции, англ. Consumer Price Index, CPI — один из видов индексов цен, созданный для измерения среднего уровня цен на товары и услуги потребительской корзины за определённый период в экономике. Трудовые ресурсы — часть населения страны, которая по физическому развитию, приобретенному образованию, профессионально-квалификационному уровню способна заниматься общественно-полезной деятельностью.
Общая факторная производительность англ. Общая факторная производительность может рассматриваться как мерило долгосрочных технологических изменений или технологической динамики. Сбережения — накапливаемая часть денежных доходов населения, предназначенная для удовлетворения потребностей в будущем. Сбережения используются для покупки ценных бумаг и других финансовых инструментов, или размещаются в виде банковских вкладов. Различают личные и принудительные сбережения. Экономический рост — увеличение объёма выпуска товаров и услуг в рассматриваемой экономической системе в стране, регионе, мире. Мерой экономического роста служит прирост реального ВВП в целом или на душу населения. Основной психологический закон — сформулированное Джоном Мейнардом Кейнсом положение о том, что личное потребление зависит от уровня доходов, однако его динамика отстаёт от роста доходов. Индекс гендерного неравенства англ. The Gender Inequality Index — интегральный показатель, который отражает неравенство в возможностях достижений между мужчинами и женщинами в трех измерениях: репродуктивном здоровье, расширении прав и возможностей, а также на рынке труда.
Индекс гендерного неравенства был представлен Секретариатом Всемирного экономического форума в Женеве в 2010 году. Используется Организацией Объединённых наций в докладе о человеческом развитии с 2010 года. Скорость обращения денег англ. Скорость обращения денег во многом зависит от объёмов экономической активности при заданной денежной массе. Если период времени заявлен, скорость может быть представлена числом. В противном случае показатель должен быть задан в форме число за период времени. Благосостояние — обеспеченность населения государства, социальной группы или класса, семьи, отдельной личности необходимыми для жизни материальными, социальными и духовными благами.
Коэффициент Джини является важным инструментом для измерения и сравнения уровня неравенства доходов между разными странами или внутри одной страны в разные периоды времени. Он позволяет оценить эффективность политик и мер, направленных на снижение неравенства и создание более справедливого общества. Использование коэффициента Джини позволяет не только оценить уровень неравенства доходов, но и выявить его причины и последствия.
Это помогает разрабатывать более эффективные политики и меры по снижению неравенства и созданию более справедливого и устойчивого общества. Тенденции неравенства доходов в России Неравенство доходов в России является одной из важных проблем современного общества. В последние десятилетия наблюдаются определенные тенденции, которые влияют на распределение доходов в стране. Увеличение неравенства доходов Согласно данным, неравенство доходов в России увеличивается. Коэффициент Джини, который используется для измерения неравенства, показывает, что разрыв между богатыми и бедными слоями населения становится все больше. Это связано с различными факторами, такими как экономический рост, изменение структуры занятости, налоговая политика и другие. Рост доходов верхних слоев населения Одной из основных причин увеличения неравенства доходов в России является рост доходов верхних слоев населения. Богатые люди получают все больше доходов, в то время как доходы бедных слоев населения остаются на относительно низком уровне. Это связано с ростом доходов от предпринимательской деятельности, инвестиций и других источников. Увеличение разрыва между городом и сельской местностью Неравенство доходов также проявляется в разрыве между городом и сельской местностью.
В городах доходы обычно выше, чем в сельской местности, что приводит к увеличению разрыва между этими регионами. Это связано с различиями в доступе к образованию, здравоохранению, инфраструктуре и другим ресурсам. Влияние социальных и экономических факторов Неравенство доходов в России также зависит от различных социальных и экономических факторов. Например, образование, профессия, возраст, пол и другие факторы могут влиять на доходы людей. Также важную роль играют налоговая политика, социальные программы и другие государственные меры, направленные на снижение неравенства. В целом, тенденции неравенства доходов в России указывают на необходимость принятия мер для снижения разрыва между богатыми и бедными слоями населения. Это может включать в себя улучшение доступа к образованию и здравоохранению, создание равных возможностей для всех граждан, реформу налоговой системы и другие меры, направленные на создание более справедливого общества. Факторы, влияющие на неравенство доходов в России Неравенство доходов в России обусловлено множеством факторов, которые влияют на распределение доходов между различными слоями населения. Ниже приведены некоторые из основных факторов, которые оказывают влияние на неравенство доходов в России: Различия в заработной плате Одним из основных факторов, влияющих на неравенство доходов, являются различия в заработной плате. В России существует значительное различие в заработной плате между разными профессиями и отраслями экономики.
В-третьих, индивиды могут получать трансферты в натуральной форме, которые не отражаются в кривой Лоренца, хотя при этом влияют на распределение доходов индивидов. Трансферты в натуральной форме могут быть реализованы в виде помощи беднейшим слоям населения продуктами питания, одеждой, но обычно они предоставляются в виде многочисленных льгот бесплатный проезд в общественном транспорте, бесплатные путевки в санатории и так далее. С учетом подобных трансфертов экономическое положение беднейших слоев населения улучшается, но кривая Лоренца и коэффициент Джини этого не учитывают. Не так давно в России многие льготы были монетизированы, и объективные доходы беднейших слоев населения стало считать легче. Следовательно, кривая Лоренца стала лучше отражать реальное распределение доходов в обществе. Данные показатели используются для оценки степени неравенства доходов, и входят в область позитивного экономического анализа. Напомним, что позитивный анализ отличается от нормативного анализа тем, что позитивный анализ анализирует экономику объективно, как есть, а нормативный анализ является попыткой улучшить мир, сделать «как должно быть». Если оценка степени неравенства является позитивным экономическим анализом, то попытки снизить неравенство в распределении доходов принадлежат к области нормативного экономического анализа.
Нормативный экономический анализ известен тем, что разные экономисты могут предложить разное, часто диаметральное противоположные рекомендации по решению одной и той же проблемы. Это не означает, что кто-то является более компетентным, а кто менее компетентным. Это только означает, что экономисты отталкиваются от различных философских взглядов на понятие справедливости, а единства в этом вопросе нет. Сначала мы рассмотрим различные существующие системы ценностей, а затем покажем, каким образом можно обеспечить более справедливое распределение доходов в рамках каждой системы. Государство сейчас выступает не только в качестве устранителя рыночных провалов, о которых мы активно говорили в прошлой главе внешние эффекты и предоставление общественных благ , но и в качестве стимулятора экономики, когда экономика испытывает трудные времена. Налоги являются основным источником доходов государства. Любое государство имеет множество налогов и сборов, построенных по определенным принципам, а также институты контроля по сбору налогов. Все это составляет налоговую систему государства.
Для оценки налоговой системы используются принципы эффективности и справедливости. Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь. Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей. Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки.
Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В. Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого.
Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле.
Коэффициент концентрации Джини G используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]: где — накопленная частость доля численности единиц совокупности; — накопленная доля значений признака i-ой группы, приходящихся на все единицы совокупности. Иным способом расчета коэффициента является геометрический метод. А именно, через кривую Лоренца. Напомним, что кривая Лоренца — это график, демонстрирующий степень неравенства в распределении дохода или богатства в обществе. В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни.
Для простоты понимания рассмотрим рисунок 1.
Коэффициент Джини: формула неравенства
Самым распространенным показателем измерения уровня экономического неравенства коэффициент является коэффициент Джини. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Что такое коэффициент Джини и кривая Лоренца: показатель концентрации доходов и по какой формуле он определяется, сколько составляет в России и в мире.