Новости искусственный интеллект в медицине и здравоохранении

Как в здравоохранении помогает искусственный интеллект. По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно. Искусственный интеллект в медицине. Как может ИИ улучшить систему здравоохранения, по мнению Билла Гейтса? Во-первых, он освободит медицинских работников от рутинных задач и позволит врачам максимально эффективно использовать своё время. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Подкомитет «Искусственный интеллект в здравоохранении» (ПК 01). Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.

Цифровой ассистент: как искусственный интеллект помогает московским врачам

Для решения такой задачи машина должна не проводить расчет по заданным формулам, а самостоятельно выявить формулу по эмпирическим данным, чтобы научиться распознавать болезни. Разработчики при этом работают в первую очередь над подготовкой данных и обучением системы. Как работают нейронные сети в медицинской сфере? Нейронные сети сегодня активно применяются в разработке интеллектуальных систем, в том числе и в медицине, благодаря их способности к обучению. Механизм работы искусственных нейросетей повторяет принцип биологических.

В цифровом исполнении нейронная сеть представляет собой граф с тремя и более слоями нейронов, которые соединяются между собой. В процессе обучения входные нейроны получают данные, обрабатывают их на внутреннем слое нейросети, а на выход поступают результаты. Если полученный результат в процессе обучения не устраивает исследователей, они меняют вес соединений и заново обучают сеть. При этом успешность процесса и достоверность результатов зависит от количества входных данных — чем их больше, тем лучше.

Нейросети могут применяться в медицине разными способами. Например, пациент делает запрос «головная боль», «высокая температура», «озноб», а нейронная сеть анализирует тысячи или миллионы карточек других людей и на основе их диагнозов может предположить заболевание у человека, сделавшего запрос. Сегодня на основе нейронных сетей разработано множество технологий для медицины, и некоторые из них уже активно применяются в клиниках по всему миру. Предсказание падения артериального давления с помощью ИИ В 2018 году были опубликованы результаты исследований нескольких ученых, разработавших алгоритм прогнозирования аномального падения давления или гипотонии в процессе хирургического вмешательства.

Алгоритм разработан с помощью технологий машинного обучения в медицине. Исследователи использовали ИИ, который проанализировал данные более 1300 пациентов, у которых во время операции фиксировалось артериальное давление. Общая продолжительность наблюдения составила почти 546 тысяч минут. С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии.

Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов.

Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам. Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями.

Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам. Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах. Применение и польза искусственного интеллекта в медицине Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний.

Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников. Спрос на высококвалифицированных специалистов растет уже сейчас. Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов.

Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных. Как российские медики применяют ИИ сейчас Компьютерное зрение Эта разработка — одна из наиболее востребованных сейчас в медицине технологий на базе нейросетей. Она помогает врачу определить правильный диагноз и была очень полезна для медиков, работавших в ковид-госпиталях во время пандемии.

Компьютерное зрение способно: анализировать изображения; определить состояние органов и тканей при различных заболеваниях; быстро обнаружить патологии на КТ-снимках легких.

В 2023 году в промышленности создали 51 новую модель машинного обучения, в то время как в академических целях были представлены только в 15. Модели Frontier становятся намного дороже. В 2023 году 61 известная ИИ-модель была создана американскими учреждениями, что намного превышает 21 модель Европейского союза и 15 моделей Китая.

Инвестиции в генеративный ИИ стремительно растут. Несмотря на снижение общих частных инвестиций в ИИ в прошлом году, финансирование генеративного ИИ резко выросло, увеличившись по сравнению с 2022 годом и достигнув 25,2 млрд долларов. ИИ повышает производительность труда сотрудников. В 2023 году в нескольких исследованиях оценивалось влияние ИИ на труд, и было высказано предположение, что ИИ позволяет работникам быстрее выполнять задачи и повышать качество своей продукции.

Эти исследования также продемонстрировали потенциал ИИ для преодоления разрыва в навыках между низкоквалифицированными и высококвалифицированными работниками.

Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения. И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий. Подготовка к таким событиям становится залогом успеха в борьбе с ними. Существуют ли какие-то разработки, позволяющие в будущем действовать на упреждение и успешнее бороться с такими проблемами, как SARS-CoV-2?

Столкнувшись с трудностями борьбы с коронавирусом, мы в очередной раз заострили внимание исследователей на важности аналитики, в частности, аналитики эпидемиологической обстановки в мире. К этой сфере исследований сейчас наблюдается повышенный интерес, и это понятно: никто не хочет вновь пережить то, что до сих пор происходит в мире с декабря 2019 года в процессе борьбы с пандемией. Во избежание повторения событий последних двух лет группа учёных с моим непосредственным участием в настоящее время проводит внедрение предиктивной аналитики, которое реализуется с помощью искусственного интеллекта и позволяет моделировать различные сценарии развития событий и анализировать ход эпидемий, что даёт возможность заранее подготовить систему здравоохранения к вероятности масштабного противостояния очередным заболеваниям и «предсказать» их возможные последствия. Современные технологии необходимы и административному аппарату, и непосредственно в лечении. К примеру, давно установлено, что некоторые элементы высокоточных операций лучше доверить автоматике, исключив тем самым влияние человеческого фактора и снизив вероятность ошибок.

Думаю, что в дальнейшем доля участия ИИ в непосредственном лечении, а также в последующем сопровождении пациентов будет только увеличиваться.

Подписка на дайджест

  • Мы рекомендуем
  • Подписка на дайджест
  • ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране
  • Диагностика заболеваний
  • Как передовые технологии изменили медицину в 2023 году
  • Перспективы применения ИИ

Минздрав рассказал о распространении искусственного интеллекта для медицины в России

Искусственный интеллект стал лидером цифрового здравоохранения России по объему инвестиций. Искусственный интеллект в медицине. Можно ли назвать научным направление Искусственный интеллект (ИИ) и сhatGPT4 вобравшим в себя достижения вычислительной математики, философии, нейрофизиологии для создания систем, которые бы обладали. Будет расширяться использование в здравоохранении искусственного интеллекта.

Полная роботизация: как искусственный интеллект помогает врачам

Искусственный интеллект в медицине: применение и перспективы Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков.
Яндекс Образование Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ.
Последние новости про современные технологии в медицине Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды.

Искусственный интеллект в медицине

Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город Будет расширяться использование в здравоохранении искусственного интеллекта.
Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом - ФармМедПром О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Рассматриваем применение ИИ в здравоохранении на примере интеллектуальной системы «Джейн», которая помогает врачам ставить верные диагнозы.
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране Искусственный интеллект в медицине.

Искусственный интеллект для точной диагностики

  • ИИ-революция в генной инженерии: OpenCRISPR-1 открывает новую эру в редактировании ДНК / Хабр
  • Столичные алгоритмы
  • Олия Артемова
  • Яндекс Образование
  • «Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине

ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране

В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде. Искусственный интеллект или ИИ относится к моделированию человеческого интеллекта в машинах, предназначенных для того, чтобы мыслить и учиться подобно людям. Влияние Искусственного интеллекта в области медицины увеличивается с каждым годом. Анализ искусственного интеллекта в медицине включает прогноз рынка на 2024–2029 годы и исторический обзор.

Искусственный интеллект в здравоохранении внедряют 70 регионов России

Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными. Будущее искусственного интеллекта в здравоохранении безоблачно и имеет огромный потенциал, чтобы революционизировать способы оказания медицинской помощи. Будет расширяться использование в здравоохранении искусственного интеллекта. Будущее искусственного интеллекта в здравоохранении безоблачно и имеет огромный потенциал, чтобы революционизировать способы оказания медицинской помощи.

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ

Что хотите найти? Команда ученых из Калифорнийского технологического института создала систему SAIS на базе искусственного интеллекта для тренировки хирургических навыков.
ИИ в частных клиниках: как помогает врачам и пациентам Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед".
ИТ в Медицине – Telegram Роль искусственного интеллекта в генетической диагностике Искусственный интеллект (ИИ) — это область компьютерных наук, которая занимается разработкой компьютерных систем, способных самостоятельно обучаться и принимать решения на основе полученных данных, что.

Что хотите найти?

Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера Принять все.

Эти достижения революционизируют варианты лечения, улучшая уход за пациентами и прокладывают путь к более здоровому миру. Технология мРНК 2023 год ознаменовался замечательными достижениями в области медицины, и одним из прорывов, который произвел революцию в нашем подходе к здравоохранению, является технология мРНК. Этот новаторский подход проложил путь к значительному прогрессу в профилактике и лечении заболеваний. Традиционные вакцины часто содержат ослабленные или неактивные формы вируса или бактерии для стимуляции иммунного ответа. Однако мРНК-вакцины используют другой подход. Они используют небольшой фрагмент генетической информации вируса или патогена, чтобы дать указание нашим клеткам вырабатывать безвредный белок, похожий на часть вируса.

Этот белок запускает иммунный ответ, позволяя нашему организму распознавать настоящую инфекцию и бороться с ней. Эта технология потенциально способна произвести революцию в области терапии таких заболеваний, как рак, генетические нарушения и аутоиммунные состояния. Предоставляя клеткам точные инструкции, мРНК-терапия может нацеливаться на конкретные молекулы, вызывающие заболевание, и запускать выработку терапевтических белков. Перспективы персонализированной медицины с помощью мРНК-терапии дают надежду на индивидуальные варианты лечения, которые ранее были немыслимы. Виртуальная реальность в медицине В то время как технология мРНК находится в центре внимания, другой технологией, которая добилась значительных успехов в 2023 году, является виртуальная реальность VR. В медицине виртуальная реальность стала мощным инструментом для революционизирования медицинского образования и улучшения ухода за пациентами. В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах.

Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик. Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами.

Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты.

Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы. Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему.

И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется. Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно.

AI для комбинационной терапии раковых больных с помощью искусственного интеллекта. Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения. Как результат — рост опухоли значительно замедлился, а затем болезнь и вовсе перешла в стадию ремиссии. При этом дозировки препаратов были практически в два раза меньше, чем при стандартной терапии таких случаев.

Такие расхождения могут объясняться целым комплексом причин, различиями в культуре и системе здравоохранения стран. В России здравоохранение — это общественная система, основанная на коллективизме и вере в авторитетность врача. А американские пациенты часто ожидают более тесного взаимодействия с врачом и более персонализированного подхода к лечению. Еще одним фактором оптимизма россиян может быть восприятие технологий в целом, их применение часто рассматривается как символ прогресса и успеха, поэтому отношение к ИИ и его влиянию может быть более положительным. В США же система здравоохранения более коммерциализирована, и пациенты могут опасаться, что внедрение ИИ приведет к уменьшению внимания и заботы со стороны врачей. Также возможно, что американские граждане более скептически относятся к новым технологиям в целом и ожидают от них больших рисков и проблем. Кроме того, в США есть свои особенности доступа к услугам здравоохранения — в частности, высокая стоимость медицинской страховки. Это может усиливать опасения, что использование ИИ усугубит проблемы доступности качественных услуг и взаимоотношений с врачами. Еще один вопрос касался проблемы предвзятости врачей: в американской версии опроса речь шла о предвзятости врачей в отношении пациентов разных рас и этнических групп, в российской версии — о предвзятости к пациентам разных возрастов.

Роман Душкин: «Медицина — это область доверия»

HUB Telemed Телемедицина Телемедицинская платформа для врачей с возможностью выбора метода описания лучевых исследований на основе ИИ Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. Использование этих систем может значительно улучшить диагностику, ускорить процесс лечения и сделать медицинские услуги более доступными и персонализированными для пациентов. Со ссылкой на последние исследования и данные становится очевидной тенденция усиления значимости искусственного интеллекта в обеспечении здоровья нации.

Такой доступ обычно есть у государственных организаций, клиник, больниц. И в дни пандемии, когда на базе «НМЦ-Томографии» была сделана не одна тысяча снимков для определения эффекта «матового стекла» и процента поражения лёгких, одна компания, специализирующаяся на исследованиях снимков с помощью AI вышла на нас с предложением запустить пилот анализа результатов КТ для определения патологий и новообразований в лёгких пациентов. Мы наладили процесс передачи обезличенных снимков в эту компанию, и в ответ нам приходили рекомендации о приёме специалистов для ранней диагностики тех или иных пациентов. Примерно из 3000 снимков в 120 были обнаружены подозрения на новообразования, которые потом перепроверял врач. Подтвердили в итоге всего пять. Могу сказать, что если в фармацевтике вполне можно незатратно моделировать химические соединения, экономя время и ресурсы, то в такой консервативной области, как медицина, сотканной из исключительных сценариев с высокими рисками, полностью положиться на ИИ мы сможем нескоро.

В случае наступления осложнений вряд ли можно переложить ответственность на ИИ.

Использование ИИ в радиологии помогает улучшить контроль качества процессов медицинской визуализации. ИИ используется для анализа медицинских изображений и выявления заболеваний или аномалий. Системы искусственного интеллекта могут обнаруживать рак, переломы костей и другие состояния точнее и быстрее, чем люди-радиологи. ИИ используется для интеграции нескольких медицинских изображений, чтобы создать полное представление об анатомии пациента. Это важно при лучевой терапии, хирургии под визуальным контролем и других медицинских процедурах. ИИ можно использовать для автоматической идентификации и классификации поражений, опухолей и других аномалий по размеру и текстуре. ИИ можно научить распознавать закономерности на медицинских изображениях и прогнозировать прогрессирование заболевания или вероятность рецидива.

ИИ может помочь рентгенологам в анализе медицинских изображений, таких как рентгеновские снимки, компьютерная томография и МРТ, для выявления аномалий и помощи в диагностике. Роль ИИ в дерматологии ИИ можно использовать для анализа изображений кожных заболеваний, таких как дерматит, рак кожи или другие поражения кожи. ИИ можно научить классифицировать различные типы поражений кожи, такие как меланома или немеланомный рак кожи. Это может помочь повысить точность диагностики. ИИ можно использовать для разработки индивидуальных планов лечения кожных заболеваний, таких как меланома, с использованием информации о пациентах и рекомендаций, основанных на данных. ИИ может извлекать сложную количественную информацию из медицинских изображений для создания радиомикроскопических сигнатур различных видов рака. ИИ можно использовать для анализа больших объемов данных для выявления потенциальных новых лекарств и методов лечения рака. ИИ можно использовать для разработки индивидуальных планов лечения онкологических больных.

Эти персонализированные планы лечения могут быть основаны на индивидуальных факторах пациента, таких как генетическая информация и биология опухоли. Роль ИИ в кардиологии ИИ может помочь в диагностике сердечных заболеваний. Он может анализировать данные ЭКГ для обнаружения аритмий, таких как мерцательная аритмия. ИИ можно использовать для анализа рентгенограмм грудной клетки для выявления признаков сердечных заболеваний, таких как увеличенное сердце или жидкость в легких. ИИ можно использовать для оценки риска сердечно-сосудистых заболеваний у пациента на основе таких факторов, как демографические данные, история болезни и образ жизни. На основании чего можно выявить пациентов, нуждающихся в раннем вмешательстве. ИИ можно использовать для обнаружения и диагностики сердечных заболеваний, таких как ишемическая болезнь сердца или заболевания сердечных клапанов, путем анализа изображений с эхокардиограмм или компьютерной томографии. Раннее выявление важно для контроля и лечения сердечных заболеваний, а прогнозы на основе ИИ могут спасти жизнь.

Роль ИИ в инфекционных заболеваниях ИИ может помочь в диагностике инфекционных заболеваний, идентифицируя микроорганизмы, такие как бактерии, вирусы и грибки, на основе данных секвенирования ДНК. ИИ можно использовать для прогнозирования устойчивости микроорганизмов к различным антибиотикам. Таким образом, ИИ может помочь оптимизировать лечение и уменьшить распространение устойчивости к противомикробным препаратам. ИИ можно использовать для мониторинга распространения инфекционных заболеваний, отслеживая количество случаев заболевания и смертей. ИИ можно использовать для выявления факторов риска и потенциальных вспышек инфекционных заболеваний путем анализа больших объемов данных электронных медицинских карт. Роль ИИ в разработке лекарств ИИ можно использовать для анализа больших объемов данных из различных источников, таких как молекулярные базы данных, научная литература и клинические испытания, для определения новых мишеней для лекарств и потенциальных методов лечения. ИИ можно использовать для разработки новых лекарств. Прогнозируя, какие химические соединения будут наиболее эффективными и наименее токсичными, ИИ может улучшить дизайн лекарств.

Роль ИИ в персонализированном уходе ИИ может анализировать большие объемы данных о пациентах для выявления закономерностей, корреляций и взаимосвязей между различными переменными, такими как демографическая информация, история болезни и история лечения. Эта информация может помочь в разработке индивидуальных планов лечения. ИИ можно использовать для определения оптимальной дозы препарата для пациента путем анализа данных о конкретном пациенте. Это может улучшить результаты лечения за счет снижения риска побочных эффектов.

Созданная база помогла при разработке лекарства от синдрома Мартина-Белл.

За 18 месяцев команда смогла создать препарат, который уже успешно прошел две фазы клинических исследований. Для сравнения, в обычных условиях разработка и тестирование лекарственного препарата занимает от пяти до десяти лет. При этом затраты на его создание просто на порядки меньше классических. В части поиска информации и ее классификации нейросети показывают отличные результаты. Они способны относительно быстро сканировать интернет на всех существующих языках, собирая данные, которые касаются конкретной темы.

Добиться такой эффективности при работе вручную не получится. Искусственный интеллект и персонифицированная медицина Для большинства наиболее распространенных болезней разработаны терапевтические схемы приема лекарственных препаратов. Для лечения некоторых болезней например, туберкулеза или онкологии единственными эффективными препаратами выступают довольно токсичные вещества. Из-за низкой селективности такие лекарства оказывают побочные действия, пагубно влияют на печень, почки и сердечно-сосудистую систему. И если ранее альтернатив не существовало и применение агрессивных препаратов считалось допустимым с причинением ущерба для здоровья в процессе лечения, то сейчас методика меняется.

Развитие медицины и медицинской химии позволяет работать не только над поиском принципиально новых лекарств, но и над подбором оптимальных схем лечения по уже известным методикам. Индивидуальная дозировка препаратов, имеющих сильные побочные эффекты, могла бы снизить негативное влияние на пациентов, но сложность расчетов не позволяет проводить их массово. К тому же их нужно проводить несколько раз в день. Нейросети способны проводить такие расчеты быстро и качественно. AI для комбинационной терапии раковых больных с помощью искусственного интеллекта.

Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения.

Минздрав рассказал о распространении искусственного интеллекта для медицины в России

В ряде зарубежных исследований было показано, что прогностические модели искусственного интеллекта со временем могут оказаться ненадежными в клинических условиях. рассказал он РИА Новости. Искусственный интеллект существенно улучшает точность аппаратной диагностики в медицине благодаря нескольким ключевым аспектам.

Нейронные сети в помощь врачам

  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
  • Олия Артемова
  • Искусственный интеллект в медицине и здравоохранении
  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
  • ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
  • Эксперимент

«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»

Но далеко не главное. Главное — современные цифровые технологии реально спасают жизни и радикально повышают качество лечения людей. Мы убедились в этом на примере внедрения искусственного интеллекта в работу службы лучевой диагностики", — заявил Собянин. Он напомнил, что анализируя снимки КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 разных заболеваний, включая рак легких, пневмонию, остеопороз, ишемическую болезнь сердца, инсульт и другие. Ранее заммэра Москвы по вопросам социального развития Анастасия Ракова рассказала , что ИИ поможет столичным врачам определять патологии шейного отдела позвоночника.

Второе - это работа с таргетами. Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована, - сказал эксперт.

Например, когда роботизированный хирургический комплекс дополняется ассистентами, в том числе позволяющими в режиме реального времени распознавать и размечать путь хирургического вмешательства. Это снижает риск врачебной ошибки, облегчает нагрузку на хирурга и ускоряет сам процесс проведения операции". По словам специалиста, сегодня среди инвесторов цифрового здравоохранения и сервисов ИИ доминируют не крупнейшие фармацевтические компании и не производители медицинского оборудования. В эту отрасль пришли ИТ-гиганты, телеком и финансовые организации. Еще одна важная сфера применения ИИ - разработка новых лекарственных препаратов. Обычно на этапе ранней разработки в пробирках синтезируют примерно 10 тысяч препаратов, которые прогоняют через серию тестов, чтобы выбрать 250 препаратов, которые затем отправят на доклинические испытания.

Благодаря ИИ большая часть рутинной работы с математическими моделями может быть автоматизирована С ИИ синтезировать все препараты вручную не требуется. А дальше другие программы определяют - правильно ли он их сгенерировал. Из миллиона выбирается 50 самых лучших, и уже эти 50 мы синтезируем и проверяем".

Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования. К 2019 году для специального исследования будут отобраны 1 миллион добровольцев. Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом.

Полученные данные будут обработаны с помощью ИИ.

Другой недавний пример — это использование суперкомпьютера IBM Watson в Токио, чтобы уточнить диагноз 60-летнего пациента с лейкемией и назначить успешное лечение, сопоставив генетические данные миллионов исследовательских работ. И таких кейсов становится все больше: так, белорусский стартап DBrain вместе с американской компанией LigoLabs с помощью технологий ИИ и блокчейн повышают точность диагностики онкологических заболеваний. Подобные технологии используются и в России — российская платформа Botkin.

AI позволяет выявлять онкологические заболевания легких благодаря анализу медицинских изображений с помощью технологий искусственного интеллекта в облаке Microsoft Azure. Решение уже успешно внедрено в нескольких регионах страны. В России также есть цифровая гистологическая лаборатория UNIM, которая исследует гистологические материалы при помощи нейронной сети для постановки верного диагноза. Помимо этого, большой потенциал существует у использования ИИ в разработке и тестировании новых лекарств.

Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка. Это потенциально способно существенно ускорить процесс разработки новых лекарств. Основные препятствия Несмотря на большие перспективы, существует целый спектр ограничений для развития ИИ в медицине.

Эти стоп-факторы должны стать основным объектом для совместной работы технологических компаний и медицинских организаций, так как их минимизация способна существенно расширить возможности применения этой технологии в здравоохранении. Нехватка компетенций и сотрудников.

Похожие новости:

Оцените статью
Добавить комментарий