Новости дроби презентация

6. ДРОБИ В ДРЕВНЕМ РИМЕ У древних римлян система дробей основывалась на делении на 12 долей единицы. В презентации вы изучите историю возникновения и появления обыкновенных дробей, где рассказывается про папирус Ахмеса, примеры перевода обыкновенных дробей в десятичные и. Занимательные рабочие листы математической серии "Цветные дроби" помогут наглядно показать и объяснить школьнику дроби в символах. Нахождение числа по значению его дроби.

Презентация по теме "Обыкновенные дроби. 5 класс"

Поварам нужны дроби для соблюдения пропорции при приготовлении блюда. На нашем сайте презентаций вы можете бесплатно ознакомиться с полной версией презентации "Презентация по теме "Десятичные дроби и проценты"". Скачать бесплатно презентацию на тему "Урок-презентация по математике 5 класс «Обыкновенные дроби»" в (PowerPoint). Нахождение числа по значению его дроби. Скачать презентацию на тему: "Дроби" с количеством слайдов в размере 6 страниц.

Дроби. Происхождение дробей

Разное, презентация, доклад, проект на тему. Презентация подготовлена для повторения и обобщения по теме: "Действия с десятичными дробями". Цель: Обобщить знания по теме «Действия с обыкновенными дробями».  Закрепить и усовершенствовать навыки выполнения действий с обыкновенными дробями.

Дроби презентация в формате PowerPoint - скачать бесплатно

Расположить дроби в нужном порядке: мальчики в порядке убывания, девочки в порядке возрастания Решите задачу самостоятельно 12 апреля 1961 года в 9 час 06 мин 59 с с космодрома Байконур стартовал первый космический корабль с человеком на борту. На борту корабля находился лётчик-космонавт Ю. За 108 минут корабль совершил один виток вокруг Земли и выполнил посадку недалеко от деревни Смеловка Терновского района Саратовской области. Длина ракеты Восток — 1 с последней ступенью составляет 8 м.

Похожие презентации Вы можете ознакомиться и скачать презентацию на тему Обыкновенные дроби. Доклад-сообщение содержит 37 слайдов. Презентации для любого класса можно скачать бесплатно.

Если материал и наш сайт презентаций Mypresentation Вам понравились — поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере. Слайды и текст этой презентации Слайд 1 Слайд 2 Описание слайда: С самых древних времён у людей появилась С самых древних времён у людей появилась потребность в измерении длин, площадей, углов и других величин.

Дробь, в которой числитель больше знаменателя или равен ему, называют неправильной дробью. Число, состоящее из целой и дробной частей, называют смешанным числом. Неправильную дробь можно записать в виде смешанного числа.

Для этого надо: 1. Слайд 6 Приведение обыкновенных дробей к наименьшему общему знаменателю Число, которое может быть знаменателем для всех дробей, называют общим знаменателем. Наименьшим общим знаменателем данных несократимых дробей является наименьшее общее кратное знаменателей этих дробей. Число, на которое нужно умножить и числитель и знаменатель дроби, чтобы привести дроби к общему знаменателю, называют дополнительным множителем. Чтобы найти дополнительный множитель, надо общий знаменатель разделить на знаменатель данной дроби.

Полученное частное является дополнительным множителем этой дроби. Чтобы привести дроби к наименьшему общему знаменателю, надо: 1 найти наименьшее общее кратное знаменателей данных дробей, оно и будет их наименьшим общим знаменателем; 2 разделить наименьший общий знаменатель на знаменатели данных дробей, то есть найти для каждой дроби дополнительный множитель; 3 умножить числитель и знаменатель каждой дроби на её дополнительный множитель. При этом получим дроби с одинаковыми знаменателями. Слайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше.

На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей.

Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1.

Карточки по теме правильные и неправильные дроби 5 класс. Правильные и неправильные дроби 5 класс самостоятельная работа. Виды дробей. Дроби виды дробей.

Какая дробь лишняя. Ряд дробей. Назовите правильные и неправильные дроби. Как определить правильные и неправильные дроби 5 класс. Правильные и неправильные дроби картинки. Дроби на координатной прямой.

Неправильные дроби на координатной прямой. Как сравнить правильную и неправильную дробь. Правильные и неправильные дроби сравнение дробей. Как сравнивать дроби с единицей. Сравнение дробей с единицей. Сравнение правильных и неправильных дробей с единицей.

Тест правильные и неправильные дроби. Тест по теме правильные и неправильные дроби 5 класс. Правильные дроби и неправильные дроби 6 класс. Сравнение дробей с одинаковымизнаменателем. Сравнение дробей с одинаковыми знаменателями. Сравни дроби с одинаковыми знаменателями.

Сравнение правильных и неправильных дробей. Неправильные дроби примеры. Как решаются неправильные дроби. Сложение и вычитание смешанных чисел. Неправильные дроби задания. Правильные и неправильные дроби задания.

Тема правильные и неправильные дроби. Неправильные дроби с числителем.

Дроби. Происхождение дробей

Презентация для школьников 5 класса содержит задачи по теме «Обыкновенные дроби». Скачать школьные презентации PowerPoint бесплатно | Портал бесплатных презентаций Cкачать презентацию: Презентация на тему "Одежда" 7 https. Учимся искать дробь, обратную заданной, расставлять дроби на числовой прямой и сравнивать их.

Презентация по теме "Понятие обыкновенной дроби"

Числитель стоит ___ чертой дроби и означает, сколько равных частей _____ от целого взяли. Слайд 2: На этом слайде темы, лежащие в основе презентации: Доли, Дроби, их чтение и запись, Правильные и неправильные дроби, Основное свойство дробей, Сравнение дробей. Эта презентация создана для помощи ученикам и учителям в подготовке к уроку по теме Дроби. Презентация подготовлена для повторения и обобщения по теме: "Действия с десятичными дробями".

Обобщающий урок-презентация "Умножение и деление дробей"

Предмет: Математика 6 класс Слайдов: 22 Формат Размер: 2.31 Мб Тема: Десятичные и обыкновенные дроби. ать презентацию на тему дроби ать занимательную историю по теме дроби вать газету по теме дроби. Предлагаю Вашему вниманию презентацию к уроку математики в 5 классе «венные дроби» по учебнику Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Научитесь находить дробь от числа и решите с учителем несколько примеров. Эта презентация создана для помощи ученикам и учителям в подготовке к уроку по теме Дроби. Слайд 2: На этом слайде темы, лежащие в основе презентации: Доли, Дроби, их чтение и запись, Правильные и неправильные дроби, Основное свойство дробей, Сравнение дробей.

Презентация "Что мы знаем о дробях"

Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1.

Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа.

Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей.

Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами.

Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь.

Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты. Слайд 15 Чтобы найти дробь от числа, нужно умножить число на эту дробь.

Слайд 16 Деление обыкновенных дробей Чтобы разделить одну дробь на другую, надо делимое умножить на дробь, обратную делителю.

Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1.

Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа.

Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами.

Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь.

Основное свойство дроби и сокращение. Правильные и неправильные дроби. Смешанные числа. Приведение обыкновенных дробей к наименьшему общему знаменателю. Сравнивание обыкновенных дробей. Сложение обыкновенных чисел. Сложение смешанных чисел.

Вычитание обыкновенных дробей. Вычитание смешанных чисел. Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел. Умножение дробей. Взаимно обратные числа. Переместительное, сочетательное и распределительное свойства умножения дробей. Переместительное свойство умножения дробей. Нахождение дроби от числа. Деление обыкновенных дробей. Нахождение числа по его дроби.

История дроби. Слайд 3 Деление и обыкновенные дроби Для измерения различных величин длины, времени, массы вводим новые числа, которые называются дробными. Части равные между собой, называют долями.

Урок изучения нового материала в 5 классе, разбиваю на четыре основным стадияи: вызова, осмысления, закрепления и рефлексии.

Все эти стадии соответствуют основным стадиям критического мышления, которое предполагает изучение явления с разных сторон, с учетом разных подходов, выявления противоречий, поиск рационального пути их преодоления за счет взвешенного анализа различных аргументов, их обоснования [Бутенко, 2002 ]. На каждой стадии предполагается блок заданий, которые учащиеся выполняют самостоятельно или в парах, а учитель выступает лишь в роли тьютора. Цель урока: вывести алгоритм сложения и вычитания дробей с разными знаменателями Метапредметные результаты: проводить исследования свойств дробей, опираясь на числовые эксперименты; распознавать истинные и ложные высказывания о дробях; критически оценивать полученный результат, осуществлять самоконтроль, проверяя ответ на соответствие условию, находить ошибки. Актуализация: Ребята, все вы знакомы с Фиксиками и профессором Чудаковым?

Похожие новости:

Оцените статью
Добавить комментарий