Новости нервные импульсы поступают непосредственно к железам по

Отдел нервной системы. 1) вегетативный 2) соматический. 2. Нервные импульсы поступают непосредственно к железам по.

Нервные импульсы поступают непосредственно к железам по 1) аксонам…

Она получает команды от «руководства» — центральных отделов — и прилежно их выполняет. А ещё она собирает и передаёт импульсы от рецепторов кожи и внутренних органов в обратно в ЦНС. Периферическая нервная система состоит из: собственно, нервов; нервных сплетений. Разберём каждую из этих структур подробнее. Нерв — это орган, состоящий из пучков нервных волокон в основном это аксоны нейронов , покрытых соединительной оболочкой. Нервы обеспечивают связь между центральной нервной системой и внутренними органами, органами чувств и кожей.

В свою очередь, нервы делятся на: чувствительные, или афферентные вспоминай предыдущий пост! А что такое нервный узел? И в чём его отличие от нервного сплетения? Запомним ещё парочку нужных определений: Нервный узел ганглий — это скопление нервных клеток, которое состоит из тел нейронов, а также из дендритов, аксонов и глиальных клеток. Ганглии выполняют роль связующего звена между разными структурами нервной системы.

Нервное сплетение — это сетчатое скопление нервных волокон, которые связывают центральные отделы нервной системы с органами, мышцами и кожей. Рефлекс и рефлекторная дуга Помнишь, что является основной формой деятельности нервной системы? Если забыл, подскажу: в основе нашей нервной деятельности лежит рефлекс. На нём мы остановимся чуть подробнее. Рефлекс — это ответная реакция организма на действие внутреннего или внешнего раздражителя.

Любой рефлекс осуществляется на базе рефлекторной дуги — совокупности нервных элементов, необходимых для проведения нервного импульса.

Дендриты — короткие и сильно разветвлённые отростки нейрона, по которым нервный сигнал передаётся от других клеток к телу нейрона. Чем сложнее и разветвлённее дендриты, тем больше входных нервных импульсов может получить нейрон. Синапс — место контакта между аксоном одного нейрона и дендритом или телом другого нейрона. Также синапс может соединять нейрон непосредственно с клеткой рабочего органа так называемо эффекторной клеткой, получающей сигнал. По характеру выполняемых функций нервные клетки делятся на три типа: Чувствительные сенсорные нейроны — служат для передачи информации от органов в мозг. Двигательные моторные нейроны — передают импульсы от центральных отделов к органам. Тела этих нервных клеток расположены в сером веществе ЦНС, а аксоны — за её пределами. Вставочные нейроны — обеспечивают связь между первыми двумя типами нейронов. Находятся они в головном и спинном мозге.

Но это не единственная классификация нейронов. Так, по количеству отростков они делятся на: Униполярные дендриты отсутствуют, есть только аксон ; Биполярные один аксон и один дендрит ; Псевдоуниполярные один аксон Т-образной формы ; Мультиполярные один аксон и много дендритов. Прежде чем переходить к отделам нервной системы, перечислим её основные функции: координация работы органов и их систем, обеспечение их согласованного функционирования; взаимодействие организма с внешней средой, приспособление к меняющимся условиям; обеспечение психической деятельности человека. Существует две классификации отделов нервной системы: по строению анатомическая и по функциям функциональная. Анатомическая классификация подразумевает деление нервной системы на центральную ЦНС и периферическую ПНС : Центральная нервная система — включает в себя спинной и головной мозг кстати, о мозге мы подробно говорили в этой статье. Периферическая — состоит из нервных структур нервов и нервных ганглий , не входящих в состав спинного и головного мозга. Функционально нервная система делится на вегетативную и соматическую: Вегетативная — отвечает за функции нашего тела, которые мы не можем контролировать произвольно такие как кровообращение, пищеварение. Соматическая — позволяет нам контролировать своё тело: двигаться, говорить, выражать эмоции и так далее.

При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении центрипетально к рефлекторному центру, где находится соединение синапс обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно центрифугально к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный. Кроме простой трехчленной рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов И. Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов. Рецептор восприниматель , трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным центростремительным, или рецепторным нейроном, распространяющим начавшееся возбуждение нервный импульс к центру; с этого явления начинается анализ И. Кондуктор проводник , вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» И. Поэтому И.

Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы. Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Его основными свойствами являются возбудимость и проводимость. Нейрон состоит из тела и отростков. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько. Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки. Длина аксона может достигать нескольких десятков сантиметров.

нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам

медиаторов нервного импульса. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо. Нервные импульсы поступают непосредственно к мышцам и железам по. Проведение нервного импульса в ЦНС. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга.

ГДЗ по биологии 8 класс Драгомилов | Страница 47

Спрашивает Трошицева Светлана. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам. Отдел нервной системы. 1) вегетативный 2) соматический. 1. Нервные импульсы поступают непосредственно к железам по. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам.

ГДЗ по биологии 8 класс Драгомилов | Страница 47

Октябрина2 28 апр. Nutaustinskaya1 28 апр. Это просто... Viki0110 28 апр. Angelapavlik 28 апр. Каких органоидов должно быть много сперматозоиде, и в какой его части? Bogdanshport 28 апр.

Нервные импульсы поступают непосредственно к мышцам и железам по Нервные импульсы поступают непосредственно к мышцам и железам по Рефлекс — это ответная реакция организма на раздражение рецепторов, осуществляемая нервной системой. Рефлекторная дуга — это путь, по которому проходит нервный импульс во время осуществления рефлекса. Она состоит из 5 частей: 1 рецептор — это чувствительное образование, способное реагировать на определенный вид раздражителя и преобразовывать его в нервный импульс 2 чувствительный нейрон проводит импульс в мозг 3 вставочный нейрон связывает чувствительные и исполнительные нейроны, находится в спинном или головном мозге.

Рефлекторная дуга — это путь, по которому проходит нервный импульс во время осуществления рефлекса. Она состоит из 5 частей: 1 рецептор — это чувствительное образование, способное реагировать на определенный вид раздражителя и преобразовывать его в нервный импульс 2 чувствительный нейрон проводит импульс в мозг 3 вставочный нейрон связывает чувствительные и исполнительные нейроны, находится в спинном или головном мозге. Рефлексы делятся на условные и безусловные имеются с рождения в течение жизни не изменяются и не исчезают одинаковые у всех организмов одного вида приспосабливают организм к постоянным условиям пример: выделение слюны при попадании лимона в рот.

Передают импульсы от ЦНС к мышцам и внутренним органам Синапсы возникают между: аксоном одного нейрона и телом другого; аксонами и дендритами соседних клеток; одноименными отростками нейронов. Полная нейронная клеточная диаграмма Нервная регуляция Регуляция органов и тканей в организме человека происходит рефлекторно. Рефлекс — это ответная реакция организма человека на раздражитель, который происходит под воздействием нервных импульсов. Путь, проходимый нервными импульсами при осуществлении рефлекса, называется рефлекторной дугой. Они состоят из нескольких звеньев: Рецептор. Нервное окончание, которое распознает раздражитель. Чувствительный нейрон. Передает информацию в ЦНС. Вставочный нейрон. Распространяет информацию по звеньям. Исполнительный нейрон. Передает импульс к нужному органу или железе. Рефлекторная дуга отвечает не только за возбуждение импульса, но и за его торможение.

Информация

Аксонный холмик строение. Проведение нервного импульса по нейрону. Нервно мышечное сокращение. Передают нервные импульсы в ЦНС. Проведение нервного импульса в ЦНС. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс.

Рефлекторная дуга гемодинамического рефлекса. Схема Рецептор чувствительный Нейрон. Схема спинного мозга чувствительный Нейрон. Рефлекс ЕГЭ рефлекторная дуга. Строение рефлекторной дуги схема. Схема отделов рефлекторной дуги анализаторов. Вегетативная нервная система, дуга вегетативного рефлекса 8 класс.

Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Регулирует все процессы в организме. Направление движения нервного импульса. Процессы нервной ткани.

Нервных процессов в организме. Строение спинного мозга Нейроны. Нейроны спинного мозга схема. Двигательный Нейрон в заднем корешке спинного мозга. Спинной мозг строение рефлекторная. Коленный рефлекс физиология. Коленный рефлекс спинного мозга.

Эффектор коленного рефлекса. Коленный рефлекс ответная реакция. Строение нерва дендрит. Нервная ткань Аксон дендрит. Начальный сегмент аксона функции. Аксон и дендрит строение и функции. Связь между нейронами.

Нейронные механизмы. Взаимосвязь между нейронами. Нейрон физиология. Нейропластичность мозга. Нейроны мозга человека. Нейронные процессы головного мозга. Концепция нейропластичности мозга.

Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги спинного мозга. Регуляция работы сердца схема. Схема регуляции сердечной деятельности. Нервная регуляция работы сердца. Влияние нервной системы на деятельность сердца.

Нейронные импульсы в мозгу. Синапсы головного мозга. Афферентные и эфферентные нервные пути. Афферентный путь и эфферентный путь. Проводящие пути афферентные и эфферентные. Афферентные двигательные пути. Структура и функции рефлекторной дуги.

Строение рефлекторной дуги мигательного рефлекса. Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса. Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы. Нервная регуляция.

Нервная регуляция жизнедеятельности организма.

В С-клетках содержится много митохондрий и электронно-плотных гранул. С-клетки имеют нейроэктодермальное происхождение. ЩЖ секретирует йодсодержащие гормоны — трийодтиронин Т3 , тироксин Т4 и нейодированный кальцитонин. Основными компонентами тиреоидных гормонов являются йод и аминокислота тирозин. Йод поступает в организм с пищей и водой в виде неорганических и органических соединений. Избыток йода выводится организмом с мочой и желчью. Физиологическое потребление йода 110 — 140 мкг. Соединения йода образуют в организме йодиды калия и натрия.

При участии окислительных ферментов йодиды превращаются в элементарный йод. Фолликулярные клетки захватывают йод из крови. В клетках ЩЖ происходит синтез тиреоглобулина. Последний секретируется в просвет фолликула. В коллоидном пространстве происходит органификация йода — присоединение его к белку. Тиреоидные гормоны выделяются фолликулярными клетками в кровь. Основным и физиологически активным гормоном является трийодтиронин Т3 , который во много раз активнее тетрайодтиронина тироксина, Т4. Т3 образуется в тканях на периферии за счет дейодирования Т4. Поступающий из ЩЖ в кровь тироксин большей частью связывается с белками плазмы.

Нарушения функции печени и почек влияют на содержание в крови тиреоидных гормонов. На связывающую способность плазмы могут влиять глюкокортикоиды и лекарственные препараты контрацептивы, препараты раувольфии и др. Синтез и секреция тиреоидных гормонов регулируется гипоталамусом. Установлено, что ТРГ является рилизинг-фактором для пролактина. Физиологическое действие ТТГ заключается в стимуляции синтеза и секреции тиреоидных гормонов. С возрастом происходит снижение уровня тиреоидных гормонов в крови и повышение содержания ТТГ. На секрецию ТТГ влияют — стероидные гомоны, соматостатин и соматотропный гормон, гонадотропины, различные факторы роста. Его уровень обычно ниже у мужчин, а у женщин он зависит от фазы менструального цикла. Физиологические эффекты сводятся к стимуляции окислительно-восстановительных процессов, увеличению потребления О2 тканями.

Тиреоидные гормоны участвуют во всех видах обмена — водно-солевом, белковом катаболическое действие , жировом, углеводном и энергетическом. Стимулируют синтез белка, усиливают процессы всасывания глюкозы в кишечнике и утилизации их в тканях, активизируют распад гликогена и снижают его содержание в печени. Тиреокальцитонин с паратгормоном регулирует обмен кальция и фосфора в организме. Изменение продукции тиреогормонов связано с недостатком в пище йода, что ведёт к разрастанию ткани ЩЖ и появлению эндокринного зоба. Паращитовидные железы. Паращитовидные железы парные образования, расположенные в области шеи позади щитовидной железы. Их количество от 2 до 6, две верхние и две нижние. Располагаются в рыхлой соединительной клетчатке, отделяющей внутреннюю и наружную капсулы щитовидной железы. Верхняя пара примыкает сзади к долям щитовидной железы, вблизи их верхушки на уровне дуги перстневидного хряща.

Нижняя пара находится между трахеей и долями щитовидной железы, вблизи их оснований. Анатомическое строение. Паращитовидные железы - небольшие образования величиной с рисовое зернышко, залегающие позади долей щитовидной железы, имеют округлую или овальную форму. Размеры: длина — 4-5 мм, толщина — 2-3 мм, масса - 0,2-0,5 гр. Нижние паращитовидные железы крупнее верхних. Паращитовидные железы отличаются от щитовидной железы более светлой окраской, у детей бледно-розоватые, у взрослых - желто-коричневые и более плотной консистенцией. Паращитовидные железы имеют тонкую соединительнотканную капсулу, от которой вглубь капсулы отходят перегородки, делящие ткань железы на группы клеток, однако четкого разграничения на дольки нет. Паращитовидные и щитовидная железы схема : А. Расположение паращитовидных желез на задней поверхности щитовидной железы: 1 - щитовидная железа; 2 - щитовидный хрящ; 3- верхняя паращитовидная железа; 4 - нижняя паращитовидная железа; 5- трахея.

Микроскопическое строение паращитовидной железы, сагиттальный разрез: 6 - фолликулы щитовидной железы; 7 - паращитовидная железа; 8 - оксифильные клетки; 9- главные клетки; 10 -капилляры; 11 —капсула. Гистологическое строение. Паращитовидные железы на разрезе представлена фолликулами, но содержащийся в их просвете коллоид беден йодом. Паренхима железы состоит из плотной массы эпителиальных клеток. Среди главных клеток, подразделяющихся на светлые и темные, наиболее активными в функциональном отношении являются светлые клетки. Оба вида клеток - одни и те же клетки на разных этапах развития. В 1926 г. Паратгормон регулирует уровень кальция и фосфора в крови. Кальций влияет на проницаемость клеточных мембран, возбудимость, свертываемость крови и другие процессы.

Важен и фосфор, входящий в состав многих ферментов, фосфолипидов, нуклеопротеинов, участвующих в поддержании кислотно-щелочного равновесия и обмена веществ. Органами-мишенями для паратгормона являются кости, почки и тонкая кишка. Действие паратгормона на кости: вызывает увеличение количества остеокластов и повышение их метаболической активности; стимулирует метаболическую активность остеоцитов; подавляет образование костной ткани остеобластами. Действие паратгормона на почки: повышает реабсорбцию кальция и уменьшает реабсорбцию фосфатов в извитых канальцах. Действие паратгормона на кишечник: повышает всасывание кальция. Аномалии, гипо- и гиперфункция. В результате дефицита паратгормона — гипопаратиреозе, возникает судорожное сокращение скелетной мускулатуры, причиной которой является снижение уровня кальция в крови. При гипопаратиреозе у детей, с врожденной недостаточностью паращитовидных желез нарушается рост костей, и наблюдаются длительные судороги определенных групп мышц. Гиперпаратиреоз вызывается злокачественными опухолями паращитовидных желез.

При избытке паратгормона развивается болезнь Реклинхгаузена, проявляющаяся в поражении скелета и почек, первичные изменения в костях, за счет активации остеокластов, разрушающих костную ткань с высвобождением кальция. Падение уровня кальция в крови, недостаток кальция в пищевом рационе, незлокачественная опухоль паращитовидной железы, рахит вызывает повышенную секрецию паратгормона, что повышает активность остеокластов. В результате чего, уровень кальция в крови повышается, но кости становятся хрупкими. Отмечается нарушение углеводного обмена в костях. Развивается почечная недостаточность. Больные жалуются на боли в костях, слабость, преждевременное выпадение зубов, резкое похудание. Парная железа, расположенная в жировом околопочечном теле в непосредственной близости к верхнему полюсу почки. Наружное строение. Правый и левый надпочечники отличаются по форме: правый сравнивают с трехгранной пирамидой, левый — с полумесяцем.

У каждого из надпочечников различают три поверхности: переднюю, заднюю и почечную. Последняя у правого надпочечника соприкасается с верхним полюсом правой почки, а у левого — с медиальным краем левой почки от ее верхнего полюса до ворот. Надпочечники имеют желтый цвет, их поверхности слегка бугристы. Размеры надпочечника: длина — 5 см, ширина — 3—4 см, толщина около 1 см. Снаружи каждый надпочечник покрыт толстой фиброзной капсулой, соединенной многочисленными тяжами с капсулой почки. Паренхима желез состоит из коркового вещества коры и мозгового вещества. Корковое вещество прочно спаяно с фиброзной капсулой, от которой вглубь железы отходят перегородки — трабекулы. Топография надпочечников. Задние поверхности надпочечников прилежат к поясничной части диафрагмы, почечные поверхности — к почкам.

Левый надпочечник передней поверхностью прилежит к кардиальной части желудка и к хвосту поджелудочной железы, а медиальным краем соприкасается с аортой. Правый надпочечник передней поверхностью прилежит к печени и к двенадцатиперстной кишке, а медиальным краем соприкасается с нижней полой веной. Оба надпочечника лежат забрюшинно; их передние поверхности частично покрыты брюшиной. Кроме брюшины надпочечники имеют общие с почкой оболочки, участвующие в их фиксации: это жировая капсула почки и почечная фасция. Внутреннее строение. Надпочечники состоят из двух самостоятельных желез внутренней секреции — коры и мозгового вещества, объединенных в единый орган. Кора и мозговое вещество имеют разное происхождение, разный клеточный состав и разные функции. Корковое вещество надпочечника делят на три зоны, связанные с синтезом определенных гормонов. Наиболее поверхностный и тонкий слой коры выделяется как клубочковая зона.

Средний слой называется пучковой зоной. Внутренний слой, примыкающий к мозговому веществу, образует сетчатую зону. Мозговое вещество, расположенное в надпочечнике центрально, состоит из хромаффинных клеток. Клетки мозгового вещества секретируют два родственных гормона — адреналин и норадреналин, которые объединяют под названием катехоламинов. Возрастные особенности. Толщина и структура надпочечника изменяется с возрастом. У новорожденного кора надпочечника состоит из двух частей: из зародышевой коры и тонкого слоя истинной коры. После рождения надпочечники уменьшаются. Рост надпочечников ускоряется в период полового созревания.

К старости развиваются атрофические процессы. Строение, функции гормонов. Мозговой слой надпочечника вырабатывает адреналин и норадреналин. Секреция адреналина осуществляется светло-окрашиваемыми клетками, а норадреналина — темно-окрашиваемыми клетками. Человек, у которого норадреналина продуцируется мало, ведет себя в экстренных ситуациях подобно кролику — у него сильно выражено чувство страха, а человек, у которого продукция норадреналина выше, ведет себя как лев теория «кролика и льва». Метаболизм катехоламинов происходит с помощью ферментов. Выделяемые в кровь адреналин и норадреналин, разрушаются быстро — время полужизни 30 секунд. У адреналина и норадреналина обнаружены физиологические эффекты, как у симпатической нервной системы: активация деятельности сердца, расслабление гладких мышц бронхов и т. Катехоламины принимают участие в активации продукции тепла, в регуляции секреции многих гормонов.

За счет взаимодействия адреналина с бета-адренорецепторами повышается продукция глюкагона, ренина, гастрина, паратгормона, кальцитонина, инсулина, тиреоидных гормонов. При взаимодействии катехоламинов с бета-адренорецепторами угнетается выработка инсулина. Во всех этих зонах продуцируются стероидные гормоны, источником для которых служит холестерин. В клубочковой зоне продуцируются минералокортикоиды, в пучковой — глюкокортикоиды, а в сетчатой — андрогены и эстрогены, т. К группе минералокортикоидов относятся: альдостерон, дезоксикортикостерон, 18-оксикортнкостерон, 18-оксидезоксикортикостерон. Основной представитель минералокортикоидов — альдостерон. Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции ионов натрия. Место действия клетки-мишени — это эпителий дистальных канальцев почки, в которых за счет взаимодействия альдостерона с рецепторами повышается продукция мРНК и рРНК и активируется синтез белка — переносчика натрия. В результате - почечный эпителий усиливает процесс обратного всасывания натрия из первичной мочи в интерстициальную ткань, а оттуда — в кровь.

Механизм активного транспорта натрия из первичной мочи в интерстиций сопряжен с противоположным процессом — удалением ионов калия из крови в конечную мочу. Альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки в организме ионов натрия и воды альдостерон способствует повышению уровня АД. Альдостерон влияет на процессы реабсорбции натрия в слюнных железах. При обильном потоотделении альдостерон способствует сохранению натрия в организме, препятствует его потере не только с мочой, но и с потом. Калий же, с потом удаляется при действии альдостерона. В сетчатой зоне надпочечника секретируются в небольшом количестве мужские половые гормоны, близкие по строению к гормонам — андрогенам, а также эстрогены и прогестерон. Наиболее сильный физиологический эффект принадлежит кортизолу. Гормоны вызывают активацию глюконеогенеза — образование глюкозы из аминокислот и жирных кислот.

Одновременно в других органах и тканях, в скелетных мышцах глюкокортикоиды тормозят синтез белков, чтобы создать депо аминокислот, необходимых для глюконеогенеза. Главный эффект глюкокортикоидов — мобилизация энергетических ресурсов организма. Это свойство используется для снятия воспалительных реакций - после проведения операции на глазу по поводу катаракты больному рекомендуется ежедневно вводить глазные капли, содержащие глюкокортикоиды кортизон, гидрокортизон. Под влиянием глюкокортикоидов снижается продукция антител, уменьшается активность Т-киллеров, снижается интенсивность иммунологического надзора, снижается гиперчувствительность и сенсибилизация организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство глюкокортикоидов широко используется в клинической практике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина. Это свойство глюкокортикоидов лежит в основе язвы желудка и 12перстной кишки, нарушение микроциркуляции в сосудах миокарда и как следствие — развитие аритмий, нарушение физиологического состояния кожных покровов — экземы, псориаз. Эти явления наблюдаются в условиях повышенного содержания эндогенных глюкокортикоидов или в условиях длительного введения глюкокортикоидов с лечебной целью. При высоких концентрациях глюкокортикоиды вызывают задержку натрия и воды в организме.

В скелетных мышцах наблюдается мышечная слабость.

Для того чтобы его предупредить, больному надо дать сладкий чай, кусок сахара, булочку. Вопрос Просмотрите рис. Определите, какая железа сильнее влияет на пластический обмен, а какая — на энергетический.

Ответ: На энергетический обмен большее влияние оказывает щитовидная железа, а на пластический обмен — гипофиз. Вопрос Что регулирует автономный отдел нервной системы и что соматический? Как они взаимодействуют при включении человека в физическую работу? Ответ: Различают соматический и вегетативный автономный отделы нервной системы.

Соматическая нервная система обеспечивает связь организма с окружающей средой передвижение в пространстве и реакции взаимодействия через ощущения. Соматическая система осуществляет произвольный контроль деятельности скелетной мускулатуры. Вегетативный отдел регулирует обмен веществ, работу внутренних органов, желёз и гладкой мускулатуры. Он неподвластен нашей воле и действует независимо от нее, автономно: центры вегетативной нервной системы посылают нервные импульсы в нервные узлы, а нейроны узла регулируют работу соответствующих органов.

При включении человека в физическую работу два отдела работают взаимосвязанно. Высшим центром соматической нервной системы является кора больших полушарий. Сюда стекается вся информация от органов чувств к внутренней среде организма. Здесь изыскиваются способы удовлетворения потребностей, за исполнение которых отвечает автономный отдел нервной системы посредством регуляции обмена веществ, усиления или ослабления действия внутренних органов человека.

Вопрос Расскажите о строении и функциях симпатического и парасимпатического подотделов автономного отдела нервной системы. Ответ: В автономном отделе нервной системы имеются два подотдела: симпатический и парасимпатический. Нервные центры симпатического подотдела располагаются в сером веществе спинного мозга, от его шейных до крестцовых сегментов. Нервные центры парасимпатического подотдела находятся в головном мозге и крестцовых сегментах спинного мозга.

К парасимпатическому подотделу относится парный блуждающий нерв с центрами в продолговатом мозге. Симпатический подотдел активизируется, когда организму предстоит напряженная работа, парасимпатический — когда происходит переход от работы к отдыху. Не случайно симпатический подотдел называют системой аварийной ситуации, а парасимпатический подотдел — системой отбоя. Вопрос Как устроен спинной мозг?

Какие функции он выполняет? Ответ: спинной мозг имеет вид длинного шнура, заостренного внизу. На уровне большого затылочного отверстия он переходит в головной мозг, а на уровне первого — второго поясничного позвонка заканчивается. Передняя щель и задняя борозда делят спинной мозг на две симметричные половины правую и левую.

Строение, функции гормонов. Мозговой слой надпочечника вырабатывает адреналин и норадреналин. Секреция адреналина осуществляется светло-окрашиваемыми клетками, а норадреналина — темно-окрашиваемыми клетками. Человек, у которого норадреналина продуцируется мало, ведет себя в экстренных ситуациях подобно кролику — у него сильно выражено чувство страха, а человек, у которого продукция норадреналина выше, ведет себя как лев теория «кролика и льва». Метаболизм катехоламинов происходит с помощью ферментов. Выделяемые в кровь адреналин и норадреналин, разрушаются быстро — время полужизни 30 секунд. У адреналина и норадреналина обнаружены физиологические эффекты, как у симпатической нервной системы: активация деятельности сердца, расслабление гладких мышц бронхов и т.

Катехоламины принимают участие в активации продукции тепла, в регуляции секреции многих гормонов. За счет взаимодействия адреналина с бета-адренорецепторами повышается продукция глюкагона, ренина, гастрина, паратгормона, кальцитонина, инсулина, тиреоидных гормонов. При взаимодействии катехоламинов с бета-адренорецепторами угнетается выработка инсулина. Во всех этих зонах продуцируются стероидные гормоны, источником для которых служит холестерин. В клубочковой зоне продуцируются минералокортикоиды, в пучковой — глюкокортикоиды, а в сетчатой — андрогены и эстрогены, т. К группе минералокортикоидов относятся: альдостерон, дезоксикортикостерон, 18-оксикортнкостерон, 18-оксидезоксикортикостерон. Основной представитель минералокортикоидов — альдостерон.

Механизм действия альдостерона связан с активацией синтеза белка, участвующего в реабсорбции ионов натрия. Место действия клетки-мишени — это эпителий дистальных канальцев почки, в которых за счет взаимодействия альдостерона с рецепторами повышается продукция мРНК и рРНК и активируется синтез белка — переносчика натрия. В результате - почечный эпителий усиливает процесс обратного всасывания натрия из первичной мочи в интерстициальную ткань, а оттуда — в кровь. Механизм активного транспорта натрия из первичной мочи в интерстиций сопряжен с противоположным процессом — удалением ионов калия из крови в конечную мочу. Альдостерон является натрийсберегающим, а также калийуретическим гормоном. За счет задержки в организме ионов натрия и воды альдостерон способствует повышению уровня АД. Альдостерон влияет на процессы реабсорбции натрия в слюнных железах.

При обильном потоотделении альдостерон способствует сохранению натрия в организме, препятствует его потере не только с мочой, но и с потом. Калий же, с потом удаляется при действии альдостерона. В сетчатой зоне надпочечника секретируются в небольшом количестве мужские половые гормоны, близкие по строению к гормонам — андрогенам, а также эстрогены и прогестерон. Наиболее сильный физиологический эффект принадлежит кортизолу. Гормоны вызывают активацию глюконеогенеза — образование глюкозы из аминокислот и жирных кислот. Одновременно в других органах и тканях, в скелетных мышцах глюкокортикоиды тормозят синтез белков, чтобы создать депо аминокислот, необходимых для глюконеогенеза. Главный эффект глюкокортикоидов — мобилизация энергетических ресурсов организма.

Это свойство используется для снятия воспалительных реакций - после проведения операции на глазу по поводу катаракты больному рекомендуется ежедневно вводить глазные капли, содержащие глюкокортикоиды кортизон, гидрокортизон. Под влиянием глюкокортикоидов снижается продукция антител, уменьшается активность Т-киллеров, снижается интенсивность иммунологического надзора, снижается гиперчувствительность и сенсибилизация организма. Все это позволяет рассматривать глюкокортикоиды как активные иммунодепрессанты. Это свойство глюкокортикоидов широко используется в клинической практике для купирования аутоиммунных процессов, для снижения иммунной защиты организма хозяина. Это свойство глюкокортикоидов лежит в основе язвы желудка и 12перстной кишки, нарушение микроциркуляции в сосудах миокарда и как следствие — развитие аритмий, нарушение физиологического состояния кожных покровов — экземы, псориаз. Эти явления наблюдаются в условиях повышенного содержания эндогенных глюкокортикоидов или в условиях длительного введения глюкокортикоидов с лечебной целью. При высоких концентрациях глюкокортикоиды вызывают задержку натрия и воды в организме.

В скелетных мышцах наблюдается мышечная слабость. Регуляция продукции глюкокортикоидов осуществляется за счет двух гормонов — кортиколиберина и АКТГ. Изменение концентрации глюкокортикоидов как гипо-, так и гиперфункции приводит к серьёзным нарушениям в организме. Поджелудочная железа. У взрослого человека форма, размеры и вес железы варьируют в широких пределах. Поджелудочная железа дважды изгибается, огибая позвоночник. В железе различают головку, тело и хвост.

Между головкой и телом имеется сужение — шейка; у нижней полуокружности головки - крючкообразный отросток. Длина железы - 14-22 см, поперечник головки — 3,5-6,0 см, толщина тела — 1,5-2,5 см, длина хвоста — до 6 см. Вес железы — 73 - 96 г. Поджелудочная железа расположена забрюшинно, позади желудка. Железа находится над малой кривизной, лежит впереди позвоночника, покрывая аорту в виде поперечного валика. Головка поджелудочной железы выполняет подкову 12перстной кишки, а ее тело и хвост, перекинутые через нижнюю полую вену, позвоночный столб и аорту, простираются к селезенке на уровне I—III поясничных позвонков. В теле железы дифференцируют передневерхнюю, передненижнюю и заднюю поверхности.

Проекция тела на переднюю брюшную стенку находится посередине между мечевидным отростком и пупком. Хвостовая часть поджелудочной железы проходит над левой почкой. Позади головки расположены нижняя полая и воротная вены, сосуды правой почки; сосуды левой почки несколько прикрыты телом и хвостовой частью железы. В 12перстную кишку впадает добавочный панкреатический проток. Вдоль всей железы располагается главный панкреатический проток. Он идет центрально. Длина протока - 14 до 19 см, диаметр в области тела — от 1,4 до 2,6 мм, в области головки до места слияния с общим желчным протоком — от 3,0-3,6 мм.

На всем протяжении главный проток принимает от 22 до 74 протоков первого порядка. Добавочный панкреатический проток расположен в головке железы. Он формируется из междольковых протоков нижней половины головки и крючкообразного отростка. Добавочный проток не имеет самостоятельного выхода в кишку. Передняя поверхность поджелудочной железы покрыта тонким листком брюшины. Фиксация поджелудочной железы осуществляется четырьмя связками, представляющими собой складки брюшины. По гистологическому строению поджелудочная железа представляет собой сложную трубчато-альвеолярную железу.

Железистая ткань состоит из долек неправильной формы, клетки которых вырабатывают панкреатический сок, и из скопления особых клеток округлой формы — островков Лангерганса, продуцирующих гормоны. Железистые клетки имеют коническую форму, содержат ядро, которое делит клетку на две части: широкую базальную и коническую апикальную. После выделения секрета апикальная зона резко уменьшается, вся клетка также уменьшается в объеме и хорошо отграничивается от соседних клеток. Физиология поджелудочной железы Поджелудочная железа является железой внешней и внутренней секреции; она продуцирует панкреатический сок, играющий значительную роль в процессе пищеварения и обмена. В сутки железа выделяет 1000-4000 мл панкреатического сока; он имеет щелочную реакцию рН 8,71-8,98. В его состав входят ферменты, расщепляющие белки, жиры и углеводы, а также вода, электролиты и гидрокарбонат. Удельный вес панкреатического сока колеблется в зависимости от концентрации.

Механизм панкреатической секреции — нейрогуморальный. Нервная система оказывает на железу прямое и опосредованное действие. Активизировать секрецию, по И. Павлову 1902 , удается путем стимуляции блуждающих нервов прямое действие. Опосредованное влияние нервной системы осуществляется через механизмы регуляции высвобождения гастрина. Парасимпатическая нервная система стимулирует, а симпатическая угнетает деятельность железы. Отчетливое повышение секреции ферментов вызывают метахолин, ацетилхолин.

При раздражении волокон симпатической нервной системы наблюдается резкое сужение кровеносных сосудов железы, что сопровождается снижением ее экзокринной функции. Эндокринная функция поджелудочной железы связана с деятельностью островков Лангерганса, клетки которых выделяют в кровь инсулин бета-клетки , глюкагон альфа-клетки , соматостатин дельта-клетки. Инсулин — белковый гормон. Образуется из проинсулина под влиянием протеаз. Превращение проинсулина в активный гормон инсулин происходит в бета-клетках. Всасывание углеводов с последующей гипергликемией - стимул для его выделения. Проявлением его отсутствия - повышение уровня сахара в крови.

Регуляция секреции инсулина осуществляется симпатической и парасимпатической нервной системой, а также под влиянием полипептидов, вырабатывающихся в ЖКТ. Инсулин — анаболик с широким спектром действия. Его роль — повышение синтеза углеводов, жиров и белков; стимулирует метаболизм глюкозы, увеличивает проникновение для глюкозы клеток миокарда, скелетных мышц, что способствует большому току глюкозы внутрь клетки. Инсулин снижает уровень глюкозы в крови, стимулирует синтез гликогена в печени, влияет на обмен жиров. При недостатке инсулина или изменения его активности содержание глюкозы в крови резко возрастает, что может привести к сахарному диабету. Глюкагон — полипептид, выделяется в период голодания. Может вырабатываться и в кишечнике в виде энтероглюкагона.

Способствует поступлению в кровь глюкозы из запасов гликогена в печени, глюкогенезу в печени. Регуляция секреции глюкагона осуществляется при помощи рецепторов глюкозы в гипоталамусе, которые определяют снижение уровня глюкозы в крови. В эту цепь взаимодействий включаются гормон роста, соматостатин, энтероглюкагон, симпатическая нервная система. Основной эффект глюкагона — усиление метаболизма в печени, расщепление гликогена до глюкозы и выделение её в кровь. Глюкагон — синергист адреналина. Высокий уровень глюкагона в крови вызывает развитие гипогликемических состояний. Половые железы.

Половые железы семенники у мужчин, яичники у женщин относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые поступают в кровь. Яичко у мужчин и яичники у женщин кроме половых клеток вырабатывают и выделяют в кровь половые гормоны, под влиянием которых происходит формирование вторичных половых признаков. Мужские половые гормоны — андрогены образуются в интерстициальных клетках семенников, располагаются в рыхлой соединительной ткани между извитыми семенными канальцами, рядом с кровеносными и лимфатическими сосудами. Интерстициальные эндокриноциты яичка выделяют мужской половой гормон тестостерон. Различают два вида андрогенов — тестостерон и андростерон. Андрогены стимулируют рост и развитие полового аппарата, мужских половых признаков и появление половых рефлексов. Контролируют процесс созревания сперматозоидов, способствуют сохранению их двигательной активности, проявлению полового инстинкта и половых поведенческих реакций, увеличивают образование белка, особенно в мышцах, уменьшают содержание жира в организме.

При недостаточном количестве андрогена в организме нарушаются процессы торможения в коре больших полушарий. Женские половые железы — яичники. Женские половые гормоны образуются в яичниках. Яичники вырабатывают половые гормоны — эстроген, гонадотропин, прогестерон. Место образования эстрогена фолликулина и гонадотропина — зернистый слой созревающих фолликулов, а также интерстициальные клетки яичника. Эстрогены стимулируют рост матки, влагалища, труб, вызывают разрастание эндометрия, способствуют развитию вторичных женских половых признаков, проявлению половых рефлексов, усиливают сократительную способность матки, повышают ее чувствительность к окситоцину, стимулируют рост и развитие молочных желез. Прогестерон обеспечивает процесс нормального протекания беременности, способствует разрастанию слизистой эндометрия, имплантации оплодотворенной яйцеклетки в эндометрий, тормозит сократительную способность матки, уменьшает ее чувствительность к окситоцину, тормозит созревание и овуляцию фолликула за счет угнетения образования лютропина гипофиза.

Гонадотропин угнетает рост и развитие половых клеток. Под влиянием фолликулостимулирующего и лютеинизирующего гормонов гипофиза происходит рост фолликулов и активизация интерстициальных клеток. Лютеинизирующий гормон вызывает овуляцию и образование жёлтого тела, клетки которого вырабатывают гормон яичника прогестерон. Образование половых гормонов находится под влиянием гонадотропных гормонов гипофиза и пролактина. У мужчин гонадотропный гормон способствует созреванию сперматозоидов, у женщин — росту и развитию фолликула. Лютропин определяет выработку женских и мужских половых гормонов, овуляцию и образование желтого тела. Пролактин стимулирует выработку прогестерона.

Нервная система принимает участие в регуляции активности половых желез за счет образования в гипофизе гонадотропных гормонов. ЦНС регулирует протекание полового акта. При изменении функционального состояния ЦНС могут произойти нарушение полового цикла и даже его прекращение Плацента — уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух групп: белковые — хорионический гонадотропин ХГ , плацентарный лактогенный гормон ПЛГ , релаксин; стероидные — прогестерон, эстрогены. Вилочковая железа. Парный дольчатый орган, расположенный в верхнем отделе переднего средостения.

Состоит из двух долей неодинаковой величины, соединенных между собой прослойкой соединительной ткани. В средней части доли соприкасаются или срастаются. Снаружи железа покрыта тонкой соединительнотканной капсулой, от которой внутрь отходят перегородки, разделяющие паренхиму на дольки. Паренхима долек представлена периферической частью — тёмным корковым веществом, и центральной светлой частью — мозговым веществом. Клетки железы представлены лимфоцитами тимоциты , макрофагами, гранулоцитами и плазматическими клетками. В мозговом веществе находятся специфические тельца тимуса тельца Гассаля , которые состоят из уплощённых эпителиальных клеток. Иннервация тимуса осуществляется парасимпатическими блуждающими и симпатическими нервами, берущими начало от нижнего шейного и верхнего грудного симпатического ганглиев.

Вилочковая железа образует гормоны: тимозин, гомво-статический тимусный гормон, тимопоэтин I, тимопоэтин II и тимусный гуморальный фактор. Все они являются полипептидами.

Нервные импульсы поступают непосредственно к железам по 1) аксонам…

2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь. 2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. Рецептор преобразует раздражение в нервный импульс, который достигает тела нервной клетки. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов. Нервные импульсы поступают непосредственно к железам по 1) аксонам.

Нервные импульсы поступают непосредственно

Такое высокое содержание липидов отличает миелин от других биологических мембран. Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм расстояние между перехватами Ранвье прямо пропорционально толщине аксона. В связи с тем что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведет к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5 — 10 раз быстрее, чем по безмиелиновым. Благодаря наличию миелиновой оболочки и совершенству метаболизма на всем протяжении мембраны в покое поддерживается одинаковый заряд, который быстро восстанавливается после прохождения возбуждения. Цвет миелинизированных нейронов белый, отсюда название «белого вещества» мозга. Безмиелиновые волокна изолированы по другой схеме.

Несколько аксонов частично погружены в изолирующую шванновскую клетку, которая не смыкается вокруг них до конца. Возбуждение постепенно охватывает соседние участки мембраны и так распространяется до конца аксона с постепенным ослаблением т. Свернуть Место нейрона, от которого начинается аксон, называется аксонным холмиком. Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Аксон, выходя из сомы клетки, постепенно утончается и может давать ответвления — коллатерали. Функция аксона — передача нервного импульса к аксонным терминалиям. В месте отхождения коллатерали импульс «дублируется» и распространяется как по основному ходу — аксону, так и по коллатералям.

В конце аксона имеются синаптичекие окончания — аксонные терминалии. В цитоплазме аксона отсутствует ЭПС и аппарат Гольджи.

Чувствительный нейрон. Передает информацию в ЦНС. Вставочный нейрон. Распространяет информацию по звеньям. Исполнительный нейрон. Передает импульс к нужному органу или железе. Рефлекторная дуга отвечает не только за возбуждение импульса, но и за его торможение. Нервная ткань.

Проводимость — это свойство, которое передает информацию по клеткам ткани. Возбуждения передаются по чувствительным волокнам в мышцах, затем по двигательным волокнам скелетных мышц. Прохождение нервных импульсов Нервы передают друг другу кодированную информацию. Это называется возбуждением. Мембрана нервной клетки покрыта двойным липидным слоем, содержит ионы калия и натрия, фермент АТФ-азу.

Он обеспечивает быструю реакцию в виде движения мышц либо другого ответа на раздражитель. Также нервная система регулирует работу эндокринной системы, контролируя интенсивность выработки гормонов. Эндокринная система — совокупность желез, которые выделяют гормоны в кровь. К ней относятся гипоталамус, гипофиз, а также периферические железы: щитовидная, поджелудочная, половые, надпочечники. Гормоны — биологически активные вещества, которые соединяются с клетками различных органов и могут изменять их работу, ускорять или замедлять биохимические процессы в организме. Чтобы понимать, какая нервная система регулирует работу эндокринной системы, нужно отследить взаимосвязь. Она носит название «нейроэндокринная регуляция» и заключается в контроле выработки гормонов эндокринными железами. Этот процесс обеспечивается благодаря работе нескольких структур: гипоталамуса, гормонами-нейромедиаторами, а также мозговым слоем надпочечников. Роль гипоталамуса Гипоталамус — небольшой участок промежуточного мозга, который считается центром нейроэндокринной регуляции. Он связан с другими отделами нервной системы, головным и спинным мозгом.

Тесты 34-01. Какой элемент соматической рефлекторной дуги полностью расположен в спинном мозге? А двигательный нейрон.

Задание №9 ОГЭ по Биологии

Слайд 6 Нервные импульсы поступают непосредственно к железам по. Войти Регистрация. Биология. Нервные импульсы поступают непосредственно. Нервные импульсы поступают непосредственно к мышцам и железам по 1)аксонам вставочных нейронов 2)аксонам двигательных нейронов 3)белому веществу спинного мозга 4)серому веществу спинного мозга. ответ: 7. чем питается кит? 1) планктоном 2) придонными организмами 3) крупными рыбами 4)морскими млекопитающими 8. нервные импульсы, 919107520220418, Відповідь:Тіршіліктің пайда болуының алғышарттарыҒылыми деректер бойынша Күн жүйесіне жататын Жер.

Похожие новости:

Оцените статью
Добавить комментарий