Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины. — узнаете, как ИИ меняет рынок здравоохранения и фармацевтики; — разберете реальные кейсы применения Data Science в медицине и познакомитесь с прикладным анализом данных; — поймете с чего начать карьеру в HealthTech.
Будущее рядом: как нас будет лечить искусственный интеллект?
В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды.
Роман Душкин: «Медицина — это область доверия»
Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист. Чтобы пациенты не использовали технологии себе во вред и не занимались самолечением, существует Всероссийский свод этических правил применения искусственного интеллекта в медицине. Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз. Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема. Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону. Понятно, что нельзя просто прийти к врачу и показать часы, которые, например, сообщили о плохой динамике сердцебиения. Пациенту в любом случае назначат комплексное обследование, прежде чем делать выводы о возможной патологии. Контроль на законодательном уровне Фонд «Сколково» принял участие в разработке норм регулирования применения ИИ в медицине и оказал экспертную поддержку — софт, необходимый для врачебной практики, может попасть в систему здравоохранения только после обязательной регистрации.
Это означает, что перед этим он пройдет ряд проверок и испытаний. В рамках системы контроля также установлены определенные классы риска ПО, присвоение которых зависит от данных и решений, принимающихся ИИ. Самый низкий класс — это учетные медицинские системы, которые никак не влияют на пациента. Максимально высокий класс — это ПО, от которого зависит жизнь человека. Например, есть софт, который отправляет сигналы на имплантированный кардиостимулятор. Зарегистрировать такое ПО можно по истечению нескольких лет клинических исследований. Впервые регистрация продукта на основе ИИ произошла летом 2020 года. Уже в 2021 года пять наших резидентов получили регистрационные удостоверения Росздравнадзора.
Этот момент можно считать отправной точкой, когда регистрация софта вошла в практику.
Благодаря современным инновационным решениям рамки возможностей в медицине постоянно расширяются. Сегодня искусственный интеллект позволяет выявить опасные заболевания на самых ранних этапах, создавать оптимальные схемы терапии, сводить к минимуму вероятность ошибок в лабораторной диагностике и даже делать хирургические операции. Точные результаты Рынок ИИ в медицине достаточно активно рос в последние годы, однако с 2022—го из—за санкций возникли трудности с дальнейшим использованием технологий западных производителей. Впрочем, эта проблема достаточно быстро решилась: на рынок вышли отечественные разработки и, по оценке Анны Соломахиной, основателя Школы медицинского бизнеса, многие из них не уступают иностранным аналогам. Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики. Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта.
С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные.
По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга. Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс.
Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН. Российские роботы—хирурги смогут делать операции в брюшной полости, в области гинекологии и урологии, а также в сфере нейро— и кардиохирургии. Одним из ключевых преимуществ отечественной разработки станет её стоимость: она примерно в 3 раза ниже американской, благодаря чему операции войдут в программы ОМС и будут бесплатны для пациентов. Роботизированные системы в медицине, несомненно, с каждым годом будут всё активнее применяться.
Однако пока есть ряд факторов, которые сдерживают развитие рынка автоматизированной медицины. По мнению Дениса Банного, одними из ключевых являются большие финансовые затраты на покупку оборудования и эксплуатационные расходы, а также расходы на обучение персонала. Со временем этот вопрос будет решён.
К примеру, IBM Watson для лечения онкологии проанализировала 30 миллиардов снимков, и помогает врачам выбирать оптимальные методы лечения рака на основе анализа огромного объема медицинских данных. Стартап Healx использует ИИ для сопоставления лекарств, прошедших клинические испытания, с редкими заболеваниями, которые они могли бы лечить. Arterys использовала облачные вычисления для предоставления изображений 4D Flow больничным радиологам через веб-браузер, что позволяет им принимать жизненно важные решения о лечении. Компания Thymia, основанная в 2020 году, разработала видеоигру на основе искусственного интеллекта, которая призвана обеспечить более быструю, точную и объективную оценку психического здоровья.
Алгоритмы ИИ способны анализировать большие объемы данных о здоровье населения, включая информацию из социальных сетей, новостных порталов и официальных статистических данных, для прогнозирования возможных вспышек болезней и эпидемий. Это позволяет государственным органам заранее подготовиться к возможным эпидемиям. В России работает цифровой сервис диагностики MDDC, основанный на алгоритмах нейросети: он помогает выявлять минимальные новообразования в легких менее 4 мм , а также диагностировать рак на ранней стадии. В исследовании Journal of the National Cancer Institute ученые использовали ИИ для анализа маммограмм более чем 26 000 женщин. В целом, ранняя диагностика и прогнозирование с использованием ИИ открывает новые горизонты для медицинской науки, делая возможным профилактику и оперативное лечение многих заболеваний на самых ранних стадиях. Персонализированное лечение на основе искусственного интеллекта ИИ играет важную роль в разработке персонализированных планов лечения, основанных на индивидуальных характеристиках пациента. В хирургии, роботизированные системы и ИИ уже помогают хирургам в проведении сложных операций с большей точностью и меньшими рисками для пациента.
В операционной ИИ может анализировать данные в реальном времени, предоставляя хирургам ценную информацию, которая помогает в принятии решений во время операций. Другое интересное направление - персонализированная терапия на основе генетической информации: при участии ИИ медицинские учреждения могут создавать индивидуализированные планы лечения, используя генетическую информацию пациента. Это может помочь в создании более эффективных и безопасных терапевтических планов лечения, минимизируя побочные эффекты и увеличивая шансы на успешное лечение.
«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
Есть видеоаналитика, которая используется в медицинских организациях, есть решения в диагностике. Ну, разумеется, хотелось бы больше, если открываются подобные возможности. О том в каких областях медицины уже сейчас искусственный интеллект максимально точен и уже абсолютно необходим разговор в программе «Утро России» с заместителем министра здравоохранения Российской Федерации Павлом Пугачевым.
DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии.
Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний.
Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки. AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом.
Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика?
И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года.
Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии.
Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте.
Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение.
Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил. То есть в ней была база знаний, правила вывода, семантические сети. При поиске решения применялось нечёткое сопоставление то есть правила нечёткой логики. Я всегда мог объяснить врачам, почему система, основываясь на наблюдениях за состоянием пациента, сообщала о вероятности того или иного диагноза. Говоря научным языком, «Джейн» относилась к объяснимому искусственному интеллекту.
Росстандарт принял первый в нашей стране ГОСТ по этой теме только несколько месяцев назад. К его созданию имел отношение Технический комитет по стандартизации ТК 164 «Искусственный интеллект», в работе которого я участвую. Новая серия стандартов «Системы искусственного интеллекта в клинической медицине» начала действовать с 1 марта 2022 года. ГОСТ был разработан под руководством Научно-практического клинического центра диагностики и телемедицинских технологий Департамента здравоохранения города Москвы. Раньше ИИ в российской медицине находился, по сути, в серой зоне.
Главное — современные цифровые технологии реально спасают жизни и радикально повышают качество лечения людей. Мы убедились в этом на примере внедрения искусственного интеллекта в работу службы лучевой диагностики", — заявил Собянин. Он напомнил, что анализируя снимки КТ, МРТ, маммографию или рентген, компьютерное зрение распознает 37 разных заболеваний, включая рак легких, пневмонию, остеопороз, ишемическую болезнь сердца, инсульт и другие. Ранее заммэра Москвы по вопросам социального развития Анастасия Ракова рассказала , что ИИ поможет столичным врачам определять патологии шейного отдела позвоночника. По словам заммэра, алгоритмы ИИ позволяют увеличить скорость диагностики указанных заболеваний.
VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Всемирная организация здравоохранения (ВОЗ) призывает в вопросах медицины относиться к «познаниям» созданных искусственным интеллектом больших языковых моделей «с осторожностью». Технологии на базе искусственного интеллекта становятся все более востребованными в медицине и здравоохранении. В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ. Также в указанном перечне присутствуют: программный модуль для анализа флюорограмм и рентгенограмм грудной клетки человека, система для диагностики ковида, нейросеть для анализа маммографии, нейросеть для определения продольного плоскостопия, системы для принятия врачебных решений и многое другое. В России медизделия на основе искусственного интеллекта применяются во многих регионах, однако не во всех. Ситуация изменится совсем скоро: к концу этого года все субъекты РФ обязаны будут внедрить не менее одного медизделия с искусственным интеллектом в одну из централизованных подсистем государственной информационной системы в сфере здравоохранения. Это может быть, например, подсистема ведения интегрированной электронной медицинской карты или централизованный сервис информирования о взаимодействии лекарственных средств. А в следующем году региональные медцентры обяжут отчитаться об использовании не менее трех программных решений на основе ИИ, одобренных Росздравнадзором.
Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов. У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков.
Зависимость от качества данных: эффективность ИИ во многом зависит от качества и объема входных данных. Плохие или неадекватные данные могут привести к неточным или даже опасным выводам. Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии. Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы. Кибербезопасность: поскольку ИИ, как правило, зависит от сетей передачи данных, системы ИИ подвержены рискам безопасности. Более того, ИИ может активно использоваться для атаки на многочисленные компании. Перспективы применения ИИ в медицине будущего Уже сейчас понятно, что интенсивное внедрение ИИ в медицинскую практику будет только нарастать. Возможно появление новых методов диагностики и лечения заболеваний с использованием ИИ, а также расширение областей применения роботизированной хирургии. Кроме того, ИИ может внести значительный вклад в исследования в области медицины, ускоряя процесс разработки новых лекарств и терапий. Все это в совокупности будет способствовать эволюции медицинской отрасли: Сокращение времени и затрат на исследования: ИИ может значительно сократить время и затраты на разработку новых лекарств, предсказывая потенциальную эффективность отдельных компонентов и помогая в оптимизации процессов клинических испытаний. Расширение доступа к медицинской помощи: ИИ может значительно расширить доступ к медицинской помощи, особенно в отдаленных регионах с плохой транспортной доступностью - через развитие телемедицины и дистанционного слежения за состоянием пациентов. Развитие превентивной медицины: ИИ может способствовать переходу от реактивной к превентивной модели здравоохранения, помогая в раннем выявлении рисков и предложении стратегий для предотвращения болезней, а не только их лечения.
VR для ПТСР и роботы да Винчи: как передовые технологии изменили медицину в 2023 году Сфера здравоохранения развивается семимильными шагами. Все это делает работу докторов более эффективной и результативной. В честь Международного дня врача рассказываем про передовые технологии, которые сегодня облегчают работу специалистов. Искусственный интеллект ИИ для диагностики Управляемые ИИ чат-боты — одна из самых интересных тенденций в сфере цифрового здравоохранения. Диагностические инструменты анализируют огромные объемы данных о пациенте, включая медицинские снимки, результаты анализов и истории болезни, помогая врачам ставить точные и своевременные диагнозы. Алгоритмы машинного обучения позволяют выявлять закономерности и аномалии, которые порой просто невозможно отследить невооруженным глазом. Особенно это касается обнаружения рака, диабета и сердечно-сосудистых заболеваний. Робототехника Роботизированная хирургия совершает революцию в операционной. Врачи получили возможность выполнять сложные операции с помощью автоматических систем, обеспечивающих улучшенную визуализацию и ловкость рук. Так, аппарат da Vinci, разработанный компанией Intuitive Surgical, считается одним из пионеров в данной области. Эта роботизированная платформа позволяет хирургам проводить операции с крошечными разрезами и 3D-визуализацией, сводя к минимуму травматизацию тела пациента.
Искусственный интеллект и машинное обучение в медицине
ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений. В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. нейротехнологии и технологии искусственного интеллекта. Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Нормативное регулирование искусственного интеллекта в медицине.
Искусственный интеллект в помощь врачам и пациентам
На сегодняшний момент нейросети обработали уже больше 9 млн лучевых исследований пациентов. Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью ИИ. Таким образом, был завершен первый этап внедрения в систему здравоохранения и рутинную медицинскую практику технологий компьютерного зрения. Этот инструмент помогает на основе жалоб пациента подобрать наиболее вероятные диагнозы, а врач уже решает, соглашаться ли с ними. Третий — чат-бот, собирающий жалобы пациентов на самочувствие перед посещением врача. Он опрашивает пациента и передает данные врачу. Таким образом, врач тратит меньше времени на сбор жалоб и анамнеза. Сервис был запущен в 2021 г.
И четвертый — анализ электрокардиограмм. Все взрослые поликлиники в Москве оснастили цифровыми электрокардиографами с ИИ. Как сообщала Ракова, с помощью умного помощника терапевты и врачи общей практики уже поставили более 10 млн предварительных диагнозов, из них с начала этого года — более миллиона. Сегодня умные алгоритмы доступны рентгенологам более чем 150 медицинских организаций, в том числе детских. К концу 2023 г. Недоверие и интерес бизнеса Несмотря на столь массовое внедрение ИИ в столичное здравоохранение, эксперты отмечают несколько принципиальных проблем. Первая, как это ни странно, недоверие не только пациентов, но самих врачей к нейросетям.
Об этом, в частности, говорится в докладе АНО «Цифровая экономика» — «Эффективные решения на базе ИИ в здравоохранении», который есть в распоряжении редакции. Специалисты признают и дефицит кадров, способных эффективно работать со сложными нейросетями.
Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины.
Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах.
В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии.
Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта. Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны.
Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам. В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил.
То есть в ней была база знаний, правила вывода, семантические сети. При поиске решения применялось нечёткое сопоставление то есть правила нечёткой логики. Я всегда мог объяснить врачам, почему система, основываясь на наблюдениях за состоянием пациента, сообщала о вероятности того или иного диагноза. Говоря научным языком, «Джейн» относилась к объяснимому искусственному интеллекту. Росстандарт принял первый в нашей стране ГОСТ по этой теме только несколько месяцев назад. К его созданию имел отношение Технический комитет по стандартизации ТК 164 «Искусственный интеллект», в работе которого я участвую. Новая серия стандартов «Системы искусственного интеллекта в клинической медицине» начала действовать с 1 марта 2022 года.
ГОСТ был разработан под руководством Научно-практического клинического центра диагностики и телемедицинских технологий Департамента здравоохранения города Москвы.
Он определил роль ИИ в медицине как инструмента, помогающего врачу не только в оптимизировать время на рутинные операции, но и избегать или минимизировать врачебные ошибки. Кроме того, стоит вопрос стандартизации этой технологии: ИИ потребуется признавать медицинской программой для того, чтобы работать со здоровьем населения». Участник дискуссии, доктор медицинских наук, профессор Владислав Шафалинов считает, что в ситуации с применением ИИ в существующей системе здравоохранения первичным должен быть вопрос безопасности , а уже потом — эффективности.
Важно, чтобы его использование не навредило пациентам. Несмотря на то, что ИИ сегодня является технологией будущего для здравоохранения и персонализированной медицине, важно правильно оценивать риски его применения и разделять зоны ответственности.
Во-первых, начала работу платформа ИИ Минздрава.
По словам замдиректора Департамента цифрового развития и информационных технологий Минздрава России Дмитрия Темнова, она станет инструментом, объединяющим медицинское сообщество и специалистов в области ИИ. На платформе размещаются приоритетные клинические задачи и дата-сеты для разработчиков технологий ИИ. Платформа Минздрава России призвана помочь медсообществу формулировать актуальные клинические задачи, организовывать сбор и разметку медицинских сведений, публиковать задачи и созданные под них дата-сеты.
Описания задач и дата-сетов доступны публично, доступ к дата-сетам, размещенным на платформе, получит любая российская аккредитованная IT-организация. Во-вторых, были приняты стандарты в области ИИ в здравоохранении. Напомним, в феврале 2022 года Россия приняла несколько стандартов в области ИИ в медицине.
Среди первых стандартов: «Интеллектуальные методы обработки медицинских данных. Основные положения»; «Системы ИИ в клинической медицине — программа, методика клинических испытаний»; «Стандарт управления изменениями в системах ИИ с непрерывным обучением». Разрабатывается еще более 120 стандартов.
Все это благодаря платформенному подходу. В 2019 году в Москве начался эксперимент по внедрению в систему столичного здравоохранения ИИ и цифрового зрения, старт которого пришёлся на то время, когда на мировом рынке только появились попытки обучить алгоритмы ИИ решению практических задач. Первая цель была направлена на то, чтобы опередить иностранных конкурентов, рассказал замруководителя Департамента здравоохранения Москвы Илья Тыров.
По его словам, приведены и решения для здоровой конкуренции сервисов. Так, в каждом направлении активизировано как минимум два продукта. Поддерживать высокий уровень медицинских ИИ-решений Москве помогают инвестиции.
Топ-7 прорывов в медицине в 2023 году
Важной темой дискуссий стали расхождения в результатах работы над аналогичными задачами врачей и ИИ, их выявление и корректировка, а также недостаток в публичном поле исследований эффективности тех или иных ИИ-решений. Решения на базе ИИ регионы сегодня рассматривают уже не в качестве любопытной новинки, а как еще один компонент системы здравоохранения, который должен решать конкретные задачи и обладать доказанной эффективностью. Исходя из региональных показателей, в текущем году таких кейсов станет примерно в 3 раза больше, в том числе ИИ-решений, работающих со структурированными электронными медицинскими документами СЭМД и медицинскими записями. Наша компания располагает опытом работы с большими массивами медицинских записей и документов, которые необходимы для обучения и работы моделей ИИ.
Совместные интеграционные проекты с разработчиками систем ИИ для здравоохранения и систем поддержки принятия врачебных решений уже стали важным направлением нашей работы. Наша общая задача, чтобы врач непосредственно на рабочем месте в своей медицинской информационной системе получал лучшие и самые эффективные решения.
Если на снимке не обнаружится признаков заболеваний, то заключение от нейросети автоматически появится в электронной медкарте пациента. Если же ИИ найдёт отклонение от нормы, описание поступит врачам. В этом случае пациент получит заключение специалиста в течение суток.
Среди первых стандартов: «Интеллектуальные методы обработки медицинских данных. Основные положения»; «Системы ИИ в клинической медицине — программа, методика клинических испытаний»; «Стандарт управления изменениями в системах ИИ с непрерывным обучением». Разрабатывается еще более 120 стандартов. Все это благодаря платформенному подходу. В 2019 году в Москве начался эксперимент по внедрению в систему столичного здравоохранения ИИ и цифрового зрения, старт которого пришёлся на то время, когда на мировом рынке только появились попытки обучить алгоритмы ИИ решению практических задач. Первая цель была направлена на то, чтобы опередить иностранных конкурентов, рассказал замруководителя Департамента здравоохранения Москвы Илья Тыров. По его словам, приведены и решения для здоровой конкуренции сервисов. Так, в каждом направлении активизировано как минимум два продукта. Поддерживать высокий уровень медицинских ИИ-решений Москве помогают инвестиции. Так, в 2020-2022 годах на апробацию решений в рамках эксперимента выделено 900 млн рублей. По словам Ильи Тырова, ИИ в московском здравоохранении используется для поддержки решений в диагностике. Например, цифровое зрение применяется в радиологии, ИИ помогает в расшифровке ЭКГ, также пилотируется аналитика патоморфологических исследований. К тому же ИИ автоматизирует рутинные процессы. Так, чат-бот принимает жалобы пациентов, видеоаналитика в медорганизациях следит за сервисом, а технологии распознавания речи переводят речь медработника в текст. Ключевые достижения цифровых платформ базируются на данных В 40 раз с 2019 года вырос объем медицинских данных, ежедневно регистрируемых в Федеральном реестре электронных медицинских документов. Эта информация доступна для машинной обработки, что способствует целям развития ИИ в здравоохранении, полагает Дмитрий Темнов.
Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных.
Для чего в российских регионах используют ИИ в медицине
Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ. В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении. Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении?