Сбор данных и искусственный интеллект в медицине.
Нейросеть для медиков: искусственный интеллект научился ставить диагнозы
ВЗГЛЯД / Эксперт объяснил провал искусственного интеллекта в медицине :: Новости дня | В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. |
Платформа ИИ Минздрав | Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. |
Искусственный интеллект в клинической медицине | Новый Элемент | Сценарии применения искусственного интеллекта в медицине. |
AI-платформа для анализа медицинских изображений
Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. "Искусственный интеллект, даже какой-то удачный вариант его изобретения и внедрения, может повести себя неконтролируемо в чем-то. Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей. Искусственный интеллект становится незаменимым помощником медиков, технологии его применения меняют подходы к оказанию медицинской помощи. Попробуем проанализировать, как решения на основе искусственного интеллекта применяются в медицинских учреждениях и как они влияют на качество диагностики и лечения. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов.
Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
Далее, данные обрабатываются и подготавливаются для обучения нейросети. Процесс может включать в себя удаление несущественной информации, нормализацию и стандартизацию данных. Затем, выбирается подходящая нейросетевая архитектура и проводится обучение. Этот этап включает в себя передачу данных через различные слои нейросети, где каждый слой проходит через процесс вычисления, используя свои веса и функции активации, для получения вывода. Обучение происходит при помощи алгоритмов обратного распространения ошибки, которые корректируют веса нейронов в соответствии с приближением к оптимальным значениям функции ошибки. После обучения нейросеть тестируется на тестовых данных, чтобы определить точность ее работы.
При достаточно высоких показателях, она может быть использована для анализа новых данных пациентов и предоставления рекомендаций врачам. Развитие ИИ-медицины в России Как и во всем мире, в России существуют различные проекты и инициативы, связанные с использованием искусственного интеллекта в медицине. Некоторые из них уже демонстрируют успешные результаты в областях, таких как диагностика и алгоритмизация лечения. Однако, можно сказать, что в целом Россия не является лидером в развитии ИИ-медицины в мире. Ведущие страны, такие как США и Китай, вкладывают большие ресурсы исследований и разработок в эту область.
В России важным фактором сдерживания развития ИИ-медицины, является недостаток финансирования, ограниченный доступ к высокотехнологичному оборудованию, а также недостаточная масштабность проектов. Тем не менее, Россия продолжает развивать эту сферу и прилагает усилия для преодоления препятствий. Вместе с тем, нужно отметить, что эта область относительно новая и ее развитие может занять много времени и усилий. Риски использования ИИ и нейросетей в области здравоохранения ИИ может «подсказать» неправильный диагноз, особенно если модель была обучена на неполных или неточных данных.
Только в США от этого заболевания сейчас страдают до 100 тыс. Без лечения оно способно свести пациента в могилу в течение 2-5 лет. Применяемые на сегодняшний день лекарства преимущественно нацелены на замедление развития заболевания, но нередко дают крайне неприятные побочные эффекты. Фото: ru.
Цифровизация По словам Жаворонкова, когда компания создавалась, ее основатели сразу же сосредоточились на алгоритмах — на разработке технологии, способной самостоятельно обнаруживать и конструировать новые молекулы. Но мы поняли, что для адекватной проверки нашей ИИ-платформы необходимо не только создать новые препараты с новым механизмом действия, но и довести их до клинической проверки.
С сервисами записи ЕМИАС интегрирован чат-бот, который «опрашивает» пациента о жалобах на самочувствие до приема, а результаты врач увидит сразу в протоколе осмотра. Наиболее масштабный проект — применение компьютерного зрения в лучевой диагностике. Более 50 ИИ-сервисов по 29 клиническим направлениям обрабатывают в потоковом режиме медицинские снимки, оконтуривают выявленные патологии, проводят рутинные измерения, в том числе сложные, на которые у врача уходит много времени, а также готовят проект заключения.
В арсенале столичных рентгенологов сегодня 6 комплексных сервисов для анализа КТ органов грудной клетки, органов брюшной полости. Такие сервисы в рамках одного исследования выявляют сразу несколько патологий и формируют заключение. Всего в рамках проекта ИИ-сервисы проанализировали уже 12 миллионов лучевых исследований. Более того, если раньше ИИ-решения в медицине рассматривались в первую очередь как системы поддержки принятия врачебных решений, то сегодня мы делаем первые шаги в сторону системной автоматизации производственных процессов. Так, на базе эксперимента технологии ИИ достигли того уровня зрелости, когда мы начинаем «делегировать» искусственному интеллекту отдельные диагностические задачи.
В этом году мы запускаем пилотный проект в рамках территориальной программы обязательного медицинского страхования по применению ИИ в автономном режиме, без участия врача — для проекционных методов исследований, флюорографии и рентгенографии органов грудной клетки. ИИ будет сортировать все исследования взрослых пациентов, сделанные в поликлиниках, на те, где достоверно отсутствует патология, и те, где есть признаки заболевания. Для первых ИИ будет самостоятельно формировать заключение в виде электронной медицинской записи в ЭМК, а вторые — направлять на описание врачу. При этом характерная особенность профилактических исследований, таких как флюорография, — низкая доля исследований с патологическими признаками. Это решение позволит перенаправить время врача на более сложные виды исследований, где действительно требуется врачебная экспертиза.
По итогам пилотного проекта мы сможем достоверно оценить безопасность применения автономного ИИ для пациентов. Первыми шагами в развитии персональных ассистентов врача стал диагностический ассистент врачей-терапевтов и врачей общей практики для постановки предварительного диагноза. Сервис был внедрен в 2020 году, на основе анализа жалоб пациента он предлагает топ-3 диагноза. К выбранному диагнозу врачу предлагаются пакетные назначения. Такой «синтез» искусственного и естественного интеллекта.
В этом году внедрен диагностический ассистент при постановке заключительного диагноза во взрослых поликлиниках. Сервис анализирует данные ЭМК пациента за последние два года и сигнализирует врачу, если мнения с ИИ разошлись. В обоих случаях ИИ выступает помощником, окончательное решение остается за врачом. Вся информация, все снимки, загруженные в электронную медицинскую карту пациента, могут стать частью «обучающей программы» для искусственного интеллекта. ИИ не нужен отдых, сон, он не болеет и не устает.
Поэтому в алгоритмизированных задачах он может превзойти человека. Как калькулятор, автоматическая линейка. Это продвинутые математические системы, способные мгновенно или за считаные минуты обрабатывать данные и выдавать стабильно точный результат.
В ближайшие годы планируется превратить искусственный интеллект в базовую медицинскую технологию. В результате не только у терапевтов, но и у других московских врачей появятся цифровые помощники, которые смогут подсказывать оптимальную тактику лечения пациентов. Помимо этого, исчезнет рутинная бумажная работа — медицинская информация будет регистрироваться и обрабатываться исключительно в цифровой среде, врачи смогут больше времени уделять задачам, где действительно необходимы их компетенции. Кроме того, планируется внедрить проактивный подход, в рамках которого искусственный интеллект будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний. Задача врача в этом случае — инициативная работа с пациентом: позвонить, пригласить на прием, порекомендовать различные формы профилактики заболеваний. Обычной практикой станет телемедицина.
Искусственный интеллект в медицине — не конкурент, но помощник
Доктор нейросеть: что умеет искусственный интеллект в медицине - Ведомости.Город | Сценарии применения искусственного интеллекта в медицине. |
Топ-7 прорывов в медицине в 2023 году | Искусственный интеллект на службе отечественной медицины. Петербургские врачи освоили инновационную методику, она позволяет ставить диагноз в случаях, когда однозначно определить причину болезни данные не позволяют. |
Искусственный интеллект в медицине. Настоящее и будущее | Образовательная социальная сеть | Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. |
Искусственный интеллект в сфере здравоохранения — Википедия | Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины |
Применение искусственного интеллекта в московском здравоохранении
По прогнозу генерального директора Ассоциации разработчиков и пользователей систем искусственного интеллекта в медицине «Национальная база медицинских знаний» Бориса Зингермана, ИИ будет активно закрывать ниши, в которых не хватает квалифицированных. "Искусственный интеллект, даже какой-то удачный вариант его изобретения и внедрения, может повести себя неконтролируемо в чем-то. Искусственный интеллект (ИИ), безусловно, главная инновация XXI века, обладающая колоссальным значением для общества. Возможности нейросетей и искусственного интеллекта активно тестируют в самых разных отраслях медицины: от диагностики и профилактики болезней до вирусологии и генетики. В частности, Всемирная организация здравоохранения указала на негативные последствия применения искусственного интеллекта в медицине, если в основе его разработки и использования не будут заложены этические принципы и защита прав человека.
Собянин сообщил, что в Москве ИИ станет базовой медицинской технологией
Применение ИИ в клинической медицине ИИ может работать непрерывно, что позволяет обеспечить более эффективное использование медицинского персонала и ресурсов. Системы искусственного интеллекта могут учиться на основе накопленного опыта и становиться все более точными и эффективными с течением времени. Регулярно расширяемые базы данных для обучения моделей ИИ позволяют повышать точность подобных систем. В современной клинической медицине системы искусственного интеллекта находят применение во многих областях. Одной из них является диагностика заболеваний. Системы ИИ могут анализировать медицинские изображения например, снимки рентгена, МРТ, КТ , выявлять аномалии и помогать врачам в постановке диагноза.
Специалисты получат надежных цифровых помощников, уйдет в прошлое бумажная рутина, врачи будут пользоваться проактивным подходом, когда нейросети будут подсвечивать риски возникновения у пациентов различных болезней. Также в ближайшем будущем обычной практикой станет телемедицина.
Большинство проблем со здоровьем пациенты смогут решать без личного посещения врача. Работы много, но все поставленные нами цели — абсолютно конкретны и достижимы», — подытожил Собянин.
Чтобы получить одобрение Минздрава РФ , пришлось подготовить убедительную аргументацию о необходимости данной разработки, обосновать для чиновников ценность таких устройств. Эти приборы в итоге были одобрены, что позволило использовать их в борьбе с тяжёлыми патологиями и рядом иных острых заболеваний. Фактически, внедрение таких аппаратов ежедневно демонстрирует преимущества использования искусственного интеллекта в сфере здравоохранения, позволяя сокращать влияние человеческого фактора на диагностику и лечение, и, соответственно, снижать количество врачебных ошибок. А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны. Что, конечно же, особенно актуально в последние два года, когда идёт борьба с коронавирусом.
Это стало очевидно уже в 2020 году, и касалось не только напрямую сферы медицины, но и смежных областей. Стали очевидны такие проблемы, которые в обычной обстановке и со стандартной нагрузкой не так бросались в глаза. И в то же время пандемия стала наиболее эффективным стимулом для развития и внедрения инновационных методов решения различных задач. Разумеется, максимум внимания в исследовательской работе стало уделяться таким направлениям, которые целиком либо в какой-то мере были направлены на борьбу с пандемией, на снижение нагрузки врачей, на оптимизацию здравоохранения. И, конечно же, отдельно стоит упомянуть разработки, нацеленные на предиктивную аналитику и моделирование сценариев развития событий с учётом вероятности возникновения иных эпидемий.
AI для комбинационной терапии раковых больных с помощью искусственного интеллекта.
Уже во время первого тестирования система показала свою эффективность. Для пациента с прогрессирующим раком простаты система рассчитывала индивидуальную комбинацию препаратов на протяжении всего курса лечения. Как результат — рост опухоли значительно замедлился, а затем болезнь и вовсе перешла в стадию ремиссии. При этом дозировки препаратов были практически в два раза меньше, чем при стандартной терапии таких случаев. Персонализация терапии открывает невообразимые возможности для медицины. При наличии достаточного количества данных нейросети и другие методы машинного обучения могут помочь не только оперативно решать задачу оптимизации дозы, но и подбирать комбинации препаратов для повышения эффективности лечения, определять наиболее результативную тактику лечения и предотвращать критические состояния пациента уже на самых ранних стадиях.
Подобные системы уже используются для контроля состояний пациентов и сбора долговременных медицинских данных, но со временем они будут все сильнее интегрированы в отрасль здравоохранения. Важно отметить, что в последние годы всё больше внимания привлекают именно методы профилактики и ранней диагностики заболеваний. Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. Нейросети и другие методы машинного обучения уже сегодня помогают создавать новые лекарства, исследовать болезни, мониторить состояние пациентов. Пока что их внедряют только крупные исследовательские центры и самые передовые клиники, но их влияние на медицину уже огромно. Сейчас идет активное развитие нейросетей в медицине — гораздо быстрее, чем можно представить.
Большинство проектов и исследований не становятся известными широкой публике и появляются только в специализированных журналах. Тем не менее, они постепенно, шаг за шагом превращают медицину сегодняшнего в медицину будущего. И скоро мы это увидим своими глазами. Читать далее:.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает. Применение искусственного интеллекта в медицине. Искусственный интеллект (ИИ) помогает врачам ставить верный диагноз и назначать нужные исследования. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. Одним из важных направлений применения искусственного интеллекта в медицине является его использование в диагностике различных заболеваний.
Искусственный интеллект в медицине и здравоохранении
Многие россияне опасаются применения ИИ в медицине. Искусственный интеллект (ИИ) применяется во многих отраслях медицины и кажется, что его преимущества по сравнению с человеком очевидны. Как искусственный интеллект создает лекарства. ИИ от фирмы Insilico Medicine носит название GENTRL. Сценарии применения искусственного интеллекта в медицине.
Искусственный интеллект в медицине — не конкурент, но помощник
Поделиться Впервые в истории на людях испытывается лекарство от смертельной болезни, разработанное ИИ. Его создал выходец из СССР Средство для лечения идиопатического легочного фиброза было создано целиком искусственным интеллектом. Сейчас оно проходит уже вторую фазу испытаний с применением плацебо. Только в США от этого заболевания сейчас страдают до 100 тыс.
Без лечения оно способно свести пациента в могилу в течение 2-5 лет. Применяемые на сегодняшний день лекарства преимущественно нацелены на замедление развития заболевания, но нередко дают крайне неприятные побочные эффекты.
Это снижает финансовую нагрузку на систему здравоохранения в целом, упрощает работу врачей и повышает продолжительность и качество жизни нас, обычных граждан», — подчеркнул директор по направлению «Цифровая трансформация отраслей и компаний» АНО «Цифровая экономика» Алексей Сидорюк. Вот лишь некоторые возможности применения технологий искусственного интеллекта ИИ в здравоохранении. Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т. Это существенно экономит время для врачей при постановке диагноза, а также повышает его точность, снижает вероятность ошибок.
Например, некоторые сервисы, помимо анализа изображений, автоматически заполняют врачебное заключение. Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить. Прогноз течения заболевания. ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами. Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах.
Это связано с большой нагрузкой на специалистов из-за нехватки медперсонала и большого количества пациентов. Применение искусственного интеллекта в медицине — это, прежде всего, помощь пациентам, своевременное выявление опасных заболеваний. ИИ может распознать симптомы онкологических патологий, туберкулеза, нарушений в работе головного мозга на ранней стадии. Ранняя диагностика — один из важных шагов для успешного выздоровления. Медицинские приложения на основе искусственного интеллекта Ada.
Мобильное приложение для оценки состояния здоровья. Человек просто отвечает на вопросы, ИИ их анализирует, ищет информацию о возможной проблеме. Затем выдает рекомендации о необходимых обследованиях и образе жизни. Есть много схожих сервисов, которые на основании анализа ответов могут указать на сахарный диабет и другие серьезные болезни. Это диалоговая платформа, на которой человек общается с виртуальным помощником.
Здесь можно проверить симптомы, получить рекомендации по уходу за собой, оценить вероятность развития различных заболеваний. Сервис будет полезен людям с хроническими заболеваниями для отслеживания состояния здоровья. После анализа приложение отправляет информацию лечащему врачу. Есть удаленный мониторинг коронавирусной инфекции. Приложение нацелено на то, чтобы построить будущее медицины при помощи ИИ.
Сервис работает более, чем в 70 странах, в клиентской базе более 790 учреждений здравоохранения. Платформа специализируется на диагностике онкологических патологий и наследственных заболеваний. На основании анализа ДНК можно получить информацию о предрасположенности к различным заболеваниям. Область применения этого сервиса — фармакогеномика. Это подбор эффективного препарата и дозировки в лечении различных заболеваний на основе анализа генетического теста.
Врачи при лечении чаще всего используют стандартные схемы медикаментозной терапии. ИИ помогает создать индивидуальный план с учетом индивидуальных особенностей пациента.
Ограничения и риски, связанные с применением ИИ в медицине Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Сюда входят вопросы конфиденциальности и безопасности данных, а также потенциальные ошибки в диагностировании или лечении, вызванные ошибками алгоритмов ИИ. Большой вопрос также представляет собой интеграция новых технологий в существующие медицинские системы и обеспечение подготовки персонала к работе с новыми инструментами. Конфиденциальность данных: с учетом того, что ИИ обрабатывает большое количество личной медицинской информации, вопросы конфиденциальности данных становятся крайне актуальными. Необходимо выработать регламент для защиты приватности пациентов. Недостаточная точность и ошибки в диагностике: в настоящее время алгоритмы ИИ могут допускать ошибки, иногда весьма серьезные, в диагностике и предсказании болезней. Это создает потенциальные риски для пациентов и требует дальнейшего усовершенствования технологий.
Зависимость от качества данных: эффективность ИИ во многом зависит от качества и объема входных данных. Плохие или неадекватные данные могут привести к неточным или даже опасным выводам. Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии. Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы. Кибербезопасность: поскольку ИИ, как правило, зависит от сетей передачи данных, системы ИИ подвержены рискам безопасности.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. Искусственный интеллект в медицине: применение, технологии, вызовы, перспективы практического внедрения. Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Инструменты искусственного интеллекта помогли обнаружить онкогенные соматические мутации и понять сложность взаимодействия генов клеток раковых опухолей. Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM.