Apple приобрела парижский стартап в области искусственного интеллекта Datakalab в рамках реализации своего проекта по развёртыванию средств ИИ с локальной обработкой данных на устройствах. Искусственный интеллект (ИИ) все активнее внедряется в различные отрасли, включая образование.
ChatGPT: почему об этом все говорят и смогут ли нейросети заменить людей?
Как обучают нейросети в Яндексе | Узнаете, что такое искусственный интеллект и нейросети. Поймете, почему их нужно осваивать именно сейчас. Составите список дел, которые сможете им делегировать уже сейчас. |
Семинар Проблемы ИИ 25.10.2023 | Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. |
Семинар Проблемы ИИ 25.10.2023
Можно послушать про «нейронный блицкриг», почему нейросети врут, как лингвисты обучают ИИ, во что искусственный интеллект превратится завтра и когда машины научатся нас понимать по-настоящему. В рабочую программу обновлённого модуля по искусственному интеллекту от Минобрнауки входят «Основы программирования на Python», «Математический анализ», «Линейная алгебра» и «Теория вероятностей и математическая статистика». » предлагает обучение по теме искусственного интеллекта в искусстве. В 2023 году не менее 1950 жителей России могут пройти обучение по программе искусственного интеллекта (ИИ).
Курсы по нейронным сетям
В Образовательном центре старшеклассники могут принять участие в IT-смене Яндекса «Алгоритмы и анализ данных» и в проектах компании для программы «Большие вызовы». В Университете студенты под руководством наставников из Яндекса работают над существующими ML-проектами, а также создают собственные разработки. О Сириус. Курсах Сириус. Курсы — это онлайн-школа дополнительного образования Центра «Сириус». В онлайн-школе доступны бесплатные курсы по математике, информатике, физике, химии, биологии, лингвистике, искусственному интеллекту. Ученики самостоятельно выстраивают индивидуальную траекторию, определяют темп и удобное время учёбы. В онлайн-школе могут учиться школьники, родители, учителя, студенты вузов и все, кто хочет изучить предмет за пределами школьной программы. Авторы курсов — учёные и популяризаторы науки, преподаватели ведущих школ и вузов страны, педагоги Образовательного центра «Сириус».
О факультете компьютерных наук Факультет компьютерных наук НИУ ВШЭ — один из ведущих образовательных и научных центров в области компьютерных наук в России.
Нейронная сеть и возможность ее обучения Ученые понимают, что для успешной работы интеллект должен быть самостоятельным. Если система функционирует как человек, то ее нужно обучать. Но как учить компьютер? Сегодня с этой целью задействуют алгоритмы обучения нейронных сетей.
Но все они основаны на одном из двух известных принципов:с наставником или без такового. Мы можем провести аналогию с процессом обучения человека: он может получать знания как самостоятельно, так и вместе с наставником. С учителем В данном случае нейросеть получает выборку из обучающих примеров. Данные поступают на «вход», после чего происходит ожидание правильного ответа на «выходе». Это ответ, который должна дать нейронная сеть.
Конечный результат сопоставляют с эталонным значением. В том случае, когда НС выдает неверный ответ, производят коррекцию, дальше процесс повторно запускают, тем самым пытаются добиться снижения процента неправильных ответов. По программе обучения нейронной системы сравнивается большое количество разнообразных понятий. С помощью этого сравнения определяется базовый уровень знаний. В терминах обучения ИИ в качестве базовых понятий используются языки программирования и инструменты для изучения языков.
Если нейросеть обучена, то она будет знать языки программирования, если нет — то нет. Без учителя Данный вид процесса обучения предполагает только ввод данных. В таком случае алгоритм изменяется, чтобы значимые и обладающие весом коэффициенты корректировались, а нейронная сеть могла по определенным параметрам схожих данных на «выходе» дать результат, который обнаруживает связи. Также во время этой операции выявляются определенные соответствия между данными. Так в ходе обучения выделяют параметры, которые свойственны моделям материала обучения, впоследствии этим модели по схожим признакам объединяют в группы.
Когда учитель полностью отсутствует, то НС выстраивает целую цепочку, которая состоит из логических решений, также образует определенное понимание, основанное на вводных данных. Такое устройство машинного обучения без учителя применимо в отношении статистических моделей. Базовый язык нейросети— это язык, на котором система будет осуществлять взаимодействие с человеком. Библиотека языков программирования — это набор операторов языка, которые будут использоваться для обработки данных, поступающих от ИИ. Способность к обучению у нейронных сетей Способность и технология обучения нейронных сетей имеет свои особенности.
Так, одним из наиболее распространенных методов считается Backpropagation, в основе которого заложен алгоритм вычисления градиентного спуска.
Так студент успешно защитил свою работу, став дипломированным специалистом. Любопытно, что сейчас 22-летний парень работает руководителем проекта по нейронным сетям в TenChat. Была мотивация разобраться в процессе, в том как это работает. Правда, после истории с Александром в РГГУ, где бывший студент успешно защитил диплом, предложили ограничить доступ к чат-боту в образовательных организациях из-за возможного негативного влияния на обучение.
Зарубежом также выступают против использования нейросетей в учебных работах. Так, например, вузы Японии выступили против данной инициативы. А университет Софии пошел еще дальше и выработал свои принципы в отношении ИИ, которые запрещают использовать чат-бот для докладов, сочинений и курсовых работ. В случае обнаружения - учеников ждет строгое наказание. А вот Московский государственный педагогический университет, напротив, разрешил своим студентам пользоваться нейросетями для подготовки итоговых работ.
Согласно исследованию проведенному образовательной онлайн-платформы Skillfactory, половина российских студентов регулярно использует нейросети для учебных целей. Решение домашних заданий с помощью нейросетей: на что обратить внимание Все чаще школьники и студенты вместо того, чтобы просиживать всю ночь в библиотеке или искать информацию в интернете, прибегают к помощи ChatGPT. Из-за этого в российском общественном пространстве ведутся споры насчет пользы нейросетей. Так, например, Национальная комиссия по этике в сфере ИИ обратилась в Минобрнауки с целью урегулировать использование нейросетей в вузах. По мнению Ивана Карлова, сейчас использование школьниками ChatGPT может повысить успеваемость, но в будущем негативно сказаться на качестве их образования.
Мы не сможем запретить школьникам и студентам использовать ИИ, и мы не должны делать вид, что их не существует, и делать все по-старому. Нужно менять образовательный процесс, типы заданий, формы работы таким образом, чтобы нейросети из инструмента академического мошенничества превратились в инструменты «усиливающего интеллекта».
После завершения первого мини-проекта и начинается настоящее изучение.
Выпускник 3-го потока курса Аспирант Физического факультета МГУ Очень интересный и модный практически-ориентированный курс. Задач для машинного обучения в моей лаборатории оказалось уйма, и не будет преувеличением сказать, что этот курс изменил нашу научную группу.
Перспективы развития и применения нейронных сетей
Курсы по нейросетям | Программа обучения по искусственному интеллекту ПРОДВИНУТЫЙ УРОВЕНЬ. |
Онлайн-интенсив «Нейросети для работы и бизнеса» | Сезон: искусственный интеллект» — самый масштабный в России проект для ИТ-специалистов. |
30 обучающих программ по нейросетям в 2024 году: платные и бесплатные курсы
нейронные сети, искусственный интеллект. Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra. Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. Искусственный интеллект (ИИ) все активнее внедряется в различные отрасли, включая образование.
Топ-10 актуальных курсов по нейросетям и искусственному интеллекту в 2024 году
ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА | Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени. |
Курсы по нейронным сетям | Нейросеть — это искусственный интеллект, который может обучаться и принимать решения, используя данные информационных баз, созданных на основе опыта и инструкций. |
Как изменится искусственный интеллект в 2024 году? | Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. |
Путешествие в мир искусственного интеллекта | Учим работе с нейросетями, применению искусственного интеллекта и новым профессиям в Вышке Онлайн. |
30 обучающих программ по нейросетям в 2024 году: платные и бесплатные курсы
Об этом новое расследование Эдуарда Петрова – "Ошибка искусственного интеллекта". Рассматриваете ли в перспективе платное обучение профессии Разработчик Искусственного Интеллекта? Искусственный интеллект Gemini от Google превзошел всех людей и нейросети в 57 науках. Процесс обучения нейросети и представляет собой такую подстройку «нейронов», чтобы научиться решать задачу и давать правильный ответ. Поскольку технологии искусственного интеллекта и машинного обучения постоянно меняются и совершенствуются, от специалистов требуется готовность непрерывно учиться и осваивать новые навыки работы с нейронными сетями.
Искусственный интеллект в образовании: перспективы и примеры использования
Учим работе с нейросетями, применению искусственного интеллекта и новым профессиям в Вышке Онлайн. Использование искусственного интеллекта (ИИ) в школах набирает обороты во всем мире, Россия не исключение. Яндекс, факультет компьютерных наук НИУ ВШЭ и запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение». Курс «Философия искусственного интеллекта» от Skillbox охватывает темы, связанные с взаимодействием ИИ и человечества. Обучение искусственного интеллекта — процесс, требующий больших ресурсов: прежде всего, вычислительных мощностей, финансовых затрат и времени.
Под присмотром искусственного интеллекта: как школы столицы используют нейросети
Использование продуктов и услуг, созданных при помощи технологий ИИ, позволит расширить возможности и результаты приоритетных отраслей национальной экономики и социальной сферы. Для достижения цели программы необходимы компетентные специалисты и визионеры, способные использовать мировой опыт в области ИИ для развития научно-технической отрасли России и создания новаторских разработок на базе отечественных цифровых технологий. По оценке Gartner, к 2025 году активное внедрение ИИ в различные отрасли экономики создаст 2 миллиона новых рабочих мест. К 2022 году каждый пятый сотрудник будет использовать технологии ИИ для решения нешаблонных задач.
Обучением и моделированием нейросетей занимаются люди. Специалистом по машинному обучению легко стать даже с минимальными знаниями математики и языка Python, знакомых еще с вуза, если знать, как выстроить процесс обучения. В этой статье рассмотрим путь специалиста по нейросетям и искусственному интеллекту, который хочет в будущем работать в этой сфере. Нейросети: с чего начать Нейросети и ИИ — это узкая специализация Data Scientist , специалиста по большим данным. Поэтому сначала нужно изучить науку о данных, а потом выходить на следующий уровень. Обучение Data Science начинается с основ: математика, статистика, математический анализ и теория вероятности.
В университете эти предметы часто оторваны от реальности, поэтому важно найти курсы, где базу дадут с примерами из задач бизнеса. Например, в GeekUniversity на факультете Искусственного интеллекта математический анализ и линейную алгебру сразу преподают с точки зрения использования методов и алгоритмов в машинном обучении. Знания ложатся в голову гораздо быстрее, если понимаешь, как будешь применять их в своей будущей работе. На курс по нейросетям лучше идти уже с небольшой базой: будет достаточно тех знаний по математике, Python и SQL, которые вы изучали самостоятельно или в университете. Курсы помогут обновить и дополнить базу, чтобы двигаться к главному — Machine Learning и работе с искусственным интеллектом.
Туда она кодирует информацию, о чём фраза, как взаимосвязаны слова. Вторая нейросеть в процессе обучения видела 330 млн изображений и текстов, связанных с ними. Предполагается, что она сформировала своё представление о мире: каким визуальным образам соответствуют те или иные слова, как устроен мир изображений, как надо рисовать. Её задача — понять из сжатого представления текста, чего от неё хотят, и создать изображение. Если данных мало или вовсе нет, решение о генерации она принимает случайным образом. То есть додумывает сама: если не указать локацию, где лежит кот, она выдаст нам его изображение, например, на диване, а может — в вакууме или на пляже. Над чем команда работает прямо сейчас? Что необходимо Шедевруму для развития? В первую очередь — над улучшением качества. Работаем над архитектурными улучшениями и анализом ошибок. Это не финальный вариант нейросети, у нас есть новые наработки и много идей. Сетка будет обновляться всегда. На этапе создания Шедеврума мы попрототипировали — и нам захотелось поделиться этим. Пользователям понравилось, поэтому у нас много мотивации двигаться дальше. В целом всегда можно улучшать качество изображений, их красоту, естественность. Есть сложные штуки вроде пальцев и лиц людей: сейчас сгенерированное изображение человека сразу видно по тому, как плохо нарисованы пальцы. Нейросеть в датасете видит руки в разных ракурсах, и где-то видно два пальца, а где-то — все пять. И поэтому она рисует что-то среднее между всеми изображениями, которые видела. Вообще, всё, что важно для людей, сложно изобразить. Это не только части тела, но и животные, знакомые людям предметы. Пока ещё нейронки делают это не идеально, но всё впереди! Как считаешь, стоит ли бояться нейросетей? И как ты сам используешь нейросети в обычной жизни? Зачем их бояться? Прогресс в масштабах человечества идёт независимо от моего мнения или мнений других людей. Это как переживать из-за погоды. Поскольку я не могу на это повлиять, считаю, что нужно возглавить процесс: больше узнавать о технологиях, изучать их, развивать и не оставаться в стороне. Я рад развитию, а благодаря большому вниманию к сфере ИИ привлекается много ресурсов и талантов.
А есть команда, которая занимается приложением. Она следит за тем, чтобы всё классно работало, было красиво, придумывает продуктовое развитие — это команда Николая. Недавно Шедеврум научился генерировать короткие видеоролики! Нейросеть создаёт видео длиной четыре секунды с частотой 24 кадра в секунду. После публикации ими можно поделиться с друзьями или сохранить в формате MP4. Чтобы получился ролик, сперва нужно описать текстом то, что хочется увидеть. В ответ приложение предложит четыре варианта первого кадра и набор анимационных эффектов для создания движения. Нейронка берёт за основу выбранное пользователем изображение, создаёт набор его изменённых версий и объединяет всё выбранным эффектом. Сейчас их семь: зум приближение , таймлапс ускоренная перемотка , полёт, панорама, вращение, подъём и морфинг постепенное изменение. А какие сотрудники тебе всегда нужны в команду? И где их найти? Вот три группы специалистов, которых я всегда жду. Machine learning research инженеры, чтобы выдвигать гипотезы, писать код по их имплементации, проверять их, читать статьи и генерировать свои идеи по улучшению нейросетей. Их главная задача — развивать область генеративных моделей, проводить нетривиальные эксперименты и исследовать новые подходы в диффузионных моделях. Их задача — писать код, чтобы всё работало. В то время как ML-инженеры разрабатывают модели обучения машин, MLOps-инженеры программируют весь цикл машинного обучения: от разработки до внедрения и поддержки. Этим специалистам должно быть интересно работать над высоконагруженными сервисами, использующими нейросети, а также развивать экосистему инструментов вокруг новейшей и динамично развивающейся области генеративных моделей. Аналитики, поскольку работа с данными критически важна. Мы ищем специалистов, чтобы улучшить данные для обучения: мы комбинируем ML- и DS-методы с ручной разметкой, пробуем разные подходы для файнтюна финальной модели, создаём инструменты для оценки качества, сравнения с конкурентами и поиска точек роста. В чём конкретно заключается твоя работа над нейросетью? Я сейчас собираю команду, которая будет работать над улучшением модели генерации. Но в основном задачи разработчиков, обучающих сеть, это: Собрать данные. Написать код, который будет это делать. Проверить, что всё верно. Принять решения исходя из знаний и интуиции. Запустить обучение. Проанализировать графики, которые показывают, хорошо работает сеть или нет. Выдвинуть новые гипотезы.
Что такое нейросети: на что способны, как работают и кому нужны
Нейронные сети, машинное обучение, новости computer vision и deep learning, задачи на python и javascript. Communications Medicine: создана система на базе нейросети для обучения молодых хирургов. Фото: Илья Питалев / РИА Новости. Искусственный интеллект (ИИ) остается одной из наиболее обсуждаемых технологий как среди экспертов, так и в российских медиа. Десятки студентов Университета искусственного интеллекта обратились в суд, чтобы вернуть свои деньги за обучение. Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом. Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом.