Разбор Демоверсии ЕГЭ по информатике 2024 | Артем Flash (26 мероприятия Excel). Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки. Объяснение решения 26 задания ЕГЭ по информатике о программной обработке целочисленной информации с использованием сортировки.
Вариант с реального ЕГЭ 2023 по информатике 11 класс задания и решения
Каталог задач по ЕГЭ - Информатика — Школково | 2019 годов, материалов по подготовке к ЕГЭ с сайта К.Ю. Полякова () и разбор задачи на youtube Т.Ф. Хирьянова (). |
ЕГЭ по информатике | Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). |
Информатика ЕГЭ 2024 | Ишимов & Шастин – Telegram | 01.05.2023ЕГЭ Задание 26АдминистраторКомментарии: 0. |
Задание 26 | ЕГЭ по информатике | ДЕМО-2024
#егэ по информатике. #решение задач на python. ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26". Задание 6 в 2023 году будет посвящено анализу алгоритма для конкретного исполнителя, определению возможных результатов работы простейших алгоритмов управления исполнителями и вычислительных алгоритмов.
ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26"
Файл с данными: 17. Задание 22 Демо-2022 Ниже на языке программирования записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа: L и M. Укажите наибольшее число x, при вводе которого алгоритм печатает сначала 4,а потом 5. Определите максимальное количество идущих подряд символов в прилагаемом файле, среди которых нет идущих подряд символов P. Для выполнения этого задания следует написать программу. Файл с данными: 24.
Пример организации исходных данных во входном файле: 3 11 9 5 23 Для указанных входных данных значением искомой суммы должно быть число 36 выбраны числа 4, 9 и 23, их сумма 36 делится на 6. В ответе укажите два числа: сначала значение искомой суммы для файла А, затем для файла B. В этой задаче нужно посчитать максимально возможную сумму, а потом подобрать такие пары, изменив выбранный элемент в которых мы добьёмся выполнения требований задачи, но при этом сумма изменится минимально. Общая идея заключается в том, что мы будем сохранять разницы между элементами, но сохранять будем их в соответствующие элементы массива только если разница минимальна.
Три нечётное число нетривиальных делителя — полный квадрат! Изображение слайда Слайд 27: 25. Готовые функции 27 Демо-2021 Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [174457; 174505], числа, имеющие ровно два различных натуральных делителя, не считая единицы и самого числа. Изображение слайда Слайд 28: 25. Divizors ; if divs. Divizors ; Изображение слайда Слайд 29: 25. Функциональный стиль 29 uses school ; 174457.. Print Lines ; 174457.. Функциональный стиль 31 10.. PrintLines ; заменить каждый элемент последовательности на список его делителей [1,2,5,10] [1,11] [1,2,3,4,6,12] [1,13] [1,2,7,14] [1,3,5,15] [1,2,4,8,16] [1,17].. Функциональный стиль 32 10.. PrintLines ; отобрать те элементы списка, где количество делителей равно 4 [1,2,5,10] [1,2,7,14] [1,3,5,15] 10 14 15 Изображение слайда Слайд 33: 25. Функциональный стиль 33 10.. PrintLines ; заменить каждый элемент списка на пару кортеж , состоящую из двух нетривиальных делителей 2,5 2,7 3,5 10 14 15 Изображение слайда Слайд 34: 25. Пример 34 Б. Изображение слайда Слайд 35: 25. Функциональный стиль 35 uses school; 194441.. Println ; x. IsPrime uses school; 194493.. Step 100. Println ;. Step 100 194493 Изображение слайда Слайд 36: 17. Пример 36 Назовём натуральное число подходящим, если ровно два из его делителей входят в список 7, 11, 13, 19. Изображение слайда Слайд 37: 25. Count, trunc selected. Average ; ord...
Count divs. Add i ; P rint primes. Count ; Время 0,3 с! Изображение слайда Слайд 12: 25. Пример 12 Б. Михлин Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [194441; 196500] простые числа, оканчивающиеся на 93. Изображение слайда Слайд 13: 25. Пример 15 Рассматриваются целые числа, принадлежащих числовому отрезку [631632; 684934], которые представляют собой произведение двух различных простых делителей. Найдите такое из этих чисел, у которого два простых делителя больше всего отличаются друг от друга. Изображение слайда Слайд 16: 25. Изображение слайда Слайд 17: 25. Divs d then begin Пара « наименьший-наибольший » имеет наибольшую разность! IsPrime d первый d всегда простой! Изображение слайда Слайд 18: 25. Add i ; Список возможных меньших простых делителей: Изображение слайда Слайд 19: 25. Изображение слайда Слайд 20: 17. Пример 20 Назовём натуральное число подходящим, если ровно два из его делителей входят в список 7, 11, 13, 19. Найдите все подходящие числа, принадлежащих отрезку [20 000; 30 000] В ответе запишите два целых числа: сначала количество, затем среднее арифметическое всех найденных чисел только целую часть. Проблемы : ровно два из его делителей входят в список среднее арифметическое всех найденных чисел сумма может быть очень велика! Изображение слайда Слайд 21: 17. Divs 13 , 1 - sign x mod 19 ; if divs. Divs 13 , 1 - sign x mod 19 ; можно по-разному! Изображение слайда Слайд 22: 25. Пример 22 Статград Найдите все натуральные числа, принадлежащие отрезку [289123456; 389123456] и имеющие ровно три нетривиальных делителя. Для каждого найденного числа запишите в ответе его наибольший нетривиальный делитель. Проблемы : долго считает… Изображение слайда Слайд 23: 25.
Структура и изменения ЕГЭ — 2024 по информатике
Отмена. Воспроизвести. Информатика ЕГЭ Умскул. Эфир, посвященный ЕГЭ по информатике, открыл финальный день онлайн-марафона Рособрнадзора «ЕГЭ – это про100!». Главная Топ видео Новости Спорт Музыка Игры Юмор Животные Авто. Примеры заданий: Задание 26 Простое задание (Решу ЕГЭ).
Разбор задания № 26 ЕГЭ по информатике
Про русский я не знаю, были ли ровно те же тексты. Мой ребенок оба эти экзамена в 1 день сдавал Anonymous Тексты были разные 3 и 4, у нас дети сверяли. Хотя ребенок писал 3, если что сказал бы Anonymous Мой 4. Повторов не было. У нас все 11 пополам поделили на 3 и 4. У всех экзаменов есть резервные дни для сдачи. Везде одинаковые варианты? Так что чушь не пишите Anonymous 25.
Дети рассказывают, что сегодня те же варианты. Которые они вчера узнали от сдававших вчера. А сама я и вчера не была, конечно, я не школьник Anonymous 25. Наши вчера писали, сказали, что сложно. Не смогли, не успели сделать все...
В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса ID , во втором столбце таблицы — время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс независимый, то в таблице указано значение 0.
Типовой пример организации данных в файле ID процесса B.
В них вы найдёте всё самое полезное для себя — теория, решения заданий и практика. Смотреть в PDF: Или прямо сейчас: cкачать в pdf файле. Дополнительные файлы к заданиям: скачать zip. Сохранить ссылку: У вас недостаточно прав для комментирования Важные обновления:.
В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Выполните следующие задания. Задание 1 в Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Укажите минимальное значение S, когда такая ситуация возможна. Задание 2 Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: Петя не может выиграть за один ход; Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанного значения S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором одновременно выполняются два условия: у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы. В узлах дерева указывайте позиции, на рёбрах рекомендуется указывать ходы. Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Задание 2 Возможное значение S: 20. В этом случае Петя, очевидно, не может выиграть первым ходом. Однако он может получить позицию 7, 20. После хода Вани может возникнуть одна из четырёх позиций: 8, 20 , 21, 20 , 7, 21 , 7, 60. В каждой из этих позиций Петя может выиграть одним ходом, утроив количество камней во второй куче. Замечание для проверяющего. Ещё одно возможное значение S для этого задания — число 13.
26 Задание | Excel | Информатика ЕГЭ
Нынешний выпуск запомнится прежде всего коронавирусом: ни последних звонков, ни выпускных. ЕГЭ с опозданием на месяц с лишним и жарой, проверкой температуры, масками с перчатками и социальной дистанцией. Когда еще такое было? Результат он показал в своем Твиттере. Нешуточная дискуссия в Сети разгорелась по поводу 23 задания по информатике.
В Интернете разыскивали счастливчиков, которые смогли его решить. Тем более, что при переводе из первичных во вторичные баллы для максимума, то есть 100, актуальны и 35, и 34 балла, то есть с учетом одного невыполненного задания. По этому поводу даже обыграли фильм про войну.
При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда целое число от 1 до 10 000 и номер позиции в ряду целое число от 1 до 10 000. Точка экрана, в которую попала хотя бы одна частица, считается светлой, точка, в которую ни одна частица не попала, — тёмной. Вам необходимо по заданному протоколу определить номер ряда с наибольшим количеством светлых точек в чётных позициях.
Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000. В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке. Запишите в ответе два целых числа: сначала наибольшее количество коробок, которое можно использовать для упаковки одного подарка, затем максимально возможную длину стороны самой маленькой коробки в таком наборе.
В них вы найдёте всё самое полезное для себя — теория, решения заданий и практика.
Хотя ребенок писал 3, если что сказал бы Anonymous Мой 4. Повторов не было. У нас все 11 пополам поделили на 3 и 4. У всех экзаменов есть резервные дни для сдачи. Везде одинаковые варианты?
Так что чушь не пишите Anonymous 25. Дети рассказывают, что сегодня те же варианты. Которые они вчера узнали от сдававших вчера. А сама я и вчера не была, конечно, я не школьник Anonymous 25. Наши вчера писали, сказали, что сложно. Не смогли, не успели сделать все...
Значит, недостаточно хорошо готовились. У моей, похоже, результат будет не очень, не все задачи решила.
Демоверсия егэ информатика 26 задание разбор
На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. 40 Информатика. ЕГЭ по информатике 2022: задание 26. Открытый банк заданий ЕГЭ. obzege.
2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia
Разбор Демоверсии ЕГЭ по информатике 2024 | Артем Flash (26 мероприятия Excel). Разбор 24 задания ЕГЭ по информатике демо 2021 и с сайта Полякова К. (21), на Pascal и PythonСкачать. Разбор 26 задания ЕГЭ по информатике 2017 года ФИПИ вариант 5 (Крылов С.С., Чуркина Т.Е.). Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике.
Особенности решения задач 25 и 26 компьютерного ЕГЭ по информатике — презентация
Определите наибольшее количество коробок, которое можно использовать для упаковки одного подарка, и максимально возможную длину стороны самой маленькой коробки, где будет находиться подарок. Размер подарка позволяет поместить его в самую маленькую коробку. Входные данные В первой строке входного файла находится число N — количество коробок в магазине натуральное число, не превышающее 10 000. В следующих N строках находятся значения длин сторон коробок все числа натуральные, не превышающие 10 000 , каждое — в отдельной строке.
Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 29 или больше камней. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника. Задание 1 а Укажите такие значения числа S, при которых Петя может выиграть в один ход. Задание 2 Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причем: — Петя не может выиграть за один ход; — Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Для указанных значений S опишите выигрышную стратегию Пети.
Задание 3 Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. На ребрах дерева указывайте, кто делает ход; в узлах - количество камней в позиции Дерево не должно содержать партий, невозможных при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Тогда после первого хода Пети в куче будет 15 или 28 камней. В обоих случаях Ваня удваивает кучу и выигрывает в один ход. Выигрывает Ваня 14 - проигрышная позиция Задание 2. Возможные значения S: 7, 13. В этих случаях Петя, очевидно, не может выиграть первым ходом. Однако он может получить кучу из 14 камней: в первом случае удвоением, во втором — добавлением одного камня.
Эта позиция разобрана в п. В ней игрок, который будет ходить теперь это Ваня , выиграть не может, а его противник то есть Петя следующим ходом выиграет. Выигрывает Петя 7, 13 - выигрышные позиции со второго хода Задание 3. Возможные значения S: 12. После первого хода Пети в куче будет 13 или 24 камня. Если в куче их станет 24, Ваня удвоит количество камней и выиграет первым ходом. Ситуация, когда в куче 13 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Ваня , выигрывает своим вторым ходом. Выигрывает Ваня вторым ходом!
В таблице изображено дерево возможных партий и только их при описанной стратегии Вани. Заключительные позиции в них выигрывает Ваня подчеркнуты. На рисунке это же дерево изображено в графическом виде. Задание 26: Два игрока, Паша и Вася, играют в следующую игру. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Задание 1.
Опишите выигрышную стратегию Васи. Задание 2. Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней.
Как только суммарно в кучке стало 73 или более камня, игра заканчивается. Тот, кто ходил последним, выиграл. Важные замечания Мы будем в некоторых заданиях строить дерево партий. Мы это обязаны делать согласно условию только в Задании 3. В Задании 2 мы не обязаны строить дерево партий. В каждом из заданий недостаточно просто сказать, кто имеет выигрышную стратегию. Требуется также описать её и указать возможное количество шагов, которое потребуется для выигрыша. Недостаточно назвать стратегию выигрышной. Нужно доказать , что она приводит к выигрышу. Даже очевидные утверждения требуют доказательств.
Задание 1. Рассмотрим теперь Задание 1. В кучках — 6, 33 камней первая часть Задания 1 и 8, 32 камней вторая часть Задания 1. Нам нужно определить, у кого из игроков имеется выигрышная стратегия. Иными словами, кто из игроков при правильной игре обязательно выиграет вне зависимости от действий соперника. Здесь и далее мы будем решение разбивать на две части. Вначале будет идти предварительное объяснение его писать в ЕГЭ не нужно , а затем — "формальное решение", то есть то, что нужно писать в самом бланке ЕГЭ. Давайте подумаем: первый игрок очевидно в один ход выиграть не может, так как что бы он не делал, суммарно 73 не будет. Самое "большое" действие, которое он может сделать, — это увеличить в 2 раза количество камней во второй кучке, сделав их 66. Но 6, 66 — это 72 камня, а не 73.
Значит, первый в один ход явно выиграть не сможет. Однако второй — вполне сможет. Первый может сделать потенциально четыре действия: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. В этом случае второй игрок может увеличить в 2 раза количество камней во второй кучке. Получим 7, 66. Суммарно — 73. Значит, второй выигрывает. Получим 12, 66. Суммарно — 78. Получим 6, 68.
Суммарно — 74. Получим 6, 132. Суммарно — 138. Итого: как бы себя не вёл первый игрок, второй выиграет и в один ход. Аналогично решается и с 8,32. Формальное решение Задания 1. Второй игрок имеет выигрышную стратегию. Докажем это и покажем эту стратегию. Для этого построим дерево партии для каждой из начальных позиции. В дереве партий мы будем указывать состояние обеих кучек в формате a,b , где a — количество камней в первой кучке, b — количество камней во второй кучке.
При ходе первого игрока мы будем рассматривать четыре возможных варианта его поведения: прибавить 1 к первой кучке, увеличить в 2 раза количество камней в первой кучке, прибавить 1 ко второй кучке, увеличить в 2 раза количество камней во второй кучке. Для второго игрока мы укажем по одному ходу, приводящему к выигрышу. Ходы будем показывать в виде стрелочек, рядом с которыми писать I в случае хода первого и II в случае хода второго. Дерево партий для начальной позиции 6, 33. Дерево партий для начальной позиции 8, 32. Согласно дереву партий, вне зависимости от ходов первого у второго всегда есть выигрышная стратегия, позволяющая ему выиграть в один ход, описанная в деревьях суммы после ходов Вани составляют слева-направо 73, 80, 74 и 136 соответственно. При этом, согласно дереву партий, второй игрок может выиграть ровно за один ход. Задание 2 Формальное решение Рассмотрим начальную позицию 6,32. Заметим, что она близка к 6,33 из Задания 1. В Задании 1 мы выяснили, что в позиции 6, 33 выигрывает второй, причём в один ход.
Можно это условие переформулировать: в позиции 6,33 выигрывает в один ход тот, кто не ходит то есть, ходит вторым. Или, иными словами, тот, кто ходит, проигрывает в один ход. В позиции 6,32 выигрывает первый в два хода.
На рисунке это же дерево изображено в графическом виде. Задание 26: Два игрока, Паша и Вася, играют в следующую игру. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в пять раз. Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 69 или больше камней. Задание 1. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. Опишите выигрышную стратегию Васи. Задание 2. Укажите 2 таких значения S, при которых у Паши есть выигрышная стратегия, причём Паша не может выиграть за один ход и может выиграть своим вторым ходом независимо от того, как будет ходить Вася. Для каждого указанного значения S опишите выигрышную стратегию Паши. Задание 3. Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19. Везде следующим ходом выиграет Ваня, см. За один ход игрок может добавить в кучу 1 камень или 10 камней. Например, имея кучу из 7 камней, за один ход можно получить кучу из 8 или 17 камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 31. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 31 или больше камней. При меньших значениях S за один ход нельзя получить кучу, в которой больше 30 камней. Паше достаточно увеличить количество камней на 10. При S 1. Тогда после первого хода Паши в куче будет 21 камень или 30 камней. В обоих случаях Ваня увеличивает количество камней на 10 и выигрывает в один ход. Возможные значения S: 10, 19. В этих случаях Паша, очевидно, не может выиграть первым ходом. В ней игрок, который будет ходить теперь это Вова , выиграть не может, а его противник то есть Паша следующим ходом выиграет. Возможное значение S: 18. После первого хода Паши в куче будет 19 или 28 камней. Если в куче станет 28 камней, Вова увеличит количество камней на 10 и вы играет своим первым ходом. Ситуация, когда в куче 19 камней, разобрана в п. В этой ситуации игрок, который будет ходить теперь это Вова , выигрывает своим вторым ходом. Гость 26. Константин Лавров Да, 9 - тоже является правильным ответом. Достаточно указать хотя бы одно верное значение.
ЕГЭ по информатике с решением
Задания 26, 27 позволяют набрать по 2 первичных балла каждый. Разбор всей демоверсии ЕГЭ по информатике 2024 в плейлисте. В работе приводится алгоритм решения задания 26 ЕГЭ, а также листинг программы на языке Python.
Рубрика «ЕГЭ Задание 26»
ЕГЭ по информатике с решением | егэ по информатике информатика 10 класс информатика 11 класс информатика с нуля. |
Задание 26 егэ информатика перестановка букв. | Задание по информатике 24-27. Ответы и решения заданий ЕГЭ. |
ЕГЭ по информатике (2024) | 72 Конец фильма ПОЛЯКОВ Константин Юрьевич д.т.н., учитель информатики ГБОУ СОШ № 163, г. Санкт-Петербург kpolyakov@ Изображение слайда. |
Разбор 26 задания ЕГЭ 2023 по информатике ( python )+ досрочный период 2023 | Предлагаем вашему вниманию разбор задания №26 ЕГЭ 2019 года по информатике и ИКТ. Этот материал содержит пояснения и подробный алгоритм решения, а также рекомендации по использованию справочников и пособий, которые могут понадобиться при подготовке к ЕГЭ. |
Разбор демоверсии 2024 по информатике ЕГЭ | Задание 26 | Новая Школа
Дерево не должно содержать партии, невозможные при реализации выигрывающим игроком своей выигрышной стратегии. Например, полное дерево игры не является верным ответом на это задание. Запишем условие более понятным языком. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 63 камня или больше. Первым ходит Петя. Задание 1а. Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Решение задания 1а. Ответ на задание 1а. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Решение задания 1б.
Минимальное значение - 7. Ответ на задание 1б. Решение задания 2. Необходимо найти такое значение S количество камней во второй куче , при котором Петя не сможет выиграть своим первым ходом, но и Ваня также не может выиграть своим первым ходом.
Решение задач по теме «Обработка целочисленной информации» Выполнила: Черноиванова Екатерина Вадимовна Слайд 2 Задание Системный администратор раз в неделю создаёт архив пользовательских файлов.
Однако объём диска, куда он помещает архив, может быть меньше, чем суммарный объём архивируемых файлов. Известно, какой объём занимает файл каждого пользователя.
Если в качестве времени старта указан ноль, это означает, что процесс был активен в момент начала исследования.
Если в качестве времени завершения указан ноль, это означает, что процесс не завершился к моменту окончания исследования. При совпадающем времени считается, что все старты и завершения процессов происходят одновременно, в начале соответствующей секунды. В частности, если время старта одного процесса совпадает с временем завершения другого и других стартов и завершений в этот момент нет, то количество активных процессов в этот момент не изменяется.
Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку. Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров.
Входные данные. Каждая строка входного файла содержит натуральное число и букву A или B. Число обозначает размер контейнера в условных единицах, буква — цвет этого контейнера буквами A и B условно обозначены два цвета.