Российский стартап Neiry создал трекеры состояний головного мозга. Российский стартап Neiry создал трекеры состояний головного мозга. Российские ученые провели исследования, которые показали процессы головного мозга у девочек, страдающих синдромом Ретта.
Мозг – последние новости
Мозг человека - строение, функции, особенности, развитие, исследования. | Физикам-теоретикам Утрехтского университета (Нидерланды) удалось создать искусственный синапс, который работает с помощью воды и соли, и является доказательством того, что компьютер, способный использовать ту же среду, что и мозг, может. |
Петербургские врачи показали передовые методы восстановления головного мозга | Хотя за последние 40 лет были проведены тысячи исследований синдрома хронической усталости, точные причины этого загадочного заболевания все еще не известны. |
Ученые исследовали умирающий мозг и рассказали, что обнаружили | Недавно ученые провели исследование и выяснили, что объем головного мозга людей 1970-х годов больше, чем у представителей 1930-х. |
Нейробиологи заявили о прорыве в методах глубокой стимуляции мозга | Делимся с вами самыми громкими новостями из сферы изучения мозга за последние месяцы, которые перевернут ваше представление о самих себе. |
Использование гаджетов привело к изменениям в мозге детей
Она рассказала, как работают механизмы нашей памяти, чем мозг мужчины отличается от мозга женщины и почему нейронауки находятся в тренде. Также, по словам специалиста, в будущем можно будет лечить психологические расстройства избирательным стиранием памяти, а с дальнейшим развитием технологий возможно даже создание цифровых копий личности. Нейроны в этих группах работают сообща, запоминают различные факты, формируют различные воспоминания. Используя трансгенные технологии, можно метить нейроны и искусственно влиять на них. Мы включаем в ДНК лабораторных мышей светочувствительные белки из водорослей или бактерий, чтобы управлять активностью определенных нейронных групп. Например, когда грызун чего-то боится, мы помечаем его клетки, активные при ассоциации окружающей среды с неприятными ощущениями.
Дальше в безопасном для животного месте воздействуем на нейроны при помощи света, искусственно вызываем связанные с предыдущей ситуацией воспоминания и наблюдаем реакцию страха. На мышах можно исследовать разные формы памяти Reuters Мы в прямом смысле слова заглядываем в мозг нашим мышам. Когда конкретный нейрон становится активен, он светится ярче, это происходит с помощью специальных сенсорных флуоресцентных светящихся белков. С помощью микроскопа видим, что происходит с клетками мозга, ищем закономерности — где клетки расположены, как соотносятся друг с другом. Если мы чему-то обучили животное, то смотрим на активность нейронов, когда «просим» животное вспомнить об этом через день или через месяц что для мыши уже достаточно большой срок.
Если мышь забывает о чём-то, то мы видим, что могут, к примеру, подключаться другие, «лишние» нейроны. Например, травматическую память, когда у человека может развиться посттравматическое стрессовое расстройство в результате, например, участия в военных действиях или каких-то чрезвычайных ситуациях. На мышах тоже можно моделировать травматическую память. Мы изучаем её устройство и ищем способ избирательно стереть, не затронув другие воспоминания. В дальнейшем это можно будет применить в терапии посттравматического стрессового расстройства у людей.
Это только один из примеров. Если я спрошу, что вы ели три недели назад на завтрак в субботу, то вы, скорее всего, не сможете сразу ответить, потому что эта информация для вас не очень важна. Мы постоянно что-то запоминаем и забываем — это физиологически нормальные процессы. Также можно разрушать формирующие память нейронные сети искусственно с помощью света или фармакологических агентов.
Группа учёных из Университета Дьюка совместно с лабораторией биомедицинской инженерии университета создали датчик активности мозга с 256 сенсорами на кусочке пластика размером с почтовую марку. Новый датчик способен улавливать сигналы от одиночных нейронов, что позволяет с высокой точностью определять их активность. Учёные не собирались читать мысли напрямую. Но по комплексу сигналов для мышц речевого аппарата — языка, гортани и лицевых — они рассчитывали с высокой точностью определять невысказанные вслух мысли пациентов речью управляют до 100 мышц, за сигналами к которым необходимо следить. Таким образом, мысленно произнесённая фраза должна была транслироваться в сигналы мышцам, и по этим прямо считанным с мозга данным нужно было воспроизвести всё, что пациент собирался сказать.
В случае пациента с поражением речевого аппарата мысли так бы и остались в коре головного мозга и дальше сигналы бы не прошли, но считанные датчиком они получили возможность быть воспроизведёнными компьютером. Алгоритм распознавания обучался в режиме «слушай и повторяй». Пациент произносил бессмысленные короткие сочетания букв, на которых алгоритм учился распознавать мозговую активность для того или иного сочетания звуков. Слева старый менее чувствительный датчик, справа — новый, с которым проводили эксперимент Несмотря на относительно низкий процент распознавания звуков, команда учёных говорит об успехе. Дело в том, что алгоритм обучался всего 90 секунд в ходе 15-минутного тестирования. Ровно столько времени было у экспериментаторов с каждым пациентом. Это происходило в ходе плановых операций на мозге пациентов. Когда нейрохирурги заканчивали операцию, они давали учёным 15 минут поработать с пациентами над их программой. Без доступа к открытому мозгу, на определённый участок коры которого напрямую устанавливался датчик, работа не могла быть проделана.
На следующем этапе учёные собираются создать беспроводные датчики, чтобы работать с пациентами в обычных условиях, а не в операционной. Когда-нибудь это приведёт к появлению удобных мозговых имплантатов для трансляции мыслей в речь или цифровые сообщения. Своевременно обнаружить нарушения в работе мозга, например, инсульт, означает спасти человеку здоровье и жизнь. В качестве бонуса технология Niura обещает создать рекомендательный сервис по предложению музыки на основе слежения за настроением пользователя, тем самым оберегая уже душевное здоровье человека. Источник изображений: Niura Стартап вырос из личных переживаний его организаторов, ближайшие родственники которых пострадали от поражений головного мозга. Ключевым элементом устройства являются сухие силиконовые датчики-контакты, которые размещены по периметру наушников. Они обеспечивают достаточно хороший контакт с кожей и, по словам компании, не снижают чувствительность при обильном потоотделении. Решение Niura простое в использовании и может использоваться постоянно в отличие от обычных датчиков для снятия электроэнцефалограммы ЭЭГ. Это особенно важно, например, в ходе проведения операций на головном мозге.
В обычных условиях ЭЭГ снимается до и после проведения операции, а с помощью наушников Niura это можно делать непосредственно в процессе проведения операции. Близость внутриушного электрода наушников Niura к слуховой коре головного мозга, которая отвечает за обработку музыки и аудио, обещает раскрыть ещё один потенциал устройства. Наушники смогут различать настроение пользователей, и с помощью рекомендательного ИИ-сервиса будут воспроизводить музыку, соответствующую душевному состоянию. Данные с наушников передаются в смартфон, где происходит их обработка. На всех этапах происходит шифрование трафика и данных в соответствии с требованиями американских регуляторов. Компания получила ряд предварительных патентов на ключевые технологии и ведёт переговоры с ведущими мировыми брендами о выпуске коммерческой продукции на основе платформы Niura. Самостоятельно этим она заниматься не будет. Будет только предоставлять лицензии. Пациенты прослушивали трек «Another Brick in the Wall Part 1 » группы Pink Floyd, а имплантированные в мозг датчики снимали показания.
Различение ритма и мелодии в сигналах мозга поможет разработать имплантаты для людей, страдающих нарушениями в области восприятия речи и эмоций и не только. Источник изображения: Pixabay Для поиска зон мозга, ответственных за восприятие музыки в широком смысле этого слова, в мозг 29 пациентов были имплантированы по 2268 электродов. Всем им ставили композицию Pink Floyd «Ещё один кирпич в стене», ставшую классикой рока. Параллельно прослушиванию с датчиков снимались показания мозговой активности, которые затем расшифровывали с помощью линейного и нелинейного ИИ-алгоритма. Что в итоге получилось, можно прослушать в ролике ниже. Ценители Pink Floyd могут прийти в ужас от услышанного. С другой стороны, мозг может служить своеобразным фильтром, придающим композиции новизну и определённую оригинальность. Нельзя исключать, что это, в том числе, приведёт к появлению новых музыкальных находок и даже направлений. При поиске ориентированных на музыку областей в головном мозге учёные решали другую задачу.
Есть большой класс пациентов, страдающих от нарушений в восприятии и воспроизведении речи. В общем случае это называется просодией. Просодия подразумевает невозможность выделить в речи эмоции, ударения, акценты и другие нюансы, что сильно ограничивает страдающих ею в социализации. Считывание мелодии прямо с мозга помогло определить центры, отвечающие за мелодику и ритм. Фактически это путь к преодолению недуга с помощью имплантатов и ИИ-алгоритмов. Прежде всего — это верхняя височная извилина, а также области в сенсорно-моторной коре и нижней лобной извилине. В этих областях были расположены 347 электродов из 2268, установленных для эксперимента. Это то разрешение, с которым была считана с мозга легендарная композиция Pink Floyd, что наверняка можно улучшить в последующих экспериментах. Интересно, как к этому отнесутся правообладатели?
Самым действенным способом по-прежнему остаётся установка электродов на кожу головы или имплантация непосредственно в мозг. Возможно, с этим сможет помочь новый китайский датчик активности мозга, который очень просто устанавливается в ушной канал пациента. Источник изображений: Nature Communications 2023 Разработанное группой ученых из китайского Университета Цинхуа устройство получило название SpiralE. Это тонкая многослойная полоска длиной 50 мм и шириной 3 мм. Полоска состоит из двух слоёв полимера с памятью формы, слоя электротермической активации формы и слоя с сенсорами для снятия электроэнцефалограммы. Для ввода в ушной проход пациента датчик скручивается в плотный жгут. Уже на месте на датчик воздействуют электромагнитным полем, которое вызывает нагрев в его активирующем слое и, как следствие, заставляет полимерные слои с памятью формы распрямляться. Этот процесс приводит к тому, что датчик плотно соприкасается с кожей, и это обеспечивает аккуратное снятие сигналов мозговой активности. При этом каждый раз датчик принимает индивидуальные формы слухового канала, что делает его универсальным.
Наконец, он не загораживает слуховой проход и не снижает чувствительность слуха человека, и легко извлекается. Учёные рассчитывают, что подобный датчик найдёт применение в изучении качества сна пациентов спать с современными наголовными датчиками то ещё удовольствие , при выявлении эпилепсии и даже для слежения за активностью водителей, о чём они рассказали в своей статье в журнале Nature Communications. Созданная компанией система Layer 7 Cortical Interface расшифровывает сигналы мозга и переводит их в компьютерные команды. А недавно компания провела своё первое клиническое исследование на людях.
Специалисты также выяснили, что успех метода зависел от наличия мозговой активности, связанной с задачей. Другими словами, в периоды отдыха воздействие на глубинные зоны мозга не оказывало эффекта.
Ученые считают, что их открытие позволит разработать новые методы лечения различных расстройств, связанных с нейронной активностью. Ранее российские исследователи создали нейростимулятор для борьбы с тремором. Подписывайтесь на «Газету.
Данная особенность позволяет клеткам центрального органа нервной системы иметь защиту от повреждений. Фото: Pixabay Наличие особого механизма является для нервных клеток компенсацией за отсутствие процесса репликации ДНК. В результате нейроны оказались самыми «живучими» среди всех клеток человеческого организма. О способностях нервных клеток головного мозга восстанавливаться после повреждений было известно и ранее.
Nature: найден способ проводить стимуляцию мозга без МРТ
Фото: pixabay. Он сообщил, что нарушения функций мозга имеются у каждого четвертого жителя Земли. Это увеличение числа пока неизлечимых нейродегенеративных заболеваний, таких, как болезнь Альцгеймера, болезнь Паркинсона, мультисосудистая деменция и, наконец, болезнь века, в которой сейчас «тонет» часть молодого поколения, — цифровая деменция. Он привел данные норвежских коллег, которые, протестировав 34 тысячи жителей Евросоюза, пришли к выводу, что уровень IQ у рожденных после 1981 года на 20 процентов ниже, чем у поколений, рожденных с 1930-х по 1980 годы. В общем, интерес к проблеме изучения мозга во всем мире колоссальный. В развитых странах расходы на лечение больных с соответствующими заболеваниями превышают треть всех расходов на здравоохранение, а на научные программы в США, Китае, Евросоюзе, Японии и других странах выделяют многомиллиардные суммы. На этом фоне, по словам Михаила Александровича, дела с отечественной Федеральной научно-технической программой «Мозг: здоровье, интеллект, инновации» складываются не очень успешно.
Тем временем ситуация за эти годы изменилась, современная реальность такова, что упор во всех областях науки делается на первоочередные, горящие проекты, а значит, и программа по исследованию мозга должна была немного измениться. Теперь в ней также уделено внимание решению проблем демографии, борьбы с онкозаболеваниями, производительности труда россиян и пр. В частности, по словам вице-президента РАН, у ученых уже есть некоторые достижения: проводя магнитную стимуляцию мозга здоровым добровольцам, уже сегодня удается на 20 процентов улучшать их память. Эффект этот сохраняется до полугода. А вот о клеточно-молекулярном механизме памяти рассказал научный руководитель Института высшей нервной деятельности и нейрофизиологии РАН Павел Балабан. Его доклад касался возросшей роли так называемых глиальных клеток, которые раньше воспринимались исключительно как служебные.
Теперь благодаря им ученые могут объяснить процесс формирования долговременной памяти. Также ученые пересмотрели роль так называемых глиальных клеток, астроцитов, взаимодействующих с нейронами.
Пик гармонии и мира в душе наступает как раз именно в 74 года. Специалисты считают, что 74 года - это именно тот возраст, когда люди начинают по-настоящему ценить жизнь. IQ меняется с возрастом По мнению британских ученых из Центра нейровизуализации при Лондонском университетском колледже, с возрастом уровень интеллекта IQ может значительно изменяться. Вряд ли кто-либо считал иначе, но исследователи утверждают, что именно они установили, что развитие умственных способностей человека продолжается всю его жизнь, и уровень интеллекта можно значительно повысить с помощью постоянных тренировок мозга. В своей работе ученые исследовали 33 здоровых детей в возрасте от 12 до 16 лет, которым было предложено пройти тест на определение как вербального память, арифметические и языковые способности, общие знания , так и невербального IQ включает решение головоломок. Первые тесты прошли еще в 2004 году, а затем в 2008 году их повторили.
Отметим, что при повторном исследовании, помимо оценки интеллекта, ученые при помощи магнитно-резонансной томографии проследили, как изменилась структура мозга молодых людей за эти 4 года. В результате оказалось, что у подростков, которые во время тестов на IQ показывали хорошие результаты, присутствуют положительные изменения в структуре мозга: количество их нервных клеток, регулирующих мыслительный процесс, заметно возросло. По словам ученых, это результат постоянных умственных тренировок нагрузок , к которым, в частности, относятся занятия в школе. По словам исследователей, люди не останавливаются в своем развитии, и с возрастом уровень интеллекта может повыситься, но только при условии постоянных тренировок.
Структурные аномалии мозолистого тела могут приводить к когнитивным и другим нарушениям, в том числе и при расстройствах аутистического спектра. Предыдущие исследования показали, что при аутизме встречаются те или иные особенности мозолистого тела. Были сделаны и попытки изучить связь этих особенностей с ядерными и сопутствующими симптомами РАС. Например, была выявлена связь между низкими навыками коммуникации у детей с РАС и уменьшенным объемом мозолистого тела и отдельных его частей; а также показано, что некоторые характеристики структуры мозолистого тела связаны с показателем невербального интеллекта. При изучении структур головного мозга с помощью магнитно-резонансной томографии МРТ исследователи могут не только получать изображения, но и рассчитывать различные показатели для отдельных структур. Исследования показывают, что снижение показателя FA может быть связано с повреждениями аксонов, их димиелинизацией, большим количеством пересекающихся волокон и их дезорганизацией. Другим важным показателем состояния проводящих путей является диффузионность отражающая скорость диффузионных процессов в различных направлениях.
Показано, что снижение AD коррелирует с аксональными повреждениями, повышение показателя RD также может говорить о нарушении миелинизации аксонов. Целью настоящего исследования было, во-первых, изучение различий в структуре мозолистого тела между детьми с РАС и их типично развивающимися сверстниками. Во-вторых, исследователи хотели выявить возможные взаимосвязи между характеристиками мозолистого тела у детей с РАС и различными показателями развития и поведения речевыми навыками, невербальным интеллектом, тяжестью аутистических проявлений. В исследовании приняли участие 38 детей младшего школьного возраста 19 детей с РАС и 19 детей типичного развития. Данные о структуре мозолистого тела были получены с помощью МРТ. Помимо этого у участников исследования был измерен невербальный интеллект, речевые навыки и выраженность различных аутистических черт. Результаты исследования показали, что индексы осевой диффузионности AD и фракционной анизотропии FA в различных частях мозолистого тела у детей с РАС понижены по сравнению с контрольной группой.
6 самых важных открытий в области мозга за последний год
Ранее эффект старения на клетки головного мозга исследовали на лабораторных животных и оставался ряд вопросов о том, могут ли полученные данные быть экстраполированы на человека. Опубликованное исследование было выполнено на коре головного мозга людей разного возраста. В работе было установлено, что при старении атрофируются отростки астроцитов, уменьшается число щелевых контактов между ними, снижается относительное количество белков в цитоплазме и при этом разнонаправленно изменяется содержание важных белков астроцитарного цитоскелета — глиального фибриллярного кислого белка GFAP и эзрина. Такие изменения приводят к снижению плотности астроцитарных листочков вокруг синапсов, что может быть причиной ухудшения синаптической пластичности. Кроме того, впервые было показано, что с возрастом нарушается работа дыхательной цепи митохондрий астроцитов, в то время как митохондрии и электрофизиологические свойства нейронов не изменяются.
Итоги исследования опубликовал журнал Nature. Выборка исследования Результаты Выборка исследования В исследовании принимали участие 181 990 участников Биобанка Великобритании. Задача ученых заключалась в сопоставлении пищевых предпочтений с физическими показателями, среди которых — биомаркеры обмена веществ в крови, генетика, когнитивные функции, визуализация мозга. Информация о пищевых предпочтения была собрана путем онлайн-анкетирования. При этом продукты были разделены на 10 категорий, включая мясо, фрукты, алкоголь.
Это воздействие помогло улучшить процесс выведения бета-амилоида через лимфатические сосуды из мозговой ткани мышей с болезнью Альцгеймера, особенно когда оно применялось во время сна. Учёные считают, что такой метод фотобиомодуляции может быть перспективным и безопасным способом лечения деменции и других нейродегенеративных заболеваний мозга, связанных с нарушениями лимфатической системы, таких как болезнь Паркинсона, глиомы, черепно-мозговые травмы и внутричерепные кровоизлияния.
Что приводит к выгоранию и депрессии Забывчивость, проблемы с засыпанием и тревожные сны, нервозность или апатия, плохой аппетит или же, наоборот, бесконтрольный прием пищи. Находиться 29 апреля 2023 Оптимальное для здоровья мозга кровяное давление выявили врачи Оптимальное для здоровья мозга кровяное давление выявили врачи, передает корреспондент Tengrinews. Оказывается, не просто 24 октября 2022 Экс-президенту Парагвая предстоит операция на мозге Бывшему президенту Парагвая Фернандо Луго предстоит операция на мозге, чтобы остановить кровоизлияние, вызванное инсультом, передает Tengrinews.
Химический дисбаланс в переднем мозге обнаружен у людей с обсессивно-компульсивным расстройством
Международная группа нейробиологов из Швейцарии и Великобритании заявила о прорыве в методах глубокой неинвазивной (не требующей проникновения в орган) стимуляции мозга, которая позволяет влиять на его активность. Исследование опубликовано в научном журнале. Читайте последние новости на тему в ленте новостей на сайте РИА Новости. Вот наши исследования направлены именно на изучение роли белков при нейродегенерации.
Использование гаджетов привело к изменениям в мозге детей
О способностях нервных клеток головного мозга восстанавливаться после повреждений было известно и ранее. Однако на этот раз американские специалисты смогли описать механизм данного процесса. Для этого был проведён эксперимент на нейронах, искусственно выращенных из стволовых клеток. В результате выяснилось, что нервные клетки нацелены на регенерацию конкретных участков ДНК.
Нейропластичность у взрослых Долгое время считалось, что формирование новых нейронов и в целом развитие мозга происходят в раннем детстве, а затем прекращаются. Затем ученые открыли нейропластичность — способность мозга адаптироваться, то есть изменять или организовывать нейронные связи и даже выращивать новые. Нейропластичность бывает структурной и функциональной. Структурная нейропластичность — способность мозга создавать новые структуры или менять существующие в ответ на обучение. Другой вариант: если зона мозга повреждена, например в результате травмы или инсульта, здоровая часть может взять на себя часть функций, которые выполняла поврежденная область. Такую способность называют функциональной нейропластичностью.
В течение многих лет отдельные исследования показывали, что адаптироваться может как детский, так и взрослый мозг. Одно из первых таких исследований было опубликовано в журнале Nature Medicine в 1998 году. На основе исследований мозга недавно умерших пациентов было показано, что в гиппокампе продолжают зарождаться новые клетки. Современные возможности визуализации позволили в полной мере оценить способность мозга адаптироваться во взрослом возрасте. Исследование 2019 года показало, что нейрогенез — производство нейронов — продолжается и в старшем возрасте. В работе сравнивали неврологически здоровых пациентов и людей с болезнью Альцгеймера.
Выяснилось, что новые нейроны появляются всегда, хотя их количество у здоровых людей постепенно снижается с возрастом. У пациентов с болезнью Альцгеймера в любом возрасте количество новых клеток значительно ниже, чем у здоровых. Работают ли приложения для тренировки мозга 2. Его целью было создание карты мозга, на которой будут отмечены зоны активности всех известных генов. Сначала ученые создали атласы мозга мыши — он меньше и проще, поэтому задача была более реалистичной. Тем не менее проект был важен не только для освоения методологии, но и для практических исследований: мышей активно используют в научных исследованиях, в том числе в изучении мозга.
Эта процедура не требует разрезов и наркоза. Они обнаружили, что воздействие на некоторые зоны мозга, связанные в других экспериментах с депрессией, также повлияло на частоту сердечных сокращений. Обнаруженная учеными связь позволит использовать частоту сердечных сокращений для настройки транскраниальной магнитной стимуляции. Сейчас для этого используют предварительную МРТ — дорогостоящую и не всегда доступную.
В ней много интересного, но стоит обратить особое внимание на жизнь и творчество гениев. Может быть, учёные смогут понять, как именно рождались их революционные идеи, какая цепь мыслей и ассоциаций помогала творцам создавать шедевры. Это не поможет повторить процесс творчества, но прояснит механизмы работы человеческого мозга. Это одна из важнейших наук, без которых нейробиологам не обойтись. Нельзя изучать мозг, не понимая, кто такой человек, что он делает на планете, зачем вообще живёт.
На какой вопрос может ответить мозг? Вот мы его открываем и хотим посмотреть внутрь. Мы не видим деепричастий или задумки Ван Гога. Нейрон не знает, что он находится внутри нас. И тончайшие связи между разными уровнями рассмотрения кажутся мне каким-то чудом, волшебством. Ольга Сварник Не каждый нейробиолог может быть специалистом во всех этих направлениях. Но разбираться в них, чтобы понимать, как анализировать и применять полученные профильными учёными результаты, исследователю мозга необходимо. А ещё работа нейробиологов напоминает классическое детективное расследование. Поэтому учёным есть чему поучиться у главных героев жанра — например, у мисс Марпл или Эркюля Пуаро.
Каких успехов уже добились нейробиологи Вот лишь одно из множества открытий. Оказывается, наш мозг не разделён на части, каждая из которых отвечает за свою жизненную сферу и не вмешивается в работу других, как считалось раньше. В информационном пространстве была очень популярной идея о двух разных полушариях. Левое по этой теории отвечало за логику, а правое — за интуицию , вдохновение, эмоции. Но оказалось, что всё не так просто, и мозг — единое целое. Одно из доказательств этой гипотезы: базы данных в мозгу пересекаются между собой. Например, образ кофейной чашки может одновременно находиться в разделах «фарфор», «красота», «напитки», «то, что бьётся», «всё на букву Ч». Это очень упрощённый пример, но мозг работает именно по такому принципу. Сейчас никто не будет говорить о местах в мозгу, которые занимаются одно — ложкой, другое — вилкой, a третье — кофейной чашкой.
Идея локалиционизма сменилась, если очень грубо говорить, идеей коннекционизма. Татьяна Черниговская Но и тут есть противоречия. С одной стороны, мозг работает как единое устройство. И если, например, поместить человека в томограф и давать ему речевые задания, то активной будет не одна зона, а гораздо больше. Но, с другой стороны, если повредить при травме или операции всего лишь одну зону мозга, человек перестаёт говорить. Поэтому теория коннекционизма тоже далека от завершения. Чего нейробиологи хотят добиться в будущем Учёные, исследующие мозг, немного поэты. Например, они считают, что каждый нейрон мозга — часть единого целого, но он не знает об этом. Может быть, и каждый человек, как и нейрон, тоже всего лишь деталь чего-то намного большего, чем мы можем себе представить.
Сказать, что мы — это наш мозг, это всё равно что сказать, цитирую: любая картина — это всего-навсего краска.
Человеческий мозг: пять последних открытий ученых
мозг: Развитие мозга. Профессионализм и решение задач, Сергей Савельев | Умственный Рост: Эффективные Стратегии для Повышения Интеллекта, Радикально меняем представление о братьях меньших и об их мозгах?, Развитие мышления: разные способы. В ходе исследования нейроинтерфейс Layer 7 Cortical Interface был временно помещён в мозг трёх пациентов, которые уже подвергались нейрохирургическим операциям по удалению опухолей. Вы видите как обезьяна сначала управляет курсором с помощью контроллера, но после того как было отключено питание контроллера она продолжала это делать усилиями мозга с помощью Neuralink.
Meta✴ готовит смарт-браслет с возможностью считывания сигналов мозга
один из самых известных экспертов по исследованиям мозга в России, доктор биологических наук, профессор кафедры физиологии человека и животных, заведующий лабораторией нейрофиз. — Какие открытия удалось сделать исследователям мозга за последние десятилетия, насколько удалось продвинуться? В недавнем исследовании ученые использовали мозг мух. Результаты показали, что стимуляция определенных областей мозга, связанных с депрессией в других экспериментах, также влияет на частоту сердечных сокращений. Последние новости и события. Результаты показали, что стимуляция определенных областей мозга, связанных с депрессией в других экспериментах, также влияет на частоту сердечных сокращений.
Нейробиологи заявили о прорыве в методах глубокой стимуляции мозга
Знаний накоплено очень много, но учёные не уверены, что могут корректно ответить на главные вопросы: как и почему работает наш мозг. Более того, исследователям кажется, что вопросов у них пока гораздо больше, чем ответов. Мозг — самая сложная система Это самый первый и серьёзный вызов. Учёные доказали, что ни одна система не может изучать другую, если вторая устроена более сложно, чем первая.
Если вторая проще — нет проблем. Но сегодня исследователи не знают ни одной системы, которая была бы сложнее мозга. Поэтому изучать его труднее, чем любой другой объект нашего мира.
По крайней мере, так считают нейробиологи. Есть некоторое безумие в том, чтобы мозгом вообще заниматься из-за, казалось бы, безнадёжности этой истории. Почему мы всё-таки это делаем?
Во-первых — потому что интересно. И во-вторых, и в-сотых — потому что интересно и невозможно удержаться. Татьяна Черниговская Мозг бесполезно исследовать только с помощью инструментов Что такое мозг?
Вроде бы очень простой вопрос. С одной стороны, в любом учебнике по анатомии мы найдём ответ. С другой, если спросить об этом нейробиологов — особенно тех, кто давно занимается исследованиями, они ответят: «Не знаю».
Мозг — это, конечно же, физический объект, который имеет точно измеряемый вес и объём. Можно сказать, что это орган, который состоит из множества нейронов. Когда-то считалось, что их около 100 миллиардов.
Сегодня, получив результаты новых исследований, нейробиологи остановились на более скромных цифрах: 85—86 миллиардов. Но это число, пусть и более точное, чем учёные предполагали раньше, никак не помогает разобраться в том, как работает наш главный орган. Не объясняет, как мы видим мир, как принимаем решения, какие мотивы побуждают нас делать тот или иной выбор.
Может быть, эти нейроны объединились в гигантскую сеть. В систему, которая гораздо больше, чем простая сумма её составляющих. Но ни подсчёт нейронов, ни другие результаты, которые учёные получают с помощью самых разных суперсовременных приборов, не помогают разобраться, как устроено наше мышление.
Тем более инструментальные исследования не покажут, как происходит процесс творчества. Никто пока не придумал, как узнать, откуда в уме учёных появляются гениальные идеи, как к художникам или музыкантам приходит вдохновение. И вообще — что такое вдохновение, как оно измеряется?
Спектрометрами и сканерами этого никак не определить. Чем больше мы знаем, тем меньше нам понятно. Предположим, у меня лучший на свете томограф, которого ещё нет, но который я вообразила.
Он мне выдаст много тонн цифр. И что с ними делать?
Главная задача - решить, как до него добраться, какой путь выбрать, чтобы не задеть важные зоны, какой метод устранения "дефекта" выбрать. Принципиально другая ситуация при "функциональном" стереотаксисе, который тоже применяется при лечении психических заболеваний. Причина болезни часто заключается в том, что одна маленькая группа нервных клеток или несколько таких групп работают неправильно. Они либо не выделяют необходимые вещества, либо выделяют их слишком много. Клетки могут быть патологически возбуждены, и тогда стимулируют "нехорошую" активность других, здоровых клеток. Эти "сбившиеся с пути" клетки надо найти и либо уничтожить, либо изолировать, либо "перевоспитать" с помощью электростимуляции. В такой ситуации нельзя "увидеть" пораженный участок. Мы должны его вычислить чисто теоретически, как астрономы вычислили орбиту Нептуна.
Именно здесь для нас особенно важны фундаментальные знания о принципах работы мозга, о взаимодействии его участков, о функциональной роли каждого участка мозга. Мы используем результаты стереотаксической неврологии - нового направления, разработанного в институте покойным профессором В. Стереотаксическая неврология - это "высший пилотаж", однако именно на этом пути нужно искать возможность лечения многих тяжелых заболеваний, в том числе и психических. Результаты наших исследований и данные других лабораторий указывают на то, что практически любая, даже очень сложная психическая деятельность мозга обеспечивается распределенной в пространстве и изменчивой во времени системой, состоящей из звеньев различной степени жесткости. Понятно, что вмешиваться в работу такой системы очень трудно. Тем не менее сейчас мы это умеем: например, можем создать новый центр речи взамен разрушенного при травме. При этом происходит своеобразное "перевоспитание" нервных клеток. Дело в том, что существуют нервные клетки, которые от рождения готовы к своей работе, но есть и другие, которые "воспитываются" в процессе развития человека. Научаясь выполнять одни задачи, они забывают другие, но не навсегда. Даже пройдя "специализацию", они в принципе способны взять на себя выполнение каких-то других задач, могут работать и по-другому.
Поэтому можно попытаться заставить их взять на себя работу утраченных нервных клеток, заменить их. Нейроны мозга работают как команда корабля: один хорошо умеет вести судно по курсу, другой - стрелять, третий - готовить пищу. Но ведь и стрелка можно научить готовить борщ, а кока - наводить орудие. Нужно только объяснить им, как это делается. В принципе это естественный механизм: если травма мозга произошла у ребенка, у него нервные клетки самопроизвольно "переучиваются". У взрослых же для "переучивания" клеток нужно применять специальные методы. Этим и занимаются исследователи - пытаются стимулировать одни нервные клетки выполнять работу других, которые уже нельзя восстановить. В этом направлении уже получены хорошие результаты: например, некоторых пациентов с нарушением области Брока, отвечающей за формирование речи, удалось обучить говорить заново. Другой пример - лечебное воздействие психохирургических операций, направленных на "выключение" структур области мозга, называемой лимбической системой. При разных болезнях в разных зонах мозга возникает поток патологических импульсов, которые циркулируют по нервным путям.
Эти импульсы появляются в результате повышенной активности зон мозга, и такой механизм приводит к целому ряду хронических заболеваний нервной системы, таких, как паркинсонизм, эпилепсия, навязчивые состояния. Пути, по которым проходит циркуляция патологических импульсов, надо найти и максимально щадяще "выключить". В последние годы проведены многие сотни особенно в США стереотаксических психохирургических вмешательств для лечения больных, страдающих некоторыми психическими нарушениями прежде всего, навязчивыми состояниями , у которых оказались неэффективными нехирургические методы лечения. По мнению некоторых наркологов, наркоманию тоже можно рассматривать как разновидность такого рода расстройства, поэтому в случае неэффективности медикаментозного лечения может быть рекомендовано стереотаксическое вмешательство. Детектор ошибок Очень важное направление работы института - исследование высших функций мозга: внимания, памяти, мышления, речи, эмоций. Этими проблемами занимаются несколько лабораторий, в том числе та, которой руковожу я, лаборатория академика Н. Бехтеревой, лаборатория доктора биологических наук Ю. Присущие только человеку функции мозга исследуются с помощью различных подходов: используется "обычная" электроэнцефалограмма, но на новом уровне картирования мозга, изучение вызванных потенциалов, регистрация этих процессов совместно с импульсной активностью нейронов при непосредственном контакте с мозговой тканью - для этого применяются имплантированные электроды и техника позитронно-эмиссионной томографии. Работы академика Н. Бехтеревой в этой области достаточно широко освещались в научной и научно-популярной печати.
Она начала планомерное исследование психических процессов в мозге еще тогда, когда большинство ученых считали это практически непознаваемым, делом далекого будущего. Как хорошо, что хотя бы в науке истина не зависит от позиции большинства. Многие из тех, кто отрицал возможность таких исследований, теперь считают их приоритетными. В рамках этой статьи можно упомянуть только о самых интересных результатах, например о детекторе ошибок. Каждый из нас сталкивался с его работой. Представьте, что вы вышли из дому и уже на улице вас начинает терзать странное чувство - что-то не так. Вы возвращаетесь - так и есть, забыли выключить свет в ванной. То есть, вы забыли выполнить обычное, стереотипное действие - щелкнуть выключателем, и этот пропуск автоматически включил контрольный механизм в мозге. Этот механизм в середине шестидесятых был открыт Н. Бехтеревой и ее сотрудниками.
Несмотря на то, что результаты были опубликованы в научных журналах, в том числе и зарубежных, сейчас они "переоткрыты" на Западе людьми, знающими работы наших ученых, но не гнушающимися прямым заимствованием у них. Исчезновение великой державы привело и к тому, что в науке стало больше случаев прямого плагиата. Детекция ошибок может стать и болезнью, когда этот механизм работает больше, чем нужно, и человеку все время кажется, что он что-то забыл. В общих чертах нам сегодня ясен и процесс запуска эмоций на уровне мозга. Почему один человек с ними справляется, а другой - "западает", не может вырваться из замкнутого круга однотипных переживаний? Оказалось, что у "стабильного" человека изменения обмена веществ в мозге, связанные, например, с горем, обязательно компенсируются направленными в другую сторону изменениями обмена веществ в других структурах. У "нестабильного" же человека эта компенсация нарушена. Кто отвечает за грамматику? Очень важное направление работы - так называемое микрокартирование мозга. В наших совместных исследованиях обнаружены даже такие механизмы, как детектор грамматической правильности осмысленной фразы.
Например, "голубая лента" и "голубой лента". Смысл понятен в обоих случаях. Но есть одна "маленькая, но гордая" группа нейронов, которая "взвивается", когда грамматика нарушена, и сигнализирует об этом мозгу. Зачем это нужно? Вероятно, затем, что понимание речи часто идет в первую очередь за счет анализа грамматики вспомним "глокую куздру" академика Щербы. Если с грамматикой что-то не так, поступает сигнал - надо проводить добавочный анализ. Найдены микроучастки мозга, которые отвечают за счет, за различение конкретных и абстрактных слов. Показаны различия в работе нейронов при восприятии слова родного языка чашка , квазислова родного языка чохна и слова иностранного вахт - время по-азербайджански. В этой деятельности по-разному участвуют нейроны коры и глубоких структур мозга. В глубоких структурах в основном наблюдается увеличение частоты электрических разрядов, не очень "привязанное" к какой-то определенной зоне.
Эти нейроны как бы любую задачу решают всем миром. Совершенно другая картина в коре головного мозга.
Также процедура станет более точной и индивидуальной. До этого ученые нашли вещества для борьбы с первопричиной болезни Паркинсона — образованием агрегатов токсичных белков в мозге. Они сделали это с помощью ИИ, причем на поиск молекул ушло в 10 раз меньше времени, чем обычно. Ранее были названы заболевания, с которыми можно спутать инсульт.
Таким образом, мозаичные варианты в клетках работают как фамилии у людей», — говорят исследователи. Они получили прямой доступ к мозгу двух нейротипичных доноров, умерших по естественным причинам. Они использовали мозаичные варианты, чтобы проследить, откуда взялись эти клетки, выявить родственные клетки, родившиеся в той же области мозга, и определить, насколько далеко каждая «фамилия» распространилась по мозгу. Ими было обнаружено, что некоторые тормозные и возбуждающие нейроны, по сути, имеют одну и ту же «фамилию», что, по словам Чанга, означает, что эти два типа нейронов имеют общую родословную. Вероятно, эти два типа разветвились на поздних этапах эмбрионального развития мозга, добавил он, отметив, что подобная клеточная связь не встречается у других видов. Из искусственного интеллекта создали нейронные связи прямо как в головном мозге человека. Согласно исследованию, проведенному учеными из Университетского колледжа Лондона, недавние достижения в области генеративного искусственного интеллекта помогли объяснить, как воспоминания позволяют нам познавать мир, заново переживать события прошлого и получать совершенно новый опыт в процессе воображения и планирования.
Новости по теме Мозг
Он распространен по всему мозгу и регулирует фундаментальные нейрональные процессы за счет связывания со специфическими ионотропными рецепторами GlyR. Mind & Brain coverage from Scientific American, featuring news and articles about advances in the field. В своем исследовании ученые использовали образцы тканей мозга двух мужчин, которые умерли в возрасте 50 лет.