почему магниты магнитят, смысл магнитов, суть магнитизма, магнитный эффект И так, с самой сутью магнита и его природой действия разобрались. Именно за счет железа магнетит обладает свойствами притягивать себе подобное.
2. Почему магнит магнитит: строение магнитных материалов
- Что такое магнит и магнетизм?
- Почему магнит притягивает железо - краткое объяснение
- Почти понятно о магнетизме... тайная сила камня магнита | Granite of science
- Перечень магнитящегося цветмета
Почему магнит притягивает железо
Почему железо притягивается к магниту Почему магнит не притягивает. Это объясняет, почему магнит может притягивать железо через некоторое расстояние. Почему постоянный магнит притягивает железо? У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно. После эксперимента с лягушкой стало ясно, что магнит способен притягивать все, но почему сильнее всего он притягивает железо? Краткое объяснение причин по которым магнит может притягивать железо. Именно за счет железа магнетит обладает свойствами притягивать себе подобное.
Являются ли магниты металлом? Правда, объясненная любителям науки
Перегрин — автор первого экспериментального исследования и первого детального научного труда по магнетизму. Уильям Гильберт William Gilbert , 1544—1603 — английский физик и придворный врач, исследователь электричества и магнетизма, автор первой теории магнитных явлений. Джон Гуденаф John Goodenough , род. Естественнонаучные исследования Эрстед, проводя эксперименты с магнитной стрелкой и проводником, приметил следующую особенность: разряд энергии, направленный в сторону к стрелке, мгновенно на нее действовал, и она начинала отклоняться. Стрелка всегда отклонялась, с какой бы стороны он не подошел. Продолжать многократные эксперименты с магнитом стал физик из Франции Доминик Франсуа Араго, взяв за основу трубку из стекла, перемотанную металлической нитью, посередине этого предмета он установил железный стержень. С помощью электричества, находившееся внутри железо начинало резко намагничиваться, из-за этого стали прилипать различные ключи, но стоило отключить разряд, и ключи сразу падали на пол. Исходя из происходящего физик из Франции Андре Ампер, разработал точное описание всего происходящего в этом эксперименте. Первые шаги к объединенной теории Ситуация изменилась лишь в конце 1990-х — начале 2000-х годов с появлением и развитием так называемой динамической теории среднего поля. Эта теория приближенно сводит сложную проблему движения электронов в кристалле к рассмотрению изменения их состояния со временем на одном выбранном атоме. Теория позволила описать переходы металл — изолятор в ряде веществ, что, естественно, привело к вопросу о ее способности объяснить магнетизм переходных металлов.
Читайте также: 1П611 Станок токарно-винторезный повышенной точности универсальный схемы, описание, характеристики В частности, железо и никель были исследованы в рамках этой теории Михаилом Кацнельсоном, Александром Лихтенштейном совместно с американским физиком Габриэлем Котляром в 2001 году. Ими впервые из полностью микроскопического то есть исходящего из первопринципных уравнений расчета в рамках зонной картины было получено линейное поведение обратной восприимчивости с температурой закон Кюри — Вейсса , которое обычно интерпретируется как указание на присутствие локальных моментов. Также ими была найдена слабая зависимость локальной восприимчивости от времени на оси мнимого времени, которое проще изучать с теоретической точки зрения , свидетельствующая о наличии локальных моментов.
Первые вообще отвергали понятие поля и считали, что тела влияют друг на друга через пустоту, мгновенно с бесконечной скоростью. Вторые же не соглашались, настаивали на том, что между объектами должен быть некоторый агент, переносчик этого взаимодействия, коим физические поля и являются. Вся современная материалистическая физика основывается на теории близкодействия. Например, видимый свет - это волна.
Почти повсюду эти линии идут не горизонтально, а наклонены к земной поверхности[67]. Их направление указывает на то, что Земля похожа на огромный магнит с магнитной осью, слегка повернутой относительно географической оси вращения фиг.
Именно это слабое земное магнитное поле используется для навигации с помощью компаса, несмотря на то, что стальные корабли обладают собственным магнитным полем, которое частично имеет переменный характер, что сильно затрудняет навигационное дело. Эквивалентный магнит для внешнего магнитного поля Земли. Северный полюс стрелки компаса указывает на север Канады. Следовательно, там должен находиться южный магнитный полюс Земли. Этот полюс, однако, называют Северным магнитным полюсом. Если это будет вас затруднять, то избегайте таких сокращений, как «северный полюс», и называйте все полюсы их полными именами, т. Это избавит от путаницы. Когда же вы полностью уясните себе этот вопрос, вам, возможно, снова захочется вернуться ради экономии времени к сокращенным наименованиям. Магнитное поле Земли на значительных пространствах однородно, т.
Поэтому с его помощью можно провести очень важный опыт — проверить равноправность северного и южного полюсов магнита. Положим магнит на пробку и пустим его плавать в воду. Земное магнитное поле повернет магнит в направлении N-S. Будет ли оно также перемещать его в каком-либо определенном направлении, например на север? Если северный и южный полюсы плавающего магнита обладают равной силой хотя создаваемые ими поля противоположны по направлению , можно ожидать, что магнитное поле Земли будет притягивать их одинаково. Под действием такого притяжения магнит повернется вокруг своей оси, но не будет двигаться по поверхности воды ни на север, ни в каком-либо другом направлении. Если же полюсы плавающего магнита неодинаковы, то можно ожидать, что магнитное поле Земли будет действовать на них с различной силой и заставит магнит перемещаться в некотором направлении. Проведите этот важный опыт сами. Хотя земное магнитное поле довольно слабое, оно способно заметно искривить путь электронного пучка.
В следующих разделах мы увидим, как магнитное поле может выталкивать проводник с электрическим током, действуя подобно катапульте. Потоки заряженных частиц космического излучения, приходящие из мирового пространства, также заворачиваются земным магнитным полем. Это позволяет использовать Землю во многих современных экспериментах с космическими лучами как гигантский анализирующий магнит. Как намагничивают магниты В современной практике намагничивание магнитов производится с помощью электрического тока. Для этого ток пропускается не через намагничиваемый металлический брусок, а через намотанную вокруг него проволочную катушку. Магнитное поле внутри длинной цилиндрической катушки соленоида однородно, а напряженность его легко менять, регулируя ток. Поэтому такая катушка чрезвычайно удобна для опытов по намагничиванию. Если мы поместим стальной брусок внутрь соленоида и подадим в катушку ток, то увидим, что при включенном токе брусок намагничивается. После выключения тока брусок по-прежнему остается магнитом, хотя и несколько более слабым.
Для намагничивания бруска достаточно пропускать ток через катушку в течение всего лишь доли секунды. Существует несколько материалов, пригодных для получения таких «постоянных магнитов». Для этой цели подходит большинство сортов закаленной стали. Еще лучше специальные стали, содержащие вольфрам или кобальт. Некоторые новые сплавы, в состав которых входит алюминий, например «алнико», позволяют создавать еще более сильные магниты, однако требуют больших полей для намагничивания. Все эти материалы также можно намагнитить, помещая их на короткое время в магнитное поле. Обращение магнитного поля путем перемены направления тока в катушке меняет и направление намагничивания. Как размагничивают магниты Намагниченный стальной брусок можно полностью размагнитить, помещая его внутрь катушки, через которую пропущен переменный ток, и затем медленно вынимая оттуда. Другой способ — постепенно уменьшать силу переменного тока до нуля с помощью реостата.
Временное намагничивание мягкого железа Пытаясь намагнитить кусок мягкого железа, т. Если ток выключить, брусок почти полностью потеряет магнитные свойства. Мягкое железо оказывается прекрасным материалом для временного намагничивания, поэтому оно используется для изготовления сердечников электромагнитов в электромоторах и других электромагнитных устройствах. Мы можем временно намагнитить брусок из мягкого железа, поднося к нему магнит. Если N-полюс магнита находится около конца А бруска АВ, то стрелка компаса покажет, что брусок приобрел магнитные свойства, причем его южный полюс оказывается в А, т. Если же мы унесем магнит, эти полюсы сразу исчезнут. Теперь вы можете понять, почему ненамагниченные железные опилки притягиваются к магниту. Он намагничивает эти небольшие кусочки железа, но неоднородное магнитное поле оказывает неодинаковое воздействие на их полюсы. Кусочки железа, близкие к северному полюсу магнита, будут иметь на краю, обращенном к магниту, южный полюс, и этот полюс будет сильно притягиваться к магниту.
Их северный полюс будет находиться дальше от магнита, т. Таким образом, опилки будут сильнее притягиваться к магниту, чем отталкиваться от него[68]. Обобщая эти рассуждения, можно сказать, что магнит притягивает любой ненамагниченный кусок железа, создавая в нем временное намагничивание. Даже маленькая компасная стрелка будет временно намагничивать железный брусок. Будучи более подвижной, чем тяжелый брусок, стрелка будет сама поворачиваться и указывать в его сторону. Ее вращение говорит нам только о том, что как стрелка, так и железный брусок могут намагничиваться и что по крайней мере один из них уже намагничен. Следовательно, наблюдая притяжение, нельзя сказать, являются ли магнитами оба тела. Однако такое заключение легко сделать, если мы увидим, что они отталкиваются. Магнитные и немагнитные материалы Если попытаться намагнитить образцы из меди, железа, стекла и других материалов, помещая их в соленоид с током, то выяснится, что лишь некоторые из этих образцов обнаруживают магнитные свойства.
Такие материалы мы называем магнитными. К ним принадлежат железо, многие железные сплавы, никель. Ряд веществ, как, например, жидкий кислород и некоторые соединения железа, тоже в слабой степени проявляют магнитные свойства, но большинство веществ немагнитно. Основываясь на этом, мы говорим, что немагнитные вещества невозможно намагнитить в противоположность магнитным, и последние, если они намагничены, мы называем магнитами. Более тонкие опыты опровергают это простое правило. Многие вещества при помещении их в магнитное поле обнаруживают слабые временные магнитные эффекты, и мы можем проследить их магнитные свойства вплоть до атомного уровня. Более того, мы в состоянии показать, что некоторые атомы, сами являются магнитами, и знаем способ который будет описан далее , как измерить их магнитные свойства. Даже те немногие металлы, как, например, железо, которым свойственны значительные магнитные эффекты и которые могут служить материалом для постоянных магнитов, также обязаны своими свойствами атомному магнетизму. Их атомы обладают специфической способностью объединяться, при этом атомные магнитики выстраиваются-особым образом, создавая прочные постоянные группы.
Атомная теория предсказывает также и другие магнитные свойства атомов. Весьма забавно, что результатом этих предсказаний является отрицательный магнетизм, совсем не похожий на тот, с которым мы всегда встречаемся, и теория утверждает, что им, хотя и в очень слабой степени, обладают все вещества. На чем основаны эти предсказания? Достаточно ли они правдоподобны? Наблюдался ли этот отрицательный магнетизм на опыте? Если да, то почему же не для всех веществ? На эти вопросы мы кратко ответим в гл. Магнитное поле электрического тока Опыты говорят нам о том, что всякий электрический ток создает вокруг себя магнитное поле. Магнитное поле, окружающее длинную катушку из проволоки, которую часто называют соленоидом, очень похоже на поле намагниченного стержня.
При детальном сравнении оказывается, что конфигурации внешних магнитных полей такого стержня и соленоида, имеющего ту же форму и размеры, попросту одинаковы. Можно показать, что внутри полой катушки магнитные силовые линии идут плотным параллельным пучком, образуя сильное однородное магнитное поле. Задача 2 Почему лучше намагничивать стальной стержень, помещая его внутри соленоида с током, а не снаружи? Задача 3 На чертеже а фиг. Если уменьшать длину соленоида, сжимая его, как гармошку;, конфигурация поля будет меняться, как показано на чертеже б. Представим себе, что катушка сжата до предела чертеж в , так что превратилась в один виток. Можете ли вы предсказать, как будет выглядеть магнитное поле витка с током, представив себе характер сжатия силовых линий? Изобразите ожидаемую конфигурацию поля. Согласуется ли она с опытом?
Задача 4 Внешнее магнитное поле соленоида совпадает с полем намагниченного стержня одинаковых размеров и формы. Какую же форму имел бы магнит, создающий такое же поле, как и виток с током в? Нарисуйте или опишите этот эквивалентный магнит. Если ее подвесить, она будет поворачиваться до тех пор, пока ее ось не укажет в направлении N-S. Она ведет себя так, как будто имеет на концах «полюсы», которые притягивают или отталкивают полюсы других магнитов. Небольшая катушка с током, помещенная в магнитное поле Земли, магнита или другой катушки, будет поворачиваться наподобие стрелки компаса, пока ее магнитная ось не станет параллельной внешнему полю. Магнитное поле прямого провода с током Есть один особый очень важный случай проводника с током, когда нельзя подобрать эквивалентного магнита одинакового размера и формы. Это случай длинного прямого провода с током. С помощью железных опилок или крошечного компаса можно показать, что магнитные силовые линии такого проводника представляют собой опоясывающие его окружности, расположенные, разумеется, не в одной плоскости, а повсюду вокруг него.
Магнитное поле сильнее вблизи провода и ослабевает вдали от него. Этот первый эффект магнитного действия электрического тока был открыт следующим образом. В конце своей лекции о свойствах электрического тока датский ученый Эрстед поместил токонесущий провод около компасной стрелки и был до глубины души изумлен, увидев, что стрелка повернулась. Когда известие об этом открытии распространилось по Европе, оно породило целую лавину исследований. Ампер и другие ученые, пытаясь объяснить эти опыты, вскоре ввели в физику понятие электромагнитного поля. Явление, обнаруженное Эрстедом, представлялось крайне удивительным. Таким образом, силы действовали на компасную стрелку не в направлении прямой, соединяющей ее полюс с проводником, а в перпендикулярном направлении. Последующие опыты подтвердили это заключение и показали, что сила, действующая со стороны магнита на ток, перпендикулярна как направлению магнитного поля, так и направлению тока — проводник с током, помещенный в магнитное поле, испытывает боковое усилие. Эти новые силы полностью отличались от уже известных обычных сил, таких, как, например, силы тяготения направленные по прямой от одной массы к другой или силы, возникающие при столкновении упругих шаров или молекул которые отбрасывают их в противоположные стороны , а также силы притяжения или отталкивания , действующие по прямой между электрическими зарядами и между магнитными полюсами.
До открытия Эрстеда были известны только такие силы, которые действуют вдоль прямой, соединяющей взаимодействующие тела. Незадолго до Великой Французской Революции школа мыслителей, включая Вольтера и других, создала механистическую философию полностью предсказуемой Вселенной, основываясь на концепции таких простых сил. Когда обнаружилось, что новые электромагнитные силы зависят от скорости движения электрических зарядов тока , они стали казаться еще более странными. Это были силы, которые увеличивались с ростом скорости и действовали перпендикулярно ей! Однако именно такие силы заставляют работать электрический двигатель. Мы можем проиллюстрировать происхождение этих сил с помощью карты магнитного поля. Круговое магнитное поле, окружающее прямолинейный проводник с током, само по себе несколько необычно, но и только. Однако в комбинации с однородным магнитным полем оно создает отклоняющие силы, без которых невозможна работа электродвигателей, измерительных приборов, телевизионных трубок и некоторых гигантских ускорителей заряженных частиц. Чтобы продемонстрировать, откуда возникают эти силы, изобразим магнитные силовые линии с помощью векторов.
Магнитное поле действует как катапульта Мы сможем предсказать направление действия результирующей силы, складывая векторы сил, отвечающих двум различным полям. Конфигурация однородного магнитного поля — это ряд равномерно идущих параллельных силовых линий, как показано на фиг. Мы рисуем эти окружности сгущающимися вблизи проводника, чтобы показать, что поле около него сильнее. Векторное сложение этих двух полей дает примерно ту же картину, что мы получили в гл. Поэтому мы поступим точно так же, как и раньше. Изобразим оба поля вместе, как на фиг. Метод сложения векторов и доказательство выталкивающего действия магнитного поля на проводник с током. В некоторой произвольной точке А нарисуем стрелки-векторы, отмечающие напряженности обоих полей, одну в направлении однородного магнитного поля, а другую по касательной к окружности. Сложим эти векторы и обозначим результирующее направление короткой стрелкой, выходящей из А.
В другой точке В однородное поле не меняется, а поле, создаваемое током, ослабевает. Сложим опять их векторы и снова обозначим результирующее направление короткой стрелкой, исходящей из В чертеж г. Нанесем множество таких стрелок по всей диаграмме. Они покажут нам направление результирующего поля, которое мы хотели найти. Начертим силовые линии этого поля, проходящие через стрелки чертеж д. Здравый смысл подсказывает нам следующие очевидные выводы: а Вблизи проводника преобладает магнитное поле, создаваемое током, и силовые линии суммарного поля практически совпадают с окружностями, в центре которых находится проводник. В этой точке оба поля полностью компенсируют друг друга. Чтобы правильно начертить конфигурацию результирующего магнитного поля, нужно запастись терпением. К счастью, карту поля можно получить, пользуясь косвенными геометрическими методами основанными на математическом соотношении, которое обычно записывается , и тому, кто их знает, будет легко вычертить ее на нашей диаграмме.
Соответствующая картина показана на фиг. Если, следуя Фарадею, мы будем видеть в магнитных силовых линиях графическое изображение реальных сил, которые действуют на магниты и проводники с током, то придем к заключению, что результирующее магнитное поле, изображенное на последнем рисунке, будет тянуть проводник вниз. Таким образом, здесь мы имеем дело с поперечной силой, перпендикулярной как проводнику, так и направлению однородного магнитного поля. Разглядывая эти картинки, мы можем сказать, что результирующее поле действует наподобие катапульты или рогатки фиг. Опыт, демонстрирующий конфигурацию магнитных силовых линий при взаимодействии токов. Поперечная катапультирующая сила[71] Действует ли на самом деле эта сила непосредственно на проводник с током, проходящий поперек магнитного поля? Проверьте это на опыте, используя гибкий провод, электрическую батарею и подковообразный магнит. Включайте электрический ток при различных положениях проводника в сильном однородном поле между полюсами магнита. Если ток достаточно велик, то, как мы и ожидали, возникает поперечная сила, смещающая провод в сторону см.
Но для электрического тока не обязательно нужен проводник; он может быть и просто пучком заряженных частиц, например электронов. Такой электронный луч также отклоняется магнитным полем, — этот эффект, широко используемый в практических целях, мы рассмотрим в гл.
Контакты «Что такое магнит и почему он притягивает железо? Существует легенда о храбром рыцаре Магнитолике, в которой рассказывается об огромной горе, у подножия которой люди нашли камни, обладающие невиданной силой- притягивать к себе некоторые предметы. Что это за интересное явление? Конечно же это магнит.
Энергоинформ — альтернативная энергетика, энергосбережение, информационно-компьютерные технологии
3 разных типа магнитов и их применение | | Почему железо притягивается к магниту Почему магнит не притягивает. Это объясняет, почему магнит может притягивать железо через некоторое расстояние. |
Почему магнит притягивает металл ? | Почему к постоянному магниту не притягиваются одни материалы, зато отлично «липнут» другие? |
Какой полюс магнита притягивает железо? | почему магнит притягивает хлопья? их и вправду обогащают металлической пылью, что ли? хлопья в воде после блендера выделили МЕТАЛЛИЧЕСКУЮ КРОШКУ: почему банан и киви не реагируют на магнит, если в них связанного железа в разы выше, чем. |
Просмотр темы - Откуда берется почти бесконечная энергия в магните ? • | 1) Магниты притягивают и захватывают небольшие кусочки железа. |
Неодимовый магнит – суперсильный и суперполезный | Если магнит притянул предмет, то он как бы его привязал и дальше он бездействует и энергию не расходует. |
Почему магнит притягивает железо?
Итак, если свойство притягивания к магниту есть у всех веществ, то почему именно металлические предметы сильно магнитятся, и этот процесс можно увидеть? Почему железо притягивается к магниту Почему магнит не притягивает. Это объясняет, почему магнит может притягивать железо через некоторое расстояние. притягивать, «любить» железо. 1) Магниты притягивают и захватывают небольшие кусочки железа.
Новосибирский школьник «притягивает» к себе ложки и мелочь — его мама сняла это на видео
Как делают магниты Магниты, такие, как игрушки, прилепленные к вашему домашнему холодильнику, или подковы, которые вам показывали в школе, имеют несколько необычных черт. Прежде всего, магниты, притягиваются к железным и стальным предметам, например к двери холодильника. Кроме того, у них есть полюса. Приблизьте друг к другу два магнита. Южный полюс одного магнита притянется к северному полюсу другого. Северный полюс одного магнита отталкивает северный полюс другого. Магнитное и электрический ток Магнитное поле генерируется электрическим током, то есть движущимися электронами. Электроны, движущиеся вокруг атомного ядра, несут отрицательный заряд. Направленное перемещение зарядов с одного места на другое называется электрическим током. Электрический ток формирует около себя магнитное поле.
Силовые линии магнитного поля Это поле своими силовыми линиями, как петлей, охватывает путь электрического тока, подобно арке, которая стоит над дорогой. Например, когда включают настольную лампу и по медным проводам течет ток, то есть электроны в проводе перескакивают от атома к атому и вокруг провода создается слабое магнитное поле.
Вещества которые не притягиваются магнитом. Постоянные магниты. Магнит притягивает картинка. Вода и магнитное поле. Опыт с магнитом и водой. Магнит притягивает через воду. Магнит для воды.
Закрепление материала алюминия. Какие полюса магнитов притягиваются. Почему магниты притягиваются и отталкиваются. Почему магниты отталкиваются. Примеры магнитныхявоений. Почему магнит магнит притягивает железо. Магнитится ли чугун. Сталь притягивается магнитом. Магнитится ли чугун магнитом.
Чугун магнитик?. Магнит притягивает металлические предметы. Почему магнит притягивает стальные предметы. Как магнит притягивает железо объяснить ребенку. Почему магнит притягивает железо как объяснить ребенку. Полюса магнита. Название полюсов магнита. Магнит примагничивает. Два полюса магнита.
Опыт магнит притягивает предметы. Какие металлы магнитные. Какие металлы притягивает магнит. Металлы и сплавы которые магнитятся. Металлы которые примагничиваются. Алюминий притягивается к магниту. Магнитится ли алюминий. Алюминий магнитится или нет. Железо магнитится к магниту.
Вывод о магните. Магнит презентация для дошкольников. Вывод по теме магнит. Опыты с магнитами. Эксперименты с магнитом. Металлические предметы, которые притягиваются к магниту. Притягивается ли медь к магниту. Вывод какие материалы притягивает магнит. Вещества притягивающиеся к магниту.
Металл примагничивается к магниту. Магнит притягивает людей.
И наконец, он первым провел четкую границу между притяжением магнетита и притяжением натертого янтаря, которое он назвал электрической силой от латинского названия янтаря electrum. Он развел «по углам» электричество и магнетизм.
Несмотря на то что это был чрезвычайно новаторский труд, по достоинству оцененный и современниками, и потомками, после Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало. Когда будущий автор «Голого короля» и «Дюймовочки» четырнадцатилетним подростком добрался до Копенгагена, он обрел друга и покровителя в лице своего двойного тезки, ординарного профессора физики и химии Копенгагенского университета Ганса Христиана Эрстеда рис. И оба прославили свою страну на весь мир. Ганс Христиан Эрстед 1777—1851 Многие ученые того периода находились под влиянием философских концепций Шеллинга, которые заключались в том, что все силы в природе возникают из одних и тех же источников.
Поэтому Эрстед начиная с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом. Это удалось сделать весной 1820 года, во время очередной лекции по электричеству. Опыт Эрстеда, проведенный в 1820 г. Эрстед на лекции демонстрировал нагрев проволоки электричеством от вольтова столба, для чего составил электрическую цепь.
На демонстрационном столе случайно находился морской компас, поверх стеклянной крышки которого проходил один из проводов. Вдруг кто-то из студентов присутствующих на лекции случайно заметил, что, когда Эрстед замкнул цепь, магнитная стрелка компаса отклонилась в сторону. Начались исследования обнаруженного феномена. Для начала Эрстед повторил условия своего лекционного опыта.
Опыты Эрстеда 1. Магнитные стрелки располагаются на подставке с иглой и могут свободно вращаться.
После воздействия такого поля на металл он еще долгое время сохраняет значительную намагниченность и имеет свое магнитное поле.
Искусственные магниты можно сделать любой формы и размеров. Примечание 1 Интересный факт: наша планета Земля представляет собой огромный магнит. Раскаленная масса, состоящая из смеси заряженных частиц, вращается вместе с Землей.
Почему магнитится только железо, а алюминий-нет?
притягивать, «любить» железо. Почему магнит притягивает железо, а не алюминий? Железо притягивается к магнитам из-за его высокопроводящей природы. Это создает силы притяжения между магнитом и железом, что приводит к их притяжению друг к другу. Тем не менее немногие способны объяснить, что заставляет магнит притягивать, и почему его силе подвластно именно железо. Если магнит притянул предмет, то он как бы его привязал и дальше он бездействует и энергию не расходует. Они притягиваются к магниту достаточно сильно — так, что притяжение ощущается.
Почему магнит притягивает железо - краткое объяснение
Почему тогда магнит не все притягивает? Как и другие постоянные магниты, неодимовый магнит притягивает только ферромагнетики. Сама по себе кристаллическая решетка построена таким образом, что в условиях сильных магнитных или электрических полей железо может намагничиваться и притягиваться к другому магниту. Так что такое магнит, и почему он притягивает? Магнит притягивает только железо; · Магнит может притягивать предметы на расстоянии, благодаря магнитному полю.
Почему магнит притягивает железо
В результате железо само становится постоянным магнитом. В широком смысле магнит представляет собой элемент, обладающий собственным магнитным полем. Это кусок стали или железной руды с примесями алюминия, кобальта и никеля. В состав магнита входит огромное число компонентов, которые называются доменами, у каждого из которых есть южный и северный полюс. В объединенном состоянии домены образуют единую магнитную массу с множеством сориентированных полюсов. Если домены находятся в беспорядочном состоянии, то они теряют свойство притягивать железо, а их магнитная сила теряется полностью. Благодаря специфике соединения доменов, каждый магнит имеет два полюса — южный и северный. Если магнит разрезать, то их полярность также сохранится. Всего существует три разновидности магнитов: природные, электромагниты и временные магниты.
Природные магниты — это железная руда. Временные — это элементы, которые подвержены влиянию магнитного поля гвозди, скрепки, гайки, монеты. Электромагниты — это магниты с индукционной катушкой и проводимым через нее электрическим током. Почему магниты притягивают железо? Каждый домен магнита представляет собой отдельный маленький магнитик микроскопического размера. При приближении к ним железа, элементы меняют свое положение и выстраиваются в своеобразный ряд. Полюсы при этом направлены в одну сторону, за счет чего создается единство магнитного поля. Элементы железа сразу вступают в контакт с доменами магнита и начинают притягиваться.
Процесс притягивания магнитом железа и других магнитов обусловлен законами физики. Домены магнита, представляющие собой электроды, обладают собственной массой и зарядом. При совпадении зарядов домены начинают передвигаться с небольшой скоростью. Элементы железа в магните и кусок чистого железа без примесей обладают сходствами в своем составе. Такой нюанс становится главной причиной притягивания электродов друг к другу. Магнит не будет притягивать дерево, пластик или другие неметаллические материалы. Свойством упорядоченного движения и расположения электродов отличаются только сталь и железо. В силу таких факторов, единственными материалами, которые притягивает магнит, становятся сталь и железо.
Отдельный кусок стали или железа можно превратить во временный магнит. Если долго держать соединенными магнит и один из указанных элементов, то электроды в стали иди железе начнут образовывать собственное магнитное поле. Атомы при этом будут увеличивать свой размер. В течение некоторого времени способность магнититься сохранится и кусок стали или железа можно будет использовать в качестве самостоятельного магнита. Что заставляет некоторые металлы притягиваться к магниту? Почему магнит притягивает не все металлы? Почему одна сторона магнита притягивает, а другая отталкивает металл? И что делает неодимовые металлы такими крепкими?
Для того чтобы ответить на все эти вопросы, необходимо вначале дать определение самому магниту и понять его принцип. Магниты — это тела, обладающие способностью притягивать железные и стальные предметы и отталкивать некоторые другие благодаря действию своего магнитного поля. Силовые линии магнитного поля проходят с южного полюса магнита, а выходят с северного полюса. Постоянный или жесткий магнит постоянно создает сам свое магнитное поле. Электромагнит или мягкий магнит может создавать магнитные поля только в наличие магнитного поля и только на короткое время, пока находится в зоне действия того или иного магнитного поля. Электромагниты создают магнитные поля только в том случае, когда через провод катушки проходит электричество. До недавнего времени, все магниты изготовлялись из металлических элементов или сплавов. Состав магнита и определял его мощность.
Например: Керамические магниты, подобны тем, что используются в холодильниках и для проведения примитивных экспериментов, содержат помимо керамических композиционных материалов также железную руду. Большинство керамических магнитов, также называемых железными магнитами, не обладают большой силой притягивания. Они мощнее керамических магнитов, но значительно слабее некоторых редких элементов. Неодимовые магниты состоят из железа, бора и редко встречаемого в природе неодимового элемента. Магниты кобальта-самария включают кобальт и редко встречающиеся в природе элементы самария. За последние несколько лет ученые также обнаружили магнитные полимеры, или так называемые пластичные магниты. Некоторые из них очень гибкие и пластичные. Однако, одни работают только при чрезвычайно низких температурах , а другие могут поднимать только очень легкие материалы, например, металлические опилки.
Но чтобы обладать свойствами магнита, каждому из этих металлов нужна сила. Создание магнитов Многие современные электронные устройства работают на основе магнитов. Применять магниты для производства устройств стали относительно недавно, потому что магниты, существующие в природе, не обладают необходимой силой для работы аппаратуры, и только когда людям удалось сделать их более мощными, они стали незаменим элементом в производстве. Железняк, разновидность магнетитов, считается самым сильным магнитом из всех встречающихся в природе. Он способен притягивать к себе небольшие объекты, например, скрепки для бумаг и скобки. Где-то в 12-ом веке люди обнаружили, что с помощью железняка можно намагничивать частицы железа — так люди создали компас. Также они заметили, что если постоянно проводить магнитом вдоль железной иглы, то происходит намагничивание иголки. Саму иголку тянет в северо-южном направлении.
Позже, известный ученый Уильям Гилберт объяснил, что движение намагниченной иглы в северо-южном направление происходит за счет того, что наша планета Земля очень напоминает огромный магнит с двумя полюсами — северным и южным полюсом. Стрелка компаса не настолько сильная как многие перманентные магниты, используемые в наше время. Но физический процесс, который намагничивает стрелки компаса и куски неодимового сплава, практически одинаков. Все дело в микроскопических областях, называемых магнитными доменами, которые являются частью структуры ферромагнитных материалов, таких как железо, кобальт и никель. Каждый домен представляет собой крошечный, отдельный магнит с северным и южным полюсом. В ненамагниченных ферромагнитных материалах каждый из северных полюсов указывает в различные направления. Магнитные домены, направленные в противоположных направлениях, уравновешивают друг друга, поэтому сам материал не производит магнитное поле. В магнитах, с другой стороны, практически все или, по крайней мере, большая часть магнитных доменов направлены в одну сторону.
Вместо того, чтобы уравновешивать друг друга, микроскопические магнитные поля объединяются вместе, чтобы создать одно большое магнитное поле. Чем больше доменов указывает в одном направление, тем сильнее магнитное поле.
Причина, как ни странно в составе фрукта — наряду с железом в незначительном количестве в яблоке содержится много влаги, являющейся диамагнитным веществом. Поэтому магнит его отталкивает. Железа же в яблоках крайне мало и притянуть его даже самым сильным магнитом не удасться.
Подобные конструкции широко применяются в «Инверторных генераторах» с бензиновым приводом. Как правило, Китайского производства. Хотя их конструкция заметно менее эффективна. В Китайских лабораториях активно занимаются разработкой данного устройства. Однако они существенно отстают, хотя не стоит их недооценивать. Они великие мастера копирования и улучшения. Это Русская разработка. Очень бы не хотелось, что бы история повторялась, когда благодаря Русским учёным зарабатывали другие страны. А мы, как обычно, покупали у них «Наш» товар. В России есть действующая модель устройства. Вполне работоспособная. Не хватает лишь электронного блока управления. К сожалению, специалисты-схемотехники предлагают лишь блоки управления классической схемы. Но эти блоки работают неправильно. И, как правило, сгорают после непродолжительной работы. Переубедить специалистов практически невозможно. В производстве данное устройство совсем не дорогое. Как уже говорилось ранее, наибольшую трудность вызывает производство катушек индуктивности. Но при массовом производстве на станках автоматах, их производство становится простым и весьма не дорогим. Производство постоянных магнитов также уже широко практикуется. Остальные комплектующие тоже весьма просты, и их производство возможно на любом механическом заводе. Причём катушки индуктивности и постоянные магниты применяются идентичными, как на машинах малой мощности, так и на больших машинах. Разница только в количестве. Поэтому начав производство машин малой мощности, которых требуется огромное количество, нетрудно перейти к производству больших машин. Где могут применяться подобные устройства? Везде где есть потребность в электроэнергии. Хоть на балконе вашей квартиры, хоть на даче, хоть в пустыне, хоть в тайге или тундре. Хоть на Северном и Южном полюсе. Хоть на Луне или Марсе. Даже в открытом космосе.
То есть невозможно отделить полюса магнита друг от друга. Полюса магнита После появления книгопечатания труд Пьера де Марикура много раз издавался отдельной брошюрой. Его с уважением цитировали многие натуралисты вплоть до XVII столетия. Вклад У. Гильберта в теорию магнитного поля С трудами Пьера де Марикура был знаком и английский придворный врач Уильям Гильберт рис. Как врач ее величества, Гильберт увлекался модным на тот период исследованием весьма сомнительного «омолаживающего эффекта малых порций магнита». Именно по этой причине он и занялся изучением свойств магнитов. Он проделал более 600 опытов в свободное от работы время. Уильям Гильберт 1544—1603 В 1600 году, уникальном в историческом смысле, вышел его труд «О магните, магнитных телах и большом магните — Земле». В этой книге Гильберт не только привел практически все известные сведения о свойствах природных магнитов и намагниченного железа, но и описал собственные опыты, например с шаром из магнетита, с помощью которых он воспроизвел основные черты земного магнетизма. Он обнаружил, что на обоих магнитных полюсах такой «маленькой Земли» компасная стрелка устанавливается перпендикулярно ее поверхности, на экваторе — параллельно, а на средних широтах — в промежуточном положении рис. Расположение магнитной стрелки в разных частях Земли Тот магнитный полюс стрелки, который притягивается к географическому северному полюсу Земли, назвали северным. Противоположные магнитные полюса притягиваются, поэтому, вблизи географического северного полюса находится магнитный южный полюс. Так Гильберт смоделировал магнитное наклонение, о существовании которого в Европе знали уже более полувека. Также Гильберт обнаружил, что сильно нагретое железо теряет магнитные свойства, но при охлаждении они восстанавливаются. И наконец, он первым провел четкую границу между притяжением магнетита и притяжением натертого янтаря, которое он назвал электрической силой от латинского названия янтаря electrum.
Почему магнит притягивает железо? | Объясни мне, как ребенку!
Так что такое магнит, и почему он притягивает? Таким образом, магниты притягивают только железо из-за взаимодействия их магнитного поля с магнитными моментами электронов в атомах железа. Почему магнит притягивает металл? Магниты привлекают любые металлы, которые сделаны из железа или металлов с железом в них. Почему магнит притягивает металл? Магниты привлекают любые металлы, которые сделаны из железа или металлов с железом в них. Железа же в яблоках крайне мало и притянуть его даже самым сильным магнитом не удасться. Например, длинный железный гвоздь начинает притягивать к себе другие железные предметы, которых не может притянуть магнит, который намагнитил гвоздь.