одно из обозначений года, используемых для григорианского календаря (и его предшественник, юлианский календарь. Каждый век уникален своими вызовами и возможностями, он открывает новые горизонты и проливает свет на темные уголки прошлого.
Соответствие веков и лет таблица
Есть и некоторые другие обозначения, которые появились вскоре после Лейбница. Следующий пример из книги, вышедшей через несколько лет после смерти Ньютона. Это учебник алгебры, и он содержит весьма традиционные алгебраические обозначения, уже в печатном виде. А вот книга Лопиталя, напечатанная примерно в то же время, в которой уже практически современная алгебраическая нотация. И, наконец, вот пример от Эйлера, содержащий весьма современные обозначения для интегралов и прочего.
Эйлер — популяризировал современное обозначение для числа пи, которое первоначально было предложено Уильямом Джонсом, который рассматривал его как сокращение от слова периметр. Предложенная Лейбницем и сотоварищами нотация довольно долго оставалась неизменной. Происходили небольшие изменения, как, к примеру квадрат x x получил написание x2. Однако практически ничего нового не появилось.
Однако в конце 19 века наблюдается новый всплеск интереса к математической нотации, сопряжённый с развитием математической логики. Были некоторые нововведения, сделанные физиками, такими как Максвелл и Гиббс, в основном для векторов и векторного анализа, как следствие развития абстрактной алгебры. Однако наиболее значимые изменения были сделаны людьми, начиная с Фреге и приблизительно с 1879 года, которые занимались математической логикой. Эти люди в своих устремлениях были близки к Лейбницу.
Они хотели разработать нотацию, которая представляла бы не только математические формулы, но и математические выводы и доказательства. В середине 19 века Буль показал, что основы логики высказываний можно представлять в терминах математики. Однако Фреге и его единомышленники хотели пойти дальше и представить так как логику высказываний, так и любые математические суждения в соответствующих математических терминах и обозначениях. Фреге решил, что для решения этой задачи потребуются графические обозначения.
Вот фрагмент его так называемой "концептуальной нотации". К сожалению, в ней трудно разобраться. И в действительности, если посмотреть на историю обозначений в целом, то часто можно встретить попытки изобретения графических обозначений, которые оказывались трудными для понимания. Но в любом случае, обозначения Фреге уж точно не стали популярными.
Потом был Пеано, самый главный энтузиаст в области математической нотации. Он делал ставку на линейное представление обозначений. Вот пример: Вообще говоря, в 80-х годах 19 века Пеано разработал то, что очень близко к обозначениям, которые используются в большинстве современных теоретико-множественных концепций. Однако, как и Лейбниц, Пеано не желал останавливаться лишь на универсальной нотации для математики.
Он хотел разработать универсальный язык для всего. Эта идея реализовалась у него в то, что он назвал интерлингва — язык на основе упрощённой латыни. Затем он написал нечто вроде краткого изложения математики, назвав это Formulario Mathematico, которое было основано на его обозначениях для формул, и труд этот был написал на этой производной от латыни — на интерлингве. Интерлингва, подобно эсперанто, который появился примерно в это же время, так и не получил широкого распространения.
Однако этого нельзя сказать об обозначениях Пеано. Сперва о них никто ничего толком и не слышал. Но затем Уайтхед и Рассел написали свой труд Principia Mathematica, в котором использовались обозначения Пеано. Думаю, Уайтхед и Рассел выиграли бы приз в номинации "самая насыщенная математическими обозначениями работа, которая когда-либо была сделана без помощи вычислительных устройств".
Вот пример типичной страницы из Principia Mathematica. У них были все мыслимые виды обозначений. Частая история, когда авторы впереди своих издателей: Рассел сам разрабатывал шрифты для многих используемых им обозначений. И, разумеется, тогда речь шла не о шрифтах TrueType или о Type 1, а о самых настоящих кусках свинца.
Я о том, что Рассела можно было встретить с тележкой, полной свинцовых оттисков, катящему её в издательство Кембриджского университета для обеспечения корректной вёрстки его книг. Но, несмотря на все эти усилия, результаты были довольно гротескными и малопонятными. Я думаю, это довольно ясно, что Рассел и Уайтхед зашли слишком далеко со своими обозначениями. И хотя область математической логики немного прояснилась в результате деятельности Рассела и Уайтхеда, она всё ещё остаётся наименее стандартизированной и содержащей самую сложную нотацию.
Но что насчёт более распространённых составляющих математики? Какое-то время в начале 20 века то, что было сделано в математической логике, ещё не произвело никакого эффекта. Однако ситуация резко начала меняться с движением Бурбаки, которое начало разрастаться во Франции в примерное сороковые года. Бурбаки придавали особое значение гораздо более абстрактному, логико-ориентированному подходу к математике.
В частности, они акцентировали внимание на использовании обозначений там, где это только возможно, любым способом сводя использование потенциально неточного текста к минимуму. Где-то с сороковых работы в области чистой математики претерпели серьёзные изменения, что можно заметить в соответствующих журналах, в работах международного математического сообщества и прочих источниках подобного рода. Изменения заключались в переходе от работ, полных текста и лишь с основными алгебраическими и вычислительными выкладками к работам, насыщенными обозначениями. Конечно, эта тенденция коснулась не всех областей математики.
Это в некотором роде то, чем занимаются в лингвистике обычных естественных языков. По устаревшим используемым математическим обозначениям можно заметить, как различные области, их использующие, отстают от основной магистрали математического развития. Так, к примеру, можно сказать, что физика осталась где-то в конце 19 века, используя уже устаревшую математическую нотацию тех времён. Есть один момент, который постоянно проявляется в этой области — нотация, как и обычные языки, сильно разделяет людей.
Я имею в виду, что между теми, кто понимает конкретные обозначения, и теми, кто не понимает, имеется большой барьер. Это кажется довольно мистическим, напоминая ситуацию с алхимиками и оккультистами — математическая нотация полна знаков и символов, которые люди в обычной жизни не используют, и большинство людей их не понимают. На самом деле, довольно любопытно, что с недавних пор в рекламе появился тренд на использование математических обозначений. Думаю, по какой-то причине математическая нотация стала чем-то вроде шика.
Вот один актуальный пример рекламы. Отношение к математическим обозначениям, к примеру, в школьном образовании, часто напоминает мне отношение к символам секретных сообществ и тому подобному. Что ж, это был краткий конспект некоторых наиболее важных эпизодов истории математической нотации. В ходе исторических процессов некоторые обозначения перестали использоваться.
Помимо некоторых областей, таких как математическая логика, она стала весьма стандартизированной. Разница в используемых разными людьми обозначениях минимальна. Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения?
Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно. Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках.
И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в 500 года до н.
Панини удивительно подробно и ясно расписал грамматику для санскрита. Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации.
Это действительно довольно странно. Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году. Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall".
В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений. Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века.
Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е. И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку. И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками.
Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык. И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом.
Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией.
Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом. Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме.
Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных? Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется? Итак, допустим, у вас есть подобное математическое выражение.
Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике. И я решил исследовать это. Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали.
И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов. Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений.
Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать. И многие программы действительно так и работают.
Но в целом это крайне неудобно. Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать.
Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным. Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию.
Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i". Что это — Sqrt[-1] или переменная "i"?
В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах. И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1.
Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой? Ну, это бы точно сбивало с толку. Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i".
Как должна выглядеть особая версия этого символа? У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей.
В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием. Так, к примеру, прописная R могла бы быть переменной в математических записях. А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI.
Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов. Один из ключевых вопросов — что может означать "d" в интеграле?
Что, если это параметр в подынтегральном выражении? Или переменная? Получается ужасная путаница. Всё становится очень просто, если использовать DifferentialD или "d" с двойным начертанием.
И получается хорошо определённый синтаксис. Вот как это работает: Оказывается, что требуется всего лишь несколько маленьких изменений в основании математического обозначения, чтобы сделать его однозначным. Это удивительно. И весьма здорово.
Потому что вы можете просто ввести что-то, состоящее из математических обозначений, в свободной форме, и оно будет прекрасно понято системой. И это то, что мы реализовали в Mathematica 3. Конечно, чтобы всё работало так, как надо, нужно разобраться с некоторыми нюансами. К примеру, иметь возможность вводить что бы то ни было эффективным и легко запоминающимся путём.
Мы долго думали над этим. И мы придумали несколько хороших и общих схем для реализации подобного. Одна из них — ввод таких вещей, как степени, в качестве верхних индексов. Наличие ясного набора принципов подобных этому важно для того, чтобы заставить всё вместе работать на практике.
И оно работает. Вот как мог бы выглядеть ввод довольно сложного выражения: Но мы можем брать фрагменты из этого результата и работать с ними. И смысл в том, что это выражение полностью понятно для Mathematica, то есть оно может быть вычислено. Из этого следует, что результаты выполнения Out — объекты той же природы, что и входные данные In , то есть их можно редактировать, использовать их части по отдельности, использовать их фрагменты в качестве входных данных и так далее.
Чтобы заставить всё это работать, нам пришлось обобщить обычные языки программирования и кое-что проанализировать. Прежде была внедрена возможность работать с целым «зоопарком» специальных символов в качестве операторов. Однако, вероятно, более важно то, что мы внедрили поддержку двумерных структур.
Таким образом, цифра «I» - это не латинская или более древняя буква «и», а насечка, напоминающая форму этой буквы. Каждую пятую насечку обозначали скосом — V, а десятую перечеркивали — Х. Постепенно зарубки превратились в графические символы I, V и X, и приобрели самостоятельность. Позже они стали идентифицироваться с римскими буквами — так как были на них внешне похожи. Альтернативная теория принадлежит Альфреду Куперу, который предположил рассмотреть римскую систему счета с точки зрения физиологии.
V — это отставленный большой палец, образующий вместе с ладонью подобную букве V фигуру. Именно поэтому римские цифры суммируют не только единицы, но и складывают их с пятерками — VI, VII и т. Число 10 выражали с помощью перекрещивания рук или пальцев, отсюда пошел символ X. Еще один вариант — цифру V попросту удвоили, получив X. Большие числа передавали с помощью левой ладони, которая считала десятки.
Римские цифры находятся на часовых циферблатах, в том числе на курантах Спасской башни. Мы их используем, но знаем про них не так много. Как устроены римские цифры Римская система счета в ее современном варианте состоит из следующих базовых знаков: I 1 V 5 X 10 L 50 C 100 D 500 M 1000 Чтобы запомнить цифры, непривычные для нас, пользующихся арабской системой, существует несколько специальных мнемонических фраз на русском и английском языках: Мы Dарим Сочные Lимоны, Хватит Vсем Iх Mы Dаем Cоветы Lишь Xорошо Vоспитанным Iндивидуумам I Value Xylophones Like Cows Dig Milk Система расположения этих цифр друг относительно друга такова: числа до трех включительно образуются при помощи сложения единиц II, III , - четырехкратное повторение любой цифры запрещено. Порядок расположения тысяч, сотен, десятков и единиц тот же, что и привычный нам. Альтернативные варианты Запрет на четвертое использование одной и той же цифры подряд стал появляться только в XIX веке. Остатки этого написания можно увидеть на часах, где четыре часто отмечается именно с помощью четырех единиц. Также в Средневековье появилась новая римская цифра — ноль, который обозначался буквой N от латинского nulla, ноль. Миллионы получаются при двойном подчеркивании стандартных цифр. Еще один вариант — S::. Происхождение На данный момент не существует единой теории происхождения римских цифр.
Смотрим в табличку — надо прибавить 10 дней. Итого по григорианскому календарю день рождения Федора Иоанновича — 28 марта 1584 года. А вот Полтавская битва произошла 27 июня 1709 года. Сколько надо прибавить? Уже 11 дней. Получается 8 июля. Юлианский календарь продолжает использовать Русская православная церковь. Гражданское летоисчисление в России ведется по григорианскому календарю. Так как же правильно писать даты исторических событий? Когда же произошла Бородинская битва — 26 августа или 7 сентября?
Какая система обозначения веков применяется в истории
Однако он занимался самыми разными направлениями математики и серьёзно относился к разработке обозначений для них. Наиболее известные его обозначения были введены им в 1675 году. Для обозначения интегралов он использовал "omn. Но в пятницу 29 октября 1675 года он написал следующее. На этом фрагменте бумаги можно увидеть знак интеграла. Он задумывал его как вытянутую S.
Несомненно, это и есть современное обозначение интеграла. Ну, между обозначениями интегралов тогда и сейчас почти нет никакой разницы. Затем в четверг 11 ноября того же года он обозначил дифференциал как "d". На самом деле, Лейбниц считал это обозначение не самым лучшим и планировал придумать ему какую-нибудь замену. Но, как мы все знаем, этого не произошло.
Что ж, Лейбниц вёл переписку касательно обозначений с самыми разными людьми. Он видел себя кем-то вроде председателя комитета стандартов математических обозначений — так бы мы сказали сейчас. Он считал, что обозначения должны быть максимально краткими. К примеру, Лейбниц говорил: "Зачем использовать две точки для обозначения деления, когда можно использовать лишь одну? Некоторые из продвигаемых им идей так и не получили распространения.
К примеру, используя буквы для обозначения переменных, он использовал астрономические знаки для обозначения выражений. Довольно интересная идея, на самом деле. Так он обозначал функции. Помимо этих моментов и некоторых исключений наподобие символа пересечения квадратов, который Лейбниц использовал для обозначения равенства, его обозначения практически неизменными дошли до наших дней. В 18 веке Эйлер активно пользовался обозначениями.
Однако, по сути, он следовал по пути Лейбница. Полагаю, он был первым, кто всерьёз начал использовать греческие буквы наравне с латинскими для обозначения переменных. Есть и некоторые другие обозначения, которые появились вскоре после Лейбница. Следующий пример из книги, вышедшей через несколько лет после смерти Ньютона. Это учебник алгебры, и он содержит весьма традиционные алгебраические обозначения, уже в печатном виде.
А вот книга Лопиталя, напечатанная примерно в то же время, в которой уже практически современная алгебраическая нотация. И, наконец, вот пример от Эйлера, содержащий весьма современные обозначения для интегралов и прочего. Эйлер — популяризировал современное обозначение для числа пи, которое первоначально было предложено Уильямом Джонсом, который рассматривал его как сокращение от слова периметр. Предложенная Лейбницем и сотоварищами нотация довольно долго оставалась неизменной. Происходили небольшие изменения, как, к примеру квадрат x x получил написание x2.
Однако практически ничего нового не появилось. Однако в конце 19 века наблюдается новый всплеск интереса к математической нотации, сопряжённый с развитием математической логики. Были некоторые нововведения, сделанные физиками, такими как Максвелл и Гиббс, в основном для векторов и векторного анализа, как следствие развития абстрактной алгебры. Однако наиболее значимые изменения были сделаны людьми, начиная с Фреге и приблизительно с 1879 года, которые занимались математической логикой. Эти люди в своих устремлениях были близки к Лейбницу.
Они хотели разработать нотацию, которая представляла бы не только математические формулы, но и математические выводы и доказательства. В середине 19 века Буль показал, что основы логики высказываний можно представлять в терминах математики. Однако Фреге и его единомышленники хотели пойти дальше и представить так как логику высказываний, так и любые математические суждения в соответствующих математических терминах и обозначениях. Фреге решил, что для решения этой задачи потребуются графические обозначения. Вот фрагмент его так называемой "концептуальной нотации".
К сожалению, в ней трудно разобраться. И в действительности, если посмотреть на историю обозначений в целом, то часто можно встретить попытки изобретения графических обозначений, которые оказывались трудными для понимания. Но в любом случае, обозначения Фреге уж точно не стали популярными. Потом был Пеано, самый главный энтузиаст в области математической нотации. Он делал ставку на линейное представление обозначений.
Вот пример: Вообще говоря, в 80-х годах 19 века Пеано разработал то, что очень близко к обозначениям, которые используются в большинстве современных теоретико-множественных концепций. Однако, как и Лейбниц, Пеано не желал останавливаться лишь на универсальной нотации для математики. Он хотел разработать универсальный язык для всего. Эта идея реализовалась у него в то, что он назвал интерлингва — язык на основе упрощённой латыни. Затем он написал нечто вроде краткого изложения математики, назвав это Formulario Mathematico, которое было основано на его обозначениях для формул, и труд этот был написал на этой производной от латыни — на интерлингве.
Интерлингва, подобно эсперанто, который появился примерно в это же время, так и не получил широкого распространения. Однако этого нельзя сказать об обозначениях Пеано. Сперва о них никто ничего толком и не слышал. Но затем Уайтхед и Рассел написали свой труд Principia Mathematica, в котором использовались обозначения Пеано. Думаю, Уайтхед и Рассел выиграли бы приз в номинации "самая насыщенная математическими обозначениями работа, которая когда-либо была сделана без помощи вычислительных устройств".
Вот пример типичной страницы из Principia Mathematica. У них были все мыслимые виды обозначений. Частая история, когда авторы впереди своих издателей: Рассел сам разрабатывал шрифты для многих используемых им обозначений. И, разумеется, тогда речь шла не о шрифтах TrueType или о Type 1, а о самых настоящих кусках свинца. Я о том, что Рассела можно было встретить с тележкой, полной свинцовых оттисков, катящему её в издательство Кембриджского университета для обеспечения корректной вёрстки его книг.
Но, несмотря на все эти усилия, результаты были довольно гротескными и малопонятными. Я думаю, это довольно ясно, что Рассел и Уайтхед зашли слишком далеко со своими обозначениями. И хотя область математической логики немного прояснилась в результате деятельности Рассела и Уайтхеда, она всё ещё остаётся наименее стандартизированной и содержащей самую сложную нотацию. Но что насчёт более распространённых составляющих математики? Какое-то время в начале 20 века то, что было сделано в математической логике, ещё не произвело никакого эффекта.
Однако ситуация резко начала меняться с движением Бурбаки, которое начало разрастаться во Франции в примерное сороковые года. Бурбаки придавали особое значение гораздо более абстрактному, логико-ориентированному подходу к математике. В частности, они акцентировали внимание на использовании обозначений там, где это только возможно, любым способом сводя использование потенциально неточного текста к минимуму. Где-то с сороковых работы в области чистой математики претерпели серьёзные изменения, что можно заметить в соответствующих журналах, в работах международного математического сообщества и прочих источниках подобного рода. Изменения заключались в переходе от работ, полных текста и лишь с основными алгебраическими и вычислительными выкладками к работам, насыщенными обозначениями.
Конечно, эта тенденция коснулась не всех областей математики. Это в некотором роде то, чем занимаются в лингвистике обычных естественных языков. По устаревшим используемым математическим обозначениям можно заметить, как различные области, их использующие, отстают от основной магистрали математического развития. Так, к примеру, можно сказать, что физика осталась где-то в конце 19 века, используя уже устаревшую математическую нотацию тех времён. Есть один момент, который постоянно проявляется в этой области — нотация, как и обычные языки, сильно разделяет людей.
Я имею в виду, что между теми, кто понимает конкретные обозначения, и теми, кто не понимает, имеется большой барьер. Это кажется довольно мистическим, напоминая ситуацию с алхимиками и оккультистами — математическая нотация полна знаков и символов, которые люди в обычной жизни не используют, и большинство людей их не понимают. На самом деле, довольно любопытно, что с недавних пор в рекламе появился тренд на использование математических обозначений. Думаю, по какой-то причине математическая нотация стала чем-то вроде шика. Вот один актуальный пример рекламы.
Отношение к математическим обозначениям, к примеру, в школьном образовании, часто напоминает мне отношение к символам секретных сообществ и тому подобному. Что ж, это был краткий конспект некоторых наиболее важных эпизодов истории математической нотации. В ходе исторических процессов некоторые обозначения перестали использоваться. Помимо некоторых областей, таких как математическая логика, она стала весьма стандартизированной. Разница в используемых разными людьми обозначениях минимальна.
Как и в ситуации с любым обычным языком, математические записи практически всегда выглядят одинаково. Компьютеры Вот вопрос: можно ли сделать так, чтобы компьютеры понимали эти обозначения? Это зависит от того, насколько они систематизированы и как много смысла можно извлечь из некоторого заданного фрагмента математической записи. Ну, надеюсь, мне удалось донести мысль о том, что нотация развивалась в результате непродуманных случайных исторических процессов. Было несколько людей, таких как Лейбниц и Пеано, которые пытались подойти к этому вопросу более системно.
Но в основном обозначения появлялись по ходу решения каких-то конкретных задач — подобно тому, как это происходит в обычных разговорных языках. И одна из вещей, которая меня удивила, заключается в том, что по сути никогда не проводилось интроспективного изучения структуры математической нотации. Грамматика обычных разговорных языков развивалась веками. Без сомнения, многие римские и греческие философы и ораторы уделяли ей много внимания. И, по сути, уже примерно в 500 года до н.
Панини удивительно подробно и ясно расписал грамматику для санскрита. Фактически, грамматика Панини была удивительно похожа по структуре на спецификацию правил создания компьютерных языков в форме Бэкуса-Наура , которая используется в настоящее время. И были грамматики не только для языков — в последнее столетие появилось бесконечное количество научных работ по правильному использованию языка и тому подобному. Но, несмотря на всю эту активность в отношении обычных языков, по сути, абсолютно ничего не было сделано для языка математики и математической нотации. Это действительно довольно странно.
Были даже математики, которые работали над грамматиками обычных языков. Ранним примером являлся Джон Уоллис, который придумал формулу произведения Уоллиса для числа пи, и вот он писал работы по грамматике английского языка в 1658 году. Уоллис был тем самым человеком, который начал всю эту суматоху с правильным использованием "will" или "shall". В начале 20 века в математической логике говорили о разных слоях правильно сформированного математического выражения: переменные внутри функций внутри предикатов внутри функций внутри соединительных слов внутри кванторов. Но не о том, что же это всё значило для обозначений выражений.
Некоторая определённость появилась в 50-е годы 20 века, когда Хомский и Бакус, независимо разработали идею контекстно-свободных языков. Идея пришла походу работы над правилами подстановки в математической логике, в основном благодаря Эмилю Посту в 20-х годах 20 века. Но, любопытно, что и у Хомского, и у Бакуса возникла одна и та же идея именно в 1950-е. И он заметил, что алгебраические выражения могут быть представлены в контекстно-свободной грамматике. Хомский применил эту идею к обычному человеческому языку.
И он отмечал, что с некоторой степенью точности обычные человеческие языки так же могут быть представлены контекстно-свободными грамматиками. Конечно, лингвисты включая Хомского, потратили годы на демонстрацию того, насколько всё же эта идея не соответствует действительности. Но вещь, которую я всегда отмечал, а с научной точки зрения считал самой важной, состоит в том, что в первом приближении это всё-таки истина — то, что обычные естественные языки контекстно-свободны. Однако никто из них не рассматривал вопрос разработки более продвинутой математики, чем простой алгебраический язык. И, насколько я могу судить, практически никто с тех времён не занимался этим вопросом.
Но, если вы хотите посмотреть, сможете ли вы интерпретировать некоторые математические обозначения, вы должны знать, грамматику какого типа они используют. Сейчас я должен сказать вам, что считал математическую нотацию чем-то слишком случайным для того, чтобы её мог корректно интерпретировать компьютер. В начале девяностых мы горели идеей предоставить возможность Mathematica работать с математической нотацией. И по ходу реализации этой идеи нам пришлось разобраться с тем, что происходит с математической нотацией. Нил Сойффер потратил множество лет, работая над редактированием и интерпретацией математической нотации, и когда он присоединился к нам в 1991, он пытаться убедить меня, что с математической нотацией вполне можно работать — как с вводом, так и с выводом.
Вопрос заключался во вводе данных. На самом деле, мы уже кое-что выяснили для себя касательно вывода. Мы поняли, что хотя бы на некотором уровне многие математические обозначения могут быть представлены в некоторой контекстно-свободной форме. Поскольку многие знают подобный принцип из, скажем, TEX, то можно было бы всё настроить через работу со вложенными структурами. Но что насчёт входных данных?
Один из самых важных моментов заключался в том, с чем всегда сталкиваются при парсинге: если у вас есть строка текста с операторами и операндами, то как задать, что и с чем группируется? Итак, допустим, у вас есть подобное математическое выражение. Чтобы это понять, нужно знать приоритеты операторов — какие действуют сильнее, а какие слабее в отношении операндов. Я подозревал, что для этого нет какого-то серьёзного обоснования ни в каких статьях, посвящённых математике. И я решил исследовать это.
Я прошёлся по самой разнообразной математической литературе, показывал разным людям какие-то случайные фрагменты математической нотации и спрашивал у них, как бы они их интерпретировали. И я обнаружил весьма любопытную вещь: была удивительная слаженность мнений людей в определении приоритетов операторов. Таким образом, можно утверждать: имеется определённая последовательность приоритетов математических операторов. Можно с некоторой уверенностью сказать, что люди представляют именно эту последовательность приоритетов, когда смотрят на фрагменты математической нотации. Обнаружив этот факт, я стал значительно более оптимистично оценивать возможность интерпретации вводимых математических обозначений.
Один из способов, с помощью которого всегда можно это реализовать — использовать шаблоны. То есть достаточно просто иметь шаблон для интеграла и заполнять ячейки подынтегрального выражения, переменной и так далее. И когда шаблон вставляется в документ, то всё выглядит как надо, однако всё ещё содержится информация о том, что это за шаблон, и программа понимает, как это интерпретировать. И многие программы действительно так и работают. Но в целом это крайне неудобно.
Потому что если вы попытаетесь быстро вводить данные или редактировать, вы будете обнаруживать, что компьютер вам бикает beeping и не даёт делать те вещи, которые, очевидно, должны быть вам доступны для реализации. Дать людям возможность ввода в свободной форме — значительно более сложная задача. Но это то, что мы хотим реализовать. Итак, что это влечёт? Прежде всего, математический синтаксис должен быть тщательно продуманным и однозначным.
Очевидно, получить подобный синтаксис можно, если использовать обычный язык программирования с основанным на строках синтаксисом. Но тогда вы не получите знакомую математическую нотацию. Вот ключевая проблема: традиционная математическая нотация содержит неоднозначности. По крайней мере, если вы захотите представить её в достаточно общем виде. Возьмём, к примеру, "i".
Что это — Sqrt[-1] или переменная "i"? В обычном текстовом InputForm в Mathematica все подобные неоднозначности решены простым путём: все встроенные объекты Mathematica начинаются с заглавной буквы. Но заглавная "I" не очень то и похожа на то, чем обозначается Sqrt[-1] в математических текстах. И что с этим делать? И вот ключевая идея: можно сделать другой символ, который вроде тоже прописная «i», однако это будет не обычная прописная «i», а квадратный корень из -1.
Можно было бы подумать: Ну, а почему бы просто не использовать две «i», которые бы выглядели одинаково, — прям как в математических текстах — однако из них будет особой? Ну, это бы точно сбивало с толку. Вы должны будете знать, какую именно «i» вы печатаете, а если вы её куда-то передвинете или сделаете что-то подобное, то получится неразбериха. Итак, значит, должно быть два "i". Как должна выглядеть особая версия этого символа?
У нас была идея — использовать двойное начертание для символа. Мы перепробовали самые разные графические представления. Но идея с двойным начертанием оказалась лучшей. В некотором роде она отвечает традиции в математике обозначать специфичные объекты двойным начертанием. Так, к примеру, прописная R могла бы быть переменной в математических записях.
А вот R с двойным начертанием — уже специфический объект, которым обозначают множество действительных чисел. Таким образом, "i" с двойным начертанием есть специфичный объект, который мы называем ImaginaryI. Вот как это работает: Идея с двойным начертанием решает множество проблем. В том числе и самую большую — интегралы. Допустим, вы пытаетесь разработать синтаксис для интегралов.
Один из ключевых вопросов — что может означать "d" в интеграле?
Ну, а первыми днями по включительному счету были эти самые ноны, иды и календы. Годовой подсчет дней древнеримского календаря дает 355 дней. Недостающие до солнечного года 10,25 суток требовали включения в календарь добавочных дней. И это мероприятие было запутано до предела. Например, после 23 февраля вставлялся добавочный месяц длительностью в 22 или 23 дня, а по его истечении снова продолжался февральский счет дней до мартовских календ. Ноны и иды в марцедонии были, как в коротком месяце, а календы и вовсе отсутствовали.
Этот порядок действовал много сотен лет. Но в начале второго века до нашей эры римские жрецы, которые управляли календарем, стали манипулировать длительностью и временем вставки этого добавочного месяца. В Римской республике весь комплекс административных должностей — консулы высшая должность , квесторы, цензоры и т. А поскольку эти должности приносили определенный доход и другие жизненные преимущества, продление их срока было выгодным делом. Манипулируя календарем, жрецы могли увеличивать эти сроки в пользу того или иного должностного лица, наверняка небескорыстно. Могли иметь место и экономические причины изменения времени вставки в календарь месяца расплаты. О конкретном грядущем календаре население республики оповещалось жрецами в конце февраля.
Об этом запутанном древнеримском календаре через много лет Вольтер сказал: «Римские полководцы всегда побеждали, но они никогда не знали, в какой день это случилось». Юлианский календарь Гай Юлий Цезарь Его установил в 46 году до нашей эры своим указом римский диктатор и верховный жрец, полководец и государственный деятель Гай Юлий Цезарь 100—44 до н. Юлий Цезарь произвел реформу календаря, прежде всего опираясь на свои права верховного жреца. За основу он взял египетский александрийский солнечный календарь. Семь месяцев стали иметь длительность по 31 дню, четыре месяца — по 30 дней. А один месяц имел 28 дней, но раз в четыре года — 29 дней. В году стало 365 или, раз в четыре года, 366 дней.
Это соответствовало солнечному году в 365,25 суток. Добавочным днем раз в четыре года было не 29 февраля, как мы привыкли, а вставной день между 24 и 25 февраля, или по римскому календарю — между шестым и пятым днем до 1 марта. Он получил официальное название «дважды шестой до мартовских календ» — bis sectum Kal. Вот это самое bis sectum и превратилось для нас в слово високосный, а соответствующие годы стали впоследствии называться високосными годами. Начало года было перенесено Цезарем с 1 марта на 1 января. Вот собственно и вся реформа. Ее четкость и простота так восхитили измученных своим календарем римлян, что в благодарность в том числе и за военные заслуги римский сенат переименовал месяц Квинтилис в Юлиус в этом месяце родился Цезарь.
Юлианский календарь Через год, в мартовские иды 44 года до новой эры, Цезарь был убит заговорщиками во главе с Брутом. Началась борьба за власть между полководцами Антонием и Октавианом. Жрецы воспользовались неразберихой во власти и некоторое время продолжали «командовать» календарем по своему усмотрению, изменяя порядок високосных лет и вставку добавочного дня. И только через 50 лет юлианский солнечный календарь наконец заработал так, как это было задумано Цезарем. Это сделал полководец Октавиан, за военные и гражданские заслуги получивший от сената пожизненный «империй» чрезвычайные права, которые раньше давались полководцу на короткое время военных действий. Это означало фактическое превращение республики в империю. Октавиану сенат присвоил титул императора и имя Август «преумножающий».
Август сделал юлианский календарь государственным, обязательным на всей огромной территории Римской империи с 1 января 4 года нашей эры. Месяц септилий был переименован в август и было подправлено чередование длинных и коротких месяцев — оно стало таким, как сейчас. А сейчас по нему живет только ортодоксальная православная христианская церковь. Необходимость изменения юлианского календаря Так зачем же нужно было заменять юлианский календарь? Причина этого — чисто арифметическая. Юлианский календарь основан на том, что период солнечного цикла, так называемый календарный год, составляет 365,25 суток. Но с календарем должен быть связан так называемый тропический год, длительность которого чуть-чуть меньше — 365,2424 суток.
В первые века нашей эры, когда стал общепринятым юлианский календарь, казалось, что маленькая разность этих периодов несущественна и не мешает календарю. Как нетрудно определить, она приводит к сдвигу календаря на одни сутки за 128 лет. Когда постепенно исчезала власть Римской империи и потом, в «темные столетия» раннего Средневековья, этот сдвиг мало кого интересовал. Но в XVI веке, в эпоху «осени Средневековья», которую чаще называют эпохой Возрождения, человеческий быт и общественное сознание так изменились, что многие общественные деятели и ученые стали выражать беспокойство по поводу неточности календаря. В христианском европейском мире документальным началом отсчета считается четвертый век нашей эры, когда указом римского императора Константина христианство стало государственной религией. За прошедшие после этого 12 веков сдвиг юлианского календаря составил уже больше 9 дней. Одной из причин беспокойства стало перемещение дня весеннего равноденствия с 21 марта на 12 марта.
А с этим днем было связано начало многих сельскохозяйственных работ, и время подготовки к ним существенно сократилось. Весна по календарю наступала все раньше и раньше. Но была и еще одна причина беспокойства. Она имела религиозное обоснование. В христианских общинах Римской империи к началу IV века установился обычай отмечать как самый светлый праздник ставшую легендарной дату воскресения Христа.
В эпоху просвещения великие умы осуществляют принципиальные преобразования в науке и философии, призывая применять разум и логику для поиска истины. Сэр Фрэнсис Бэкон и Рене Декарт стали ведущими фигурами науки и философии в тот период и решили уровнять путь для наций и открыть новые горизонты мудрости. Эпоха просвещения также отмечена ценностной революцией, когда общество стало воспринимать идеи свободы, равенства и братства. Французская революция 1789-1799 годы стала главным событием той эпохи, которая привела к свержению французской монархии и проклятой элиты. Время просвещения продолжалось до конца XVIII века и оказало непреоборимое влияние на политическую, военную, социальную и культурную жизнь множества стран Европы и других частей света. Современная история и последние века Один из ключевых периодов современной истории — это 20 век. Он оказался самым трагичным и насыщенным событиями в истории человечества.
Чем же объясняется выбор между двумя системами написания цифр? Считается, что римские цифры, в отличие от более обыденных арабских, обладают духом значительности. Монархов также же обозначают римскими цифрами. Елизавета II, по какой-то причине, выглядит более напыщенно нежели Елизавета 2. Источник: В этих цифрах нуля кстати нет.. Остальные ответы.. Мастер 1614 16 лет назад...
Год в век — перевод и таблица соответствия
XXI (21-й) век по Григорианскому календарю — текущий век. Начался 1 января 2001 года и продлится до 31 декабря 2100 (часто встречаются неправильные границы века. XXI (21-й) век по Григорианскому календарю — текущий век. Начался 1 января 2001 года и продлится до 31 декабря 2100 (часто встречаются неправильные границы века. так в Византийской империи передавали название Русской митрополии, основанной в Киеве в конце X века. Обозначение веков появилось в Европе в XVI веке и было связано с развитием календарной системы.
Юлианский и Григорианский календари: сходства и различия
Если мы знаем, в каком году произошло то или иное событие, то определить соответствующий ему век достаточно просто. Достаточно всего лишь год разделить на 100, а потом получившуюся целую часть частного увеличить на единицу. К примеру, нам нужно узнать, к какому веку относится 1243-й год. Делим 1243 на 100 и получаем 12,43. Целая часть — 12. Добавляем к ней 1 и получаем 13.
Таким образом, мы получили, что 1243-й год — это 13-й век. Если деление на сто происходит без десятых частей, то целую часть оставляем без изменений. Так, 2000-й год является 20-м веком, поскольку 2000 разделить на 100 получится 20. Соотношение Еще один способ, более легкий соотношения веков по годам — ничего не делить, а просто добавить единичку к двум первым цифрам. Это же правило действует и для определения веков до нашей эры.
Так, 672-й год до н.
Источники: как определить век по годам 1564 1110 1694 1724 годы перевести в века римскими цифрами Совет полезен?
II — от Христа 2-й век, но позже в силу схожести буквы Х с латинским обозначением числа десять —Х, люди по ошибке, а может и целенаправленно превратили букву Х в число Х и тем самым сразу прибавили на всех написанных таким образом датах десять веков — тысячу лет!
Интернет кишит информацией, подробно описывающей весь механизм появления этой лишней тысячи лет. На старинном плане немецкого города Кельна, поставлена дата, которую современные историки читают как, 1633 год. Однако и здесь, первый знак принимаемый за единицу совершенно на нее не похож, а скорее на латинские буквы "i" или "j". А вот ещё одна запись с использованием правых и левых полумесяцев, отделяющих латинскую букву «I» от римских цифр, так записаны даты на титульных листах этих книг.
При детальном изучении этого вопроса мы можем выделить несколько причин произошедшего: - Простая путаница с обозначением дат в силу их схожести, разных языков и протяжённости во времени. Современникам известны попытки переписать историю как в наши дни, так и во времена Реформации XVI в. В эти годы идет смена династических кланов по всей Европе. В Западной Европе движущей силой против центральной власти стало лютеранство, в России это время известно, как Великая смута, когда, в итоге, на престол вместо Рюриковичей взошли Романовы.
Всем, кто подменил старую власть, срочно потребовались доказательства своего правообладания верховной властью, поэтому историю снова корректируют, внося в нее героические подвиги и события, подтверждающие либо знатность, либо древность рода новых правителей. События перетасовываются и меняются местами, нарушая и без того не очень верную хронологию. Однако их методы датирования, как и у их предшественников, были несовершенны, ошибочны и субъективны.
Должны ли мы ввести специальные символы для всех представленных операций в Mathematica? Таким образом можно получить весьма компактную нотацию. Но насколько это разумно? Будет ли это читаемо? Пожалуй, ответом будет нет. Думаю, тут сокрыт фундаментальный принцип: кто-то хочет всё представлять в обозначениях, и не использовать ничего другого. А кому-то не нужны специальные обозначения. А кто-то пользуется в Mathematica FullForm. Однако с этой формой весьма утомительно работать. Другая возможность заключается в том, что всему можно присвоить специальные обозначения. Получится что-то наподобие APL или каких-то фрагментов математической логики. Вот пример этого. Довольно трудно читать. Вот другой пример из оригинальной статьи Тьюринга, в которой содержатся обозначения для универсальной машины Тьюринга, опять-таки — пример не самой лучшей нотации. Она тоже относительно нечитабельная. Думаю, эта проблема очень близка к той, что возникала при использовании очень коротких имён для команд. К примеру, Unix. Ранние версии Unix весьма здорово смотрелись, когда там было небольшое количество коротких для набора команд. Но система разрасталась. И через какое-то время было уже большое количество команд, состоящих из небольшого количества символов. И большинство простых смертных не смогли бы их запомнить. И всё стало выглядеть совершенно непонятным. Та же ситуация, что и с математической или другой нотацией, если на то пошло. Люди могут работать лишь с небольшим количеством специальных форм и символов. Возможно, с несколькими десятками. Соизмеримым с длиной алфавита. Но не более. А если дать им больше, особенно все и сразу, в голове у них будет полная неразбериха. Это следует немного конкретизировать. Вот, к примеру, множество различных операторов отношений. Но большинство из них по сути состоят из небольшого количества элементов, так что с ними проблем быть не должно. Конечно, принципиально люди могут выучить очень большое количество символов. Потому что в языках наподобие китайского или японского имеются тысячи иероглифов. Однако людям требуется несколько дополнительных лет для обучения чтению на этих языках в сравнении с теми, которые используют обычный алфавит. Если говорить о символах, кстати, полагаю, что людям гораздо легче справится с какими-то новыми символами в качестве переменных, нежели в качестве операторов. И весьма занятно рассмотреть этот вопрос с точки зрения истории. Один из наиболее любопытных моментов — во все времена и практически без исключения в качестве переменных использовались лишь латинские и греческие символы. Ну, Кантор ввёл алеф, взятый из иврита, для своих кардинальных чисел бесконечных множеств. И некоторые люди утверждают, что символ частной производной — русская д, хотя я думаю, что на самом деле это не так. Однако нет никаких других символов, которые были бы заимствованы из других языков и получили бы распространение. Кстати, наверняка вам известно, что в английском языке буква "e" — самая популярная, затем идёт "t", ну и так далее. И мне стало любопытно, каково распределение по частоте использования букв в математике. Потому я исследовал сайт MathWorld , в котором содержится большое количество математической информации — более 13 500 записей, и посмотрел, каково распределение для различных букв [к сожалению, эту картинку, сделанную Стивеном, не удалось осовременить — прим. Можно увидеть, что "e" — самая популярная. И весьма странно, что "a" занимает второе место. Это очень необычно. Я немного рассказал об обозначениях, которые в принципе можно использовать в математике. Так какая нотация лучше всего подходит для использования? Большинство людей, использующих математическую нотацию, наверняка задавались этим вопросом. Однако для математики нет никакого аналога, подобного "Современному использованию английского языка" Фаулера для английского языка. Была небольшая книжка под названием Математика в печати, изданная AMS, однако она в основном о типографских приёмах. В результате мы не имеем хорошо расписанных принципов, аналогичным вещам наподобие инфинитивов с отдельными частицами в английском языке. Если вы используете StandardForm в Mathematica, вам это больше не потребуется. Потому что всё, что вы введёте, будет однозначно интерпретировано. Однако для TraditionalForm следует придерживаться некоторых принципов. К примеру, не писать , потому что не совсем ясно, что это означает. Будущее Чтобы закончить, позвольте мне рассказать немного о будущем математической нотации. Какой, к примеру, должна бы быть новая нотация? В какой-нибудь книге символов будет содержаться около 2500 символов, популярных в тех или иных областях и не являющимися буквами языков. И с правильным написанием символов, многие из них могли бы идеально сочетаться с математическими символами. Для чего же их использовать? Первая приходящая на ум возможность — нотация для представления программ и математических операций. В Mathematica, к примеру, представлено довольно много текстовых операторов, используемых в программах. И я долгое время считал, что было бы здорово иметь возможность использовать для них какие-то специальные символы вместо комбинаций обычных символов ASCII [последние версии Mathematica полностью поддерживают Unicode — прим. Оказывается, иногда это можно реализовать весьма просто. Поскольку мы выбрали символы ASCII, то часто можно получить некоторые символы, очень близкие по написанию, но более изящные. И это всё реализуемо за счёт того, что парсер в Mathematica может работать в том числе и со специальными символами. Я часто размышлял о том, как бы расширить всё это. И вот, постепенно появляются новые идеи. Обратите внимание на знак решётки , или номерной знак, или, как его ещё иногда называют, октоторп, который мы используем в тех местах, в которые передаётся параметр чистой функции. Он напоминает квадрат с щупальцами. И в будущем, возможно, он будет обозначаться симпатичным квадратиком с маленькими засечками, и будет означать место для передачи параметра в функцию. И он будет более гладким, не похожим на фрагмент обычного кода, чем-то вроде пиктограммы. Насколько далеко можно зайти в этом направлении — представлении вещей в визуальной форме или в виде пиктограмм? Ясно, что такие вещи, как блок-схемы в инженерии, коммутативные диаграммы в чистой математике, технологические схемы — все хорошо справляются со своими задачами. По крайней мере до настоящего момента. Но как долго это может продолжаться? Не думаю, что уж очень долго. Думаю, некоторые приближаются к некоторым фундаментальным ограничениям людей в обработке лингвистической информации. Когда языки более или менее контекстно-свободные, имеют древовидную структуру, с ними можно многое сделать. Наша буферная память из пяти элементов памяти и что бы то ни было спокойно сможет их разобрать. Конечно, если у нас будет слишком много вспомогательных предложений даже на контекстно-свободном языке, то будет вероятность исчерпать стековое пространство и попасть впросак. Но, если стек не будет заходить слишком глубоко, то всё будет работать как надо. Но что насчёт сетей? Можем ли мы понимать произвольные сети? Я имею в виду — почему у нас должны быть только префиксные, инфиксные, оверфиксные операторы? Почему бы операторам не получать свои аргументы через какие-то связи внутри сети? Меня особенно интересовал этот вопрос в контексте того, что я занимался некоторыми научными вопросами касательно сетей. И мне действительно хотелось бы получить некоторое языковое представление для сетей. Но не смотря на то, что я уделил этому вопросу довольно много времени — не думаю, что мой мозг смог бы работать с подобными сетями так же, как с обычными языковыми или математическими конструкциями, имеющими одномерную или двумерную контекстно-свободную структуру. Так что я думаю, что это, возможно, то место, до которого нотация не сможет добраться. Вообще, как я упоминал выше, это частый случай, когда язык или нотация ограничивают наше пространство мыслимого. Итак, что это значит для математики? В своём научном проекте я разрабатывал некоторые основные обобщения того, что люди обычно относят к математике. И вопрос в том, какие обозначения могут быть использованы для абстрактного представления подобных вещей. Что ж, я не смог пока что полностью ответить на этот вопрос. Однако я обнаружил, что, по крайней мере в большинстве случаев, графическое представление или представление в виде пиктограмм гораздо эффективнее обозначений в виде конструкций на обычных языках. Возвращаясь к самому началу этого разговора, ситуация напоминает то, что происходило тысячи лет в геометрии. В геометрии мы знаем, как представить что-то в графическом виде. Ещё со времён древнего Вавилона. И чуть более ста лет назад стало ясно, как можно формулировать геометрические задачи с точки зрения алгебры. Однако мы всё ещё не знаем простого и ясного способа представлять геометрические схемы в обозначениях на естественном языке. И моя догадка состоит в том, что практически все эти математические вещи лишь в небольшом количестве могут быть представлены в обозначениях на естественном языке. Однако мы — люди — легко воспринимаем лишь эти обозначения на естественном языке. Так что мы склонны изучать те вещи, которые могут быть представлены этим способом. Конечно, подобные вещи не могут быть тем, что происходит в природе и вселенной. Но это уже совсем другая история. Так что я лучше закончу на этом. Большое спасибо. Примечания В ходе обсуждения после выступления и во время общения с другими людьми на конференции возникло несколько моментов, которые следовало бы обсудить. Эмпирические законы для математических обозначений При изучении обычного естественного языка были обнаружены различные историко-эмпирические законы. Пример — Закон Гримма , которые описывает переносы в согласных на индоевропейских языках. Мне было любопытно, можно ли найти подобные историко-эмпирические законы для математического обозначения. Дана Скотт предложила такой вариант: тенденция к удалению явных параметров. Как пример, в 60 годах 19 века часто каждый компонент вектора именовался отдельно. Но затем компоненты стали помечать индексами — как ai. И вскоре после этого — в основном после работ Гиббса — векторы стали представлять как один объект, обозначаемый, скажем, как или a. С тензорами всё не так просто. Нотацию, избегающую явных индексов, обычно называют координатно-свободной. И подобная нотация — частое явление в чистой математике. Однако в физике данный подход считается слишком абстрактным, потому явные индексы используются повсеместно. В отношении функций так же имеется тенденция явно не упоминать параметры. В чистой математике, когда функции рассматриваются через сопоставления, они часто упоминаются лишь по своему имени — просто f, без каких-либо параметров. Однако это будет хорошо только тогда, когда у функции только один параметр. Когда параметров несколько, обычно становится непонятно, как будут работать те потоки данных, которые ассоциированы с параметрами. Однако, ещё в 20-х годах 20 века было показано, что можно использовать так называемые комбинаторы для определения подобных потоков данных без какого-либо явного указания параметров. Комбинаторы не использовались в основных течениях математики, однако время от времени становились популярными в теории вычислений, хотя их популярность заметно поубавилась из-за несовместимости с идеей о типах данных. Комбинаторы довольно легко задать в Mathematica через задание функции с составным заголовком. Никакие переменные не требуются. Проблема заключается в том, что выражения получаются непонятными, и с этим ничего не поделать. Я пытался найти какие-то способы для более ясного представления их и сопряжённых с ними вычислений. Я добился небольшого прогресса, однако нельзя сказать, что задача была решена. Печатные обозначения против экранных Некоторые спрашивали о разнице в возможностях печатных и экранных обозначений. Чтобы можно было понимать обозначения, они должны быть похожими, и разница между ними не должна быть очень большой. Но есть некоторые очевидные возможности. Во-первых, на экране легко можно использовать цвет. Можно было бы подумать, что было каким-то образом удобно использовать разные цвета для переменных. Мой опыт говорит о том, что это удобно для разъяснения формулы. Однако всё станет весьма запутанным, если, к примеру, красному x и зелёному x будут соответствовать разные переменные. Другая возможность состоит в том, чтобы иметь в формуле какие-то анимированные элементы. Полагаю, что они будут столь же раздражающими, как и мигающий текст, и не будут особо полезными. Пожалуй, идея получше — иметь возможность скрывать и разворачивать определённые части выражения — как группы ячеек в ноутбуке Mathematica. Тогда будет возможность сразу получить представление обо всём выражении, а если интересны детали, то разворачивать его далее и далее. Письменные обозначения Некоторые могли бы подумать, что я уж слишком много времени уделил графическим обозначениям. Хотелось бы прояснить, что я нахожу довольно затруднительным графические обозначения обычных математических действий и операций. В своей книге A New Kind of Science я повсеместно использую графику, и мне не представляется никакого другого способа делать то, что я делаю. И в традиционной науке, и в математике есть множество графических обозначений, которые прекрасно работают, пускай и в основном для статичных конструкций. Теория графов — очевидный пример использования графического представления. К ним близки структурные диаграммы из химии и диаграммы Фейнмана из физики. В математике имеются методы для групповых теоретических вычислений, представленные отчасти благодаря Предрагу Цвитановицу, и вот они основаны на графическом обозначении. И в лингвистике, к примеру, распространены диаграммы для предложений, показывающие дерево лингвистических компонентов и способы их группировки для образования предложения. Все эти обозначения, однако, становятся малопригодными в случаях исследования каких-то очень крупных объектов. Однако в диаграммах Фейнмана обычно используется две петли, а пять петель — максимум, для которого когда-либо были сделаны явные общие вычисления. Шрифты и символы Я обещал рассказать кое-что о символах и шрифтах. В Mathematica 3 нам пришлось проделать большую работу чтобы разработать шрифты для более чем 1100 символов, имеющих отношение к математической и технической нотации. Получение правильной формы — даже для греческих букв — часто было достаточно сложным. С одной стороны, мы хотели сохранить некоторую традиционность в написании, а с другой — сделать греческие буквы максимально непохожими на английские и какие бы то ни было другие. В конце концов я сделал эскизы для большинства символов. Вот к чему мы пришли для греческих букв. Мы разработали Times-подобный шрифт, моноширинный наподобие Courier, а сейчас разрабатываем sans serif. Разработать шрифт Courier было непростой задачей. Нужно, к примеру, было придумать, как сделать так, чтобы йота занимала весь слот под символ. Так же сложности были со скриптовыми и готическими фактурными шрифтами. Часто в этих шрифтах буквы настолько непохожи на обычные английские, что становятся абсолютно нечитаемыми. Мы хотели, чтобы эти шрифты вписывались в соответствующую им тему, и, тем не менее, обладали бы теми же габаритами, что и обычные английские буквы. Вот, что у нас получилось: Веб сайт fonts. Поиск математических формул Некоторые люди спрашивали о поиске математических формул [после создания Wolfram Alpha появился гигантский объем баз данных, доступных в языке Wolfram Language, теперь можно получить огромный массив информации о любых формулах с помощью функции MathematicalFunctionData — прим. Очевидно легко сказать, что же такое поиск обычного текста. Единственная вопрос заключается в эквивалентности строчных и прописных букв. Для математических формул всё сложнее, потому что есть ещё много различных эквивалентностей. Если спрашивать о всех возможных эквивалентностях, то всё станет слишком сложным. Но, если спросить об эквивалентностях, которые просто подразумевают замену одной переменной другой, то всегда можно определить, эквивалентны ли два выражения.
Какими цифрами лучше обозначать века – арабскими или римскими?
История средних веков: эпоха средневековья. Расшифровка римских цифр в веках. Обозначения веков простыми словами. Самые актуальные новости про 2024 год Зеленого Деревянного Дракона – календари, события, праздники, премьеры. Мы узнаем, как менялись цифры, используемые для обозначения веков, и какие резонансные эффекты они имели на развитие идеологии и культуры. Слово Сварга в древности обозначало все обжитые территории — Вселенные нашей Действительности. I", выражение "Христа II й век" могли записывать как "X. II" и т. Не исключено, что именно из этих сокращений возникли принятые сегодня обозначения веков.
Как менялось название российского государства
Новое время — это период истории между Средними веками и Новейшим временем. одно из обозначений года, используемых для григорианского календаря (и его предшественник, юлианский календарь. Окончанием эпохи историки считают последнюю четверть XVI века и в некоторых случаях — первые десятилетия XVII века. Чтобы понимать, как определить, с какого года начался 21 век, как и любой другой, необходимо знать один небольшой нюанс общепринятого летоисчисления. Для обозначения веков при написании и печати используют заглавные буквы английского алфавита — I, V и X, которые соответствуют арабским цифрам – от 1 до 10.