Новости объем чукотского моря

Проведение в Чукотском море научно-исследовательской экспедиции «Роснефти» позволило специалистам впервые пробурить к северу от острова Врангеля малоглубинные геологические скважины и поднять более 300 м образцов пород континентального шельфа. Инвестиционные квоты: Чукотское море предлагают поменять на Чукотскую зону. Главная» Новости» Средняя температура чукотского моря в январе. «По сути, наша трансарктическая экспедиция является первой, в которой сделана попытка оценки количества мусора на дне четырёх морей Северного Ледовитого океана – Чукотского, Восточно-Сибирского, Карского и моря Лаптевых». Специалисты "Роснефти" продемонстрировали гранитоид, который был поднят с глубины 130 метров ниже уровня дна Чукотского моря.

Минобороны: два Ту-95МС провели плановый полёт над Чукотским морем

Инвестиционные квоты: Чукотское море предлагают поменять на Чукотскую зону. Новости Берингова и Чукотского морей. Более 7 тысяч тонн лососей разрешили добыть на Чукотке в путину-2023. В названных границах Чукотское море занимает площадь 595 тыс. км2, его объем равен 42 тыс. км3, средняя глубина 71 м, наибольшая глубина 1256 м. В Чукотском море немного островов, впадающие в него реки маловодны, береговая линия слабо изрезана. наиболее холодное из Чукотских морей, его температура редко превышает +2°С. Чуко́тское мо́ре — окраинное море Северного Ледовитого океана, расположено между Чукоткой и Аляской. На западе проливом Лонга соединяется с Восточно-Сибирским морем.

Залежи газа на шельфе Чукотского моря открыли приморские учёные

Чукотское море входит в состав окраинных морей Северного Ледовитого океана. Российским ученым впервые за 30 лет удалось обнаружить на дне Чукотского моря газовый факел — выход свободного газа из осадка в толщу воды. является окраинным морем Северного Ледовитого океана между побережьем Чукотки, Аляски и островом Врангеля. – Газовый факел впервые обнаружили на дне Чукотского моря. Чукотское море омывает северные берега российского Чукотского полуострова и северо-западные берега американского штата Аляска США.

Залежи газа на шельфе Чукотского моря открыли приморские учёные

Установлено, что отношение размеров «гостевых» молекул газа к размерам молекул водного каркаса определяет равновесные Р-Т-условия: чем меньше Т, тем выше равновесное Р. Этан, по сравнению с метаном, также образует гидрат при гораздо меньших значениях давления. Это соотношение и было использовано в качестве состава потенциального газа-гидратообразователя при определении параметров ЗСГГ рис. Расчеты ЗСГГ производились по регулярной сети. Оказалось, что ЗСГГ смешанного состава фильтрогенного генезиса со стороны берега ограничивается изобатой 80 м. Как видно из рис. Однако экстраполировать именно такой гипотетический состав газа-гидратообразователя на всю акваторию не представляется вполне обоснованным. Чтобы максимально приблизиться к условиям формирования ГГ, имеющимся в Чукотском море, на следующем этапе работ было изменено гридирование сети путем добавления к ее регулярным узлам точек, где отбирались пробы газа в осадке. Пример одной из таких кривых приведен на рис.

В результате расчетов установлено, что с учетом вышеуказанных параметров можно прогнозировать наличие благоприятных условий для образования гидратов смешанного состава в отложениях на шельфе Чукотского моря, начиная с глубин воды 40 м. Следует подчеркнуть, что вблизи 22 из 143 грунтовых станций мощность ЗСГГ оказалась весьма значительной и составила от 100 до 750 м. Таким образом, расширив регулярную сеть точками реальных измерений состава газа и изменив методику расчета, удалось повысить достоверность прогноза распространения и мощности ЗСГГ. ЗСГГ мерзлотного генезиса. При рассмотрении условий гидратообразования в обстановке арктических шельфов нельзя не остановиться на криогенных ГГ. Площадное распространение ЗСГГ должно соответствовать площади реликтовой криолитозоны, а кровля ЗСГГ может быть приурочена к ее кровле при образовании внутримерзлотных гидратов либо к ее подошве при образовании подмерзлотных гидратов [7]. Положение кровли и подошвы самой ЗСГГ, то есть ее мощность, можно установить лишь с помощью прямых и косвенных наблюдений в ходе бурения мерзлых толщ. Как видно из приведенных выше значений, температурный режим придонного слоя воды в Чукотском море, а также его минерализация благоприятны для сохранения донных отложений в сезонно- или постоянномерзлом состояниях.

Однако лишь небольшой прибрежный участок, приуроченный к прогнозируемой в работе [7] реликтовой островной мерзлой зоне с предельной мощностью 50-100 м, можно рассматривать как потенциально газогидратоносный см. При этом, исходя из условий газогенерации, часть его рис. С учетом районирования по условиям газогенерации, площадь зоны стабильности криогенных ГГ можно оценить величиной порядка 5700 км2 рис. Мощность ее, согласно [8], составляет 200-400 м. Таким образом, используя комплексный подход к прогнозированию условий газогидрато-носности в Чукотском море на основе геологических, термобарических и мерзлотных критериев, а также состава газа-гидратообразователя, удалось выявить три типа ЗСГГ рис. Ресурсы газа в газовых гидратах Чукотского моря. Одна из важнейших задач при изучении ГГ в природных условиях - выявление масштабов газогидратообразования и определение количества газа, находящегося в недрах в форме гидратов. Картирование ЗСГГ является одним из способов ресурсной оценки гидратного газа, а при отсутствии прямых наблюдений ГГ в пределах арктических морей России этот метод является единственно возможным.

Ресурсные оценки ГГ подразделяются на локальные О, - в отдельных скоплениях, региональные - в пределах газогидратоносных районов или провинций и глобальные - в пределах Мирового океана в целом. Попробуйте сервис подбора литературы. Имея значения qR и соответствующие площади распространения гидратоносных областей можно вычислить искомые величины. Что касается площадей, то они в нашем случае соответствуют площадям распространения ЗСГГ трех типов, представленных на рис. Сложнее определить удельное содержание газа в гидратах на единицу площади для каждой из этих зон, поскольку необходимые для этого натурные данные отсутствуют. Анализ опубликованных оценок и методологических подходов к таким оценкам по Мировому океану и акваториям СЛО позволил применить дифференцированный подход к выбору искомых величин qR. Умножая 1. Вычисленные таким образом значения и для гидратов метанового состава приведены в таблице как вариант 1.

Другой подход, который также может быть использован, основан на оценках Геологической службы США [11]. На основе геолого-статистического метода без учета фактических сведений о наблюдениях гидратов и с распространением расчетных параметров на все площади потенциально газогидратоносных областей были оценены геологические запасы газа в гидратах для девяти субма-ринных потенциально газогидратоносных областей в пределах исключительной экономической зоны США, включая залив Аляска, моря Бофорта и Берингово.

Зимой увеличение происходит довольно равномерно и в небольших пределах по всей глубине.

Весной и летом у кромки льдов и в прибрежной полосе верхний слой воды толщиной 10—20 м резко отличается по плотности от подстилающего слоя, ниже которого плотность равномерно увеличивается ко дну. В центральной части моря плотность более плавно изменяется по вертикали. Осенью вследствие охлаждения поверхности моря плотность начинает увеличиваться.

Изменчивые во времени и в пространстве ветры, неодинаковое от места к месту вертикальное распределение плотности во многом определяют условия и возможности развития перемешивания в море. В весенне-летнее время на свободных ото льдов пространствах моря воды заметно расслоены по плотности и относительно слабые ветры перемешивают лишь самые верхние слои до горизонтов 5—7 м. Такая же глубина ветрового перемешивания в это время свойственна приустьевым районам.

Осенью вертикальная стратификация вод ослабляется, а ветры усиливаются, поэтому ветровое перемешивание проникает до горизонтов 10—15 м, глубже его распространению препятствуют значительные вертикальные градиенты плотности. Это особенно заметно проявляется в западной и менее выражено в восточной части моря. Устойчивую структуру вод начинает разрушать осеннее конвективно-ветровое перемешивание, которое проникает лишь на 3—5 м ниже ветрового перемешивания.

Сравнительно немного около 5 м увеличивает толщину верхнего однородного слоя осенняя термическая конвекция. На более значительных глубинах вентиляция нижних слоев происходит при сползании вод вниз по склонам дна. Гидрологическая структура Чукотского моря в основном сходна со строением вод других сибирских арктических морей, но она имеет и свои особенности.

В западных и центральных районах моря преимущественно распространены поверхностные арктические воды со свойственными им океанологическими характеристиками. В узкой прибрежной зоне, главным образом на участках впадения крупных рек, заметно выражена теплая опресненная вода, образованная от смешения морских и речных вод. Эти воды попадают в Чукотское море через 5 лет после их входа в Арктический бассейн в районе Шпицбергена.

Между поверхностными и атлантическими водами залегает промежуточный слой с присущими ему величинами температуры и солености. Восточную часть моря занимают относительно теплые и соленые тихоокеанские воды. Они втекают в море через Берингов пролив и обычно продвигаются в виде Аляскинской ветви к северу и востоку, но в отдельные годы значительное развитие получает Лонговская ветвь теплого течения, которое через пролив Лонга проникает в Восточно-Сибирское море.

По мере продвижения в Чукотском море тихоокеанские воды смешиваются с местными, охлаждаются и погружаются в подповерхностные слои. В восточной части моря с глубинами до 40—50 м они распространяются от поверхности до дна. В более глубоких северных районах моря тихоокеанские воды образуют прослойку с ядром, расположенным на горизонтах 40—50—100 м, под которыми располагается глубинная вода.

В поверхностных арктических и тихоокеанских водах формируются и разрушаются сезонные слои, связанные с внутригодовой изменчивостью вертикального распределения океанологических характеристик. Таким образом, гидрологическую структуру Чукотского моря образуют такие же типы вод, как и в других арктических морях, но, кроме того, в ней большое место занимают теплые и соленые тихоокеанские воды, что накладывает заметный отпечаток на природные условия этого моря. Общая циркуляция вод Чукотского моря помимо основных факторов, свойственных сибирским арктическим морям, в значительной мере определяется водами, втекающими через проливы Беринга и Лонга см.

Поверхностные течения моря в целом образуют слабо выраженный циклонический кругооборот. Выходя из Берингова пролива, тихоокеанские воды распространяются веерообразно. Их основной поток направлен почти на север.

На широтах залива Коцебу к ним присоединяются опресненные материковым стоком воды, выносимые из этого залива. Двигаясь дальше на север, воды Беринговоморского течения возле м. Хоп разделяются на два потока.

Один из них продолжает двигаться к северу и за м. Лисберн поворачивает на северо-восток к м. Второй от м.

Хоп отклоняется на северо-запад. Встревая на пути препятствие о. Геральд , этот поток разбивается на две ветви.

Одна из них Лонговская ветвь идет на запад к южным берегам о. Врангеля, где сливается с течением, огибающим этот остров с восточной стороны. Здесь она встречается с местными холодными водами и поворачивает на восток.

Второй поток вод, вносимых в Чукотское море, из пролива Лонга течет вдоль материкового побережья на юго-восток. При достаточно сильном развитии Чукотского течения оно заходит в Берингов пролив и распространяется вблизи его западного берега. При слабом развитии этого течения воды Беринговоморского потока отжимают его к северо-востоку.

В результате встречи Беринговоморского и Чукотского течений в южной и средней частях моря образуется несколько круговоротов циклонического типа. Центр одного из таких круговоротов находится у м. Дежнева, а другого лежит на пересечении меридиана м.

Наибольшее развитие постоянные течения получают летом, зимой они ослабевают. В это время года заметно проявляются кратковременные ветровые течения. Направление течений меняется в общем по часовой стрелке.

Приливы в Чукотском море возбуждаются тремя приливными волнами. Одна приходит с севера из Центрального Арктического бассейна, другая проникает с запада через пролив Лонга и третья вступает с юга через Берингов пролив. Линия встречи их проходит примерно от м.

Сердце-Камень к м. Встречаясь, эти волны интерферируют, что усложняет приливные явления в Чукотском море. По своему характеру приливы здесь полусуточные, но отличаются большим разнообразием скоростей течений и высот подъема уровня в разных районах моря.

Величина прилива незначительна по всему побережью Чукотки. В некоторых пунктах это всего 10—15 см. Врангеля приливы значительно больше.

В упомянутой бухте Роджерса уровень в полную воду поднимается над уровнем малой воды на 150 см, так как сюда приходит суммарная волна, образующаяся от сложения волн, поступающих с севера и запада. Такая же величина прилива наблюдается и в вершине залива Коцебу, но здесь большие приливы объясняются конфигурацией берегов и рельефом дна залива. Сгонно-нагонные колебания уровня в Чукотском море относительно невелики.

В отдельных пунктах Чукотского полуострова они достигают 60 см. На берегах о. Врангеля сгонно-нагонные явления затушевываются приливными колебаниями уровня.

В Чукотском море сравнительно редко возникает сильное волнение. Наиболее бурным оно бывает осенью, когда штормовые ветры вызывают волнение 5—7 баллов. Однако вследствие небольших глубин и ограниченности свободных от льда пространств воды здесь не развиваются очень крупные волны.

Лишь на обширных, свободных от льда пространствах юго-восточной части моря при сильных ветрах высота волн может достигать 4—5 м и большой крутизны. В единичных случаях волны имеют высоты 7 м. Льды в Чукотском море существуют круглый год.

Зимой с ноября — декабря по май — июнь море сплошь покрыто льдом неподвижным у самого берега и плавучим вдали от него. По сравнению с морями Лаптевых и Восточно-Сибирским припай здесь развит незначительно. Он окаймляет узкую прибрежную полосу и врезанные в берег бухты и заливы.

Ширина его в разных местах различна, но не превышает 10—20 км. За припаем располагаются дрейфующие льды. В большинстве своем это одно- и двухлетние ледовые образования толщиной 150—180 см.

На севере моря встречаются многолетние тяжелые льды. При затяжных ветрах, отжимающих дрейфующий лед от материкового побережья Аляски, между ним и припаем образуется стационарная Аляскинская полынья. Одновременно в западной части моря формируется Врангелевский ледяной массив.

Вдоль побережья Чукотки за припаем иногда открывается узкая, но очень протяженная до многих сотен километров Чукотская заприпайная прогалина. Летом кромка льда отступает на север см. В море образуются Чукотский и Врангелевский ледяные массивы.

Первый из них состоит из тяжелых льдов.

До недавнего времени акватория Арктического бассейна не была изучена на предмет наличия морского мусора. В советское время проводились арктические экспедиции, однако проблема замусоривания акваторий в то время не стояла так резко, и акцент делался на другие акценты. Фото: пресс-служба ТГУ Ученые выяснили, что основные источники морского мусора в арктических морях — вынос бытового крупными реками и отходы от морской деятельности: рыболовства, морской разведки, добычи нефти и газа, судоходства и прибрежного туризма.

Попадание мусора в моря усугубляется его трансграничным переносом на большие расстояния — течениями, ветром и дрейфующим льдом. Максимальное количество твердого мусора обнаружено в юго-западной части Карского моря — частота его встречаемости составила более 36 процентов. Для сравнения, в Чукотском море эти показатели равны 4 процентам.

Как сообщает Прайм, уникальное открытие сделано впервые за 30 лет исследований в Чукотском море. Недалеко от места находки располагается каньон Геральда, где некоторое время назад было замечено наличие метана.

Сделанное открытие указывает на то, что в данном месте имеется высокое давление газовых флюидов, что может представлять опасность.

Ученые провели первую в истории оценку загрязнения морей российской Арктики

На сайте «MK на Чукотке» вы найдете самые свежие новости политики, экономики, общества, культуры, науки, спорта, информацию о происшествиях в Анадыри и Чукотском АО. Ледовая обстановка дальневосточных и Чукотского морей: данные по сплоченности, типу, форме льда с географической привязкой и результаты их статистического анализа. Богатое биоресурсами Чукотское море совмещает в себе особенности Арктики и Тихоокеанского бассейна, а некоторые характерные черты свойственны именно ему. Чукотское море, расположенное между Чукоткой и Аляской, является окраинным морем Северного Ледовитого океана.

Владислав Кузнецов поручил подготовить предложения по прохождению путины-2024

Ледовые процессы оказывают влияние на температуру, соленость, вертикальную стратификацию, пространственное распространение видов жертв и хищников. Например, в Беринговом море в теплые периоды ледовые факторы могут приводить к увеличению продуктивности рыбоядных видов. Если лед остается до середины марта, то это может вести к всплеску цветения фитопланктона. Если лед уходит раньше, то пик цветения смещается на май, когда водный столб стратифицируется. Известно также, что моржи, которые перемещаются на длинные дистанции на плавающих льдинах, особенно уязвимы в условиях малой ледовитости. Это относится и к тюленям, которые также сильно зависят от развития ледовой обстановки.

Путь от Шпицбергена через Арктический бассейн до Чукотского моря атлантические воды преодолевают в среднем за 5 лет. Между поверхностными и атлантическими водами залегает слой промежуточных вод. Морские льды в море присутствуют постоянно. С ноября по июнь ледяной покров покрывает всю акваторию моря, в основном это дрейфующие льды, состоящие из отдельных непрерывно перемещающихся ледяных полей, разделяемых трещинами и небольшими разводьями. В большинстве льдины одно- и двухлетнего возраста, толщиной 150—180 см.

В северных районах встречаются многолетние тяжёлые льды толщиной до трёх метров и более. Неподвижный лёд или припай окаймляет всё побережье узкой полосой и покрывает врезанные в берег заливы и бухты. Ширина припая в среднем 10—20 км. Под действием отжимных ветров между припаем и дрейфующим льдом часто возникают заприпайные полыньи — сравнительно широкие пространства открытой воды, существующие продолжительное время. В Чукотском море регулярно в одних и тех же местах образуются стационарные полыньи — Аляскинская и Чукотская.

В летнее время в южной части моря происходит таяние и разрушение сплошного ледяного покрова, кромка дрейфующих льдов отступает на север, припай в большинстве случаев отрывается от берега и переходит в разряд дрейфующих льдов. Морские льды составляют основное и тяжёлое препятствие для морских перевозок по трассе Северный морской путь. Зимняя вертикальная циркуляция в мелководном Чукотском море проникает до дна, поэтому вся толща воды подо льдом повсюду принимает температуру подлёдного слоя. Летом прогревается только тонкий верхний 10—12-метровый слой воды, глубже температура резко понижается почти до нулевых значений. Солёность воды изменяется под действием процессов образования и таяния льда, под влиянием речного стока и в результате смешения с атлантическими и тихоокеанскими водами.

Циркуляция вод Чукотского моря представляет собой слабо выраженный циклонический круговорот и в значительной степени определяется потоками, поступающими через проливы Берингов и Лонга. Тихоокеанские воды, выйдя из пролива, распространяются веерообразно. Поток из пролива Лонга движется вдоль побережья на юго-восток. При усилении Чукотского течения его воды проходят в Берингов пролив вдоль западного берега. При слабо выраженном Чукотском течении оно отжимается к северо-востоку.

Взаимодействие Беринговоморского и Чукотского течений в центральной части моря иногда образует несколько циклонических круговоротов. Постоянные течения наиболее полно выражены в летнее время при отсутствии ледяного покрова.

По результатам проекта, который продолжается уже два года, ученые смогут оценить реальный потенциал залежей полезных ископаемых в российской Арктике.

Установите приложение "ЦСН" Российские ученые впервые за 30 лет нашли газовый факел на дне Чукотского моря Команда российских специалистов из Лаборатории сейсмических исследований Тихоокеанского океанологического института им. Ильичева обнаружила выход газа из осадка в толщу воды на дне Чукотского моря. Ранее здесь ничего подобного не находили.

Похожие новости:

Оцените статью
Добавить комментарий