В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Нормативное регулирование искусственного интеллекта в медицине. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке.
Минздрав рассказал о распространении искусственного интеллекта для медицины в России
Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Решения с использованием искусственного интеллекта (ИИ) в медицине внедряют 70 российских регионов. Разрабатываем решения для медицины будущего с искусственным интеллектом. Диагнозы уже ставит искусственный интеллект, мгновенно анализируя все обследования пациента. «Электронный доктор» уволен: почему в России приостановили работу искусственного интеллекта в медицине.
Искусственный интеллект в здравоохранении внедряют 70 регионов России
Искусственный интеллект в медицине. Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины. ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений. Мы активно развиваем искусственный интеллект в медицине. Научное исследование возможности использования в системе здравоохранения города Москвы методов поддержки принятия решений на основе результатов анализа данных с применением передовых инновационных технологий. Мы активно развиваем искусственный интеллект в медицине.
Тайны искусственного интеллекта и сhatGPT в медицине
Роман Душкин: «Медицина — это область доверия» | «Электронный доктор» уволен: почему в России приостановили работу искусственного интеллекта в медицине. |
Искусственный интеллект и машинное обучение в медицине | Технологии искусственного интеллекта (ИИ) всё шире проникают в различные сферы жизни, меняя и ускоряя привычные процессы. |
Что хотите найти?
Они используют небольшой фрагмент генетической информации вируса или патогена, чтобы дать указание нашим клеткам вырабатывать безвредный белок, похожий на часть вируса. Этот белок запускает иммунный ответ, позволяя нашему организму распознавать настоящую инфекцию и бороться с ней. Эта технология потенциально способна произвести революцию в области терапии таких заболеваний, как рак, генетические нарушения и аутоиммунные состояния. Предоставляя клеткам точные инструкции, мРНК-терапия может нацеливаться на конкретные молекулы, вызывающие заболевание, и запускать выработку терапевтических белков. Перспективы персонализированной медицины с помощью мРНК-терапии дают надежду на индивидуальные варианты лечения, которые ранее были немыслимы. Виртуальная реальность в медицине В то время как технология мРНК находится в центре внимания, другой технологией, которая добилась значительных успехов в 2023 году, является виртуальная реальность VR.
В медицине виртуальная реальность стала мощным инструментом для революционизирования медицинского образования и улучшения ухода за пациентами. В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах. Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик. Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами.
Этот подход может помочь справиться с болью, беспокойством и стрессом, создавая захватывающую обстановку или переживания, которые отвлекают пациентов от их физического дискомфорта. VR показала себя многообещающей в таких областях, как обезболивание, терапия психического здоровья, физическая реабилитация и даже помощь пациентам справляться с хроническими заболеваниями. Нейротехнология Одной из самых захватывающих областей инноваций в области медицинских технологий за последние годы стала область нейротехнологий. Ученые и исследователи добились огромных успехов в понимании сложной работы человеческого мозга и разработке технологий, которые непосредственно взаимодействуют с ним. С появлением интерфейсов мозг-компьютер BCI люди с параличом теперь могут управлять роботизированными конечностями и общаться с помощью силы мысли.
Напомним, что в 2022 г. В 2023 г. В целом, к сентябрю 2023 г. Почти половина из них были успешными.
Сегодня все системы делаются с веб-доступом. Я не могу себе представить стационарную программу такого рода, которую нужно было бы устанавливать как отдельное приложение. Естественно, «Джейн» тоже имела веб-доступ, а чат-бот — это просто дополнительный интерфейс к базе данных, в которой аккумулировались данные о пациенте — история болезни, жизненные показатели, дневник наблюдений и так далее.
Если назначены какие-то антиэпилептические вещества, то их надо принимать ровно так, как назначено, буквально минута в минуту. Любой пропуск — риск для жизни. И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона. То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней.
Они просто отмечали в электронном дневнике дни, в которые происходили приступы. Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей. Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует.
Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии.
Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов.
У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник.
Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике.
Сегодня ученые надеются, что с помощью искусственного интеллекта уже в ближайшем будущем возможно будет прийти к сверхточной или прецизионной медицине, в рамках которой появится возможность назначать индивидуальное лечение каждому отдельному человеку, учитывая его уникальные генетические и другие особенности. В США уже объявили о запуске пилотных проектов по развитию прецизионной медицины. Медико-технологические достижения, произошедшие в этот полувековой период, позволили вывести здравоохранение на новый уровень. Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных.
Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования.
Искусственный интеллект и машинное обучение в медицине
В российской системе здравоохранения большие возможности для применения искусственного интеллекта (ИИ), он уже активно внедряется по всей стране. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Научное исследование возможности использования в системе здравоохранения города Москвы методов поддержки принятия решений на основе результатов анализа данных с применением передовых инновационных технологий. нейротехнологии и технологии искусственного интеллекта.
«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
нейротехнологии и технологии искусственного интеллекта. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы. Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. В ряде зарубежных исследований было показано, что прогностические модели искусственного интеллекта со временем могут оказаться ненадежными в клинических условиях.
Искусственный интеллект в медицине и здравоохранении
Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом.
Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить. Далее анализатор берёт нужный объём крови на исследование, помещает в реакционную ячейку внутри прибора, добавляет необходимые реагенты, проводит реакцию, одновременно записывая в память её протокол, считывает результат исследования и передаёт его в ЛИС.
В дальнейшем ситуация, скорее всего, не стабилизируется из-за роста населения, старения общества и изменения клинической картины заболеваний. Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т. Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи. Онлайн-консультации Над телемедицинскими приложениями работают многие крупные компании, например, Сбер.
Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников.
И касаются они не только вирусологии, но также профилактической медицины и нутрициологии, для которых анализируют натуральные органические соединения. Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны.
Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет. Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний. К примеру, британо-ирландская компания Nuritas использует искусственный интеллект для поиска активных органических соединений, которые в теории можно использовать для лечения и предотвращения болезней. Как утверждают специалисты компании, технология анализа химических соединений с помощью искусственного интеллекта в 600 раз точнее и в десять раз быстрее, чем стандартные методики. Впрочем, без человека пока еще не обойтись.
После того, как нейросеть обнаруживает перспективное соединение, за глубокое исследование берутся биохимики. За восемь лет сотрудники компании зарегистрировали 65 патентов в медицинской отрасли, сейчас компания активно разрабатывает препараты для восстановления мышц, нормализации метаболизма глюкозы и замедления клеточного старения. Это лишь один из нескольких десятков проектов, которые изучают химические соединения для разработки диетических и биологических пищевых добавок, а также лекарственных препаратов. А развитие искусственного интеллекта в перспективе еще больше ускорит исследования и улучшит их результативность. Согласно данным Всемирной организации здравоохранения, редкими считаются болезни с распространенностью от 1 случая на 1 000 человек до 1 случая на 200 000 человек. Концерны не слишком часто инвестируют средства в поиски лекарств от таких болезней. Время окупаемости таких исследований составит десятки лет, если они вообще когда-нибудь окупятся.
Основная сложность лечения редких болезней не в синтезе лекарств и лабораторных тестированиях, а в недостатке клинических данных. Поэтому компания Healx с помощью нейросетей создает полную информационную базу 7 000 редких болезней, в которой собирает все ведомости из научных материалов, баз данных пациентов и исследований лекарств.
Наша общая задача, чтобы врач непосредственно на рабочем месте в своей медицинской информационной системе получал лучшие и самые эффективные решения. Алексей Кашпанов заместитель руководителя отдела продаж и развития компании «Нетрика Медицина» Один из примеров внедрения ИИ-решений в практическое здравоохранение —центр лучевой диагностики, созданный в Архангельской области. Специалисты центра проверяют снимки, полученные после маммографии и других исследований, с использованием технологий искусственного интеллекта. Это позволяет медицинским учреждениям, в которых выполнялись исследования, получать второе мнение в сложных ситуациях. Работу центра в числе других информационных систем поддерживает сервис «N3. Обмен данными инструментальных исследований».