Новости теория суперсимметрии

Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики.

Нобелевская премия по физике 2008 года. Нобелевская асимметрия

Унификация калибровочных бегущих констант. Известно, что в калибровочных теориях возникает явление бегущей константы связи, то есть значение константы взаимодействия изменяется в зависимости от того, на каком энергетическом масштабе наблюдается взаимодействие. Стандартная модель базируется на трёх различных калибровочных группах. Значения констант этих групп различны на малых энергиях, и с увеличением энергии они меняются. На энергетическом уровне порядка 100 ГэВ две константы становятся одинаковыми явление электрослабого объединения. На энергетическом уровне 1016 ГэВ все три константы сходятся примерно к одному значению, но в Стандартной модели они не могут стать равными друг другу. То есть, строго говоря, в рамках Стандартной модели «великое объединение» электрослабого и сильного взаимодействия невозможно. Поправки за счёт новых полей МССМ меняют вид энергетической эволюции констант, так что они могут сойтись в одну точку. Тёмная материя.

Андрей Старинец, физик-теоретик из Оксфордского университета Отсутствие подобной ясности в вопросе суперсимметрии, на мой взгляд, очень ярко характеризует ситуацию в современной теоретической физике высоких энергий. Тот факт, что мы не можем предсказать подобные вещи, говорит о слабости общей теории, о плохом понимании физики за пределами Стандартной модели. В рамках энергий, описываемых Стандартной моделью, все хорошо, но и здесь очень много работы: нужно постоянно повышать точность экспериментов и точность расчетов, сравнивать одно с другим, искать возможные отклонения от предсказаний. Но в целом пока все измерения совпадают с теоретическими выкладками. О судьбе суперсимметрии трудно сейчас сказать что-то определенное. Может быть, ее вообще нет в природе. Может быть, она будет открыта на новом суперколлайдере, который, возможно, построят в Китае. Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. У теоретиков есть еще чисто психологические моменты. Люди, которые никогда не изучали суперсимметрию, могут относится к ней скептически, но они же, изучив предмет, с трудом готовы поверить, что природа обходится без такой красоты. Конечно, на суперсимметрии или на теории струн свет клином не сошелся — ученые разрабатывают и другие подходы к физике за пределами Стандартной модели. Но мне кажется, что в целом состояние отрасли, если иметь в виду теорию, довольно плачевное. С другой стороны, несмотря на все усилия, понимания того, как устроен мир на энергиях, превышающих типичные значения для Стандартной модели, у нас по-прежнему нет. Можно сравнить эту ситуацию с тем, как развивалась фундаментальная физика в 1950-е — 70-е годы: сначала вел эксперимент, все более мощные ускорители постоянно открывали большое число новых частиц, и совершенно непонятно было, как все это описывать и классифицировать. Старые подходы не работали. В 1959 году, выступая на конференции по физике высоких энергий в Киеве, Лев Ландау объявил, что прежний, гамильтонов, подход к теории поля умер, и остается лишь организовать ему достойные похороны. Возникли новые методы, в которых было очень много красивой математики, но не так уж много физического содержания. Но уже через десять лет в рамках старого, уже, казалось бы, похороненного подхода, появилась теория сильных взаимодействий, квантовая хромодинамика, и Стандартная модель, появились соответствующие предсказания, которые затем были блестяще подтверждены в новых экспериментах. Последнее из этих подтверждений — обнаружение хиггсовского бозона, это, так сказать, теоретический привет из шестидесятых. Само по себе это нормально, но вопрос о том, сменится ли эта фаза реальным прогрессом в понимании природы, остается, на мой взгляд, открытым. Прошлые успехи не гарантируют успеха в будущем. Кроме того, сейчас имеется серьезная объективная трудность: в отличие от 1950-х годов, у нас сейчас не так много экспериментальных данных. Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей. А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть. По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров.

Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.

Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она? Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной.

«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»

Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК.

«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»

Суперсимметрия - Supersymmetry - активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики.
Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2 Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости.

Симметрия, суперсимметрия и супергравитация

Известно, что в калибровочных теориях возникает явление бегущей константы связи, то есть значение константы взаимодействия изменяется в зависимости от того, на каком энергетическом масштабе наблюдается взаимодействие. Стандартная модель базируется на трёх различных калибровочных группах. Значения констант этих групп различны на малых энергиях, и с увеличением энергии они меняются. На энергетическом уровне порядка 100 ГэВ две константы становятся одинаковыми явление электрослабого объединения. На энергетическом уровне 1016 ГэВ все три константы сходятся примерно к одному значению, но в Стандартной модели они не могут стать равными друг другу.

То есть, строго говоря, в рамках Стандартной модели «великое объединение» электрослабого и сильного взаимодействия невозможно. Поправки за счёт новых полей МССМ меняют вид энергетической эволюции констант, так что они могут сойтись в одну точку. Тёмная материя. За последние годы в астрофизике наблюдаются явления , указывающие на существование тёмной материи.

А на этой гипотезе тоже уже успели понастроить различных теорий и предположений. Весь этот мусор, наконец, пойдёт в корзину истории и я рад этому, потому что давно пишу об ошибочности этих теорий. Но у официальной физики нет им альтернативы. Вернее, альтернативных теорий довольно много, но они не признавались и не проверялись, так как противоречили общепризнанным и сколько теперь понадобится времени на отсев, проверку, а главное объединение других теорий сказать сложно. По моей теории квантового пространства за пол года так и не прислали ответа не из РАН, не из Физико-технологического института, не из Китайской Академии. А жаль... Хотя они может ещё про неё и вспомнят. Почему "однобокая", да потому что "привязана" только к восприятию исключительно "нашего" мира, который определяется "на ощуп".

В "нашем" мире точно нет суперсимметрии. И темная материя с темной энергией, а также с виртуальными частицами никак в этот "однобокий" мир не вписываются. Главное понять, что есть реальный физический мир.

Насчет этой гипотетической частицы есть сразу несколько предположений. Это может быть так называемый лептокварк частица, переносящая информацию между кварками и лептонами или Z-бозон который сам для себя служит античастицей. Эксперимент был поставлен в Национальной ускорительной лаборатории имени Ферми Фермилаб в городе Батавия, штат Иллинойс, с целью изучения поведения субатомной частицы под названием мюон. Два экспермента изменят наше понимание мира Еще в прошлом месяце физики, проводившие эксперимент на Большом адронном коллайдере в Европе, отмечали, что полученные результаты могут свидетельствовать о наличии новой частицы и силы. Долгое время в ЦЕРНе физики сталкивали протоны друг с другом, чтобы посмотреть, что произойдет после. Один из экспериментов измеряет, что происходит при столкновении частиц, называемых красными или нижними кварками.

Стандартная модель предсказывает, что эти крушения красивых кварков должны приводить к равному количеству электронов и мюонов. Но этого не произошло. При этом электронов значительно больше, чем мюонов, сказал исследователь эксперимента Шелдон Стоун из Университета Сиракьюса. Что в итоге? Первый результат нового эксперимента полностью согласуется с результатами Брукхейвена, что усиливает свидетельство того, что предстоит открыть новую физику. Объединенные результаты Фермилаба и Брукхейвена показывают отличие от Стандартной модели при значении 4,2 сигмы или стандартных отклонений , что немного меньше, чем 5 сигм, которые необходимы ученым, чтобы заявить об открытии, но все же убедительное свидетельство новой физики. Вероятность того, что результаты являются статистическими колебаниями, составляет примерно 1 из 40 000. И все же данные заставили физиков во всем мире задуматься, верно ли наше понимание мира. Такого не было со времен открытия бозона Хиггса, часто называемого «частицей Бога».

Британский Совет по научно-техническому оборудованию уже объявил, что результаты экспериментов в США дают весомые подтверждения существованию доселе неизвестной субатомной частицы или новой силы. По словам исследователей, повторное проведение экспериментов — запланированное в обоих случаях — через год или два позволит достичь невероятно строгих статистических требований, предъявляемых физиками к открытию. Если результаты подтвердятся, они перевернут «все остальные вычисления», сделанные в мире физики элементарных частиц. Как только ученые овладеют этой новой физикой, она сможет дать информацию космологическим и квантово-механическим моделям или даже помочь ученым изобрести новые технологии в будущем — возможно, следующую термоусадочную пленку. В последние годы ученые столкнулись со множеством загадок Вселенной, и доказанное наличие новой силы очень помогло бы в их разгадке.

К Стандартной модели создаются дополнения, но ученые непрерывно ищут расхождения внутри нее, которые могут указать в направлении новой физики. И теория суперсимметрии является одним из лучших кандидатов на замену СМ. К примеру, из частиц-суперпартнеров могла бы получиться темная материя», — говорит Уильям Сатклифф, доктор философии Имперского колледжа в Лондоне. Сатклифф вошел в крупный международный коллектив ученых, которые наблюдали за поведением кварков, субатомных частиц, составляющих протоны и нейтроны.

Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму.

Большой адронный коллайдер подорвал позиции теории суперсимметрии

Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь.

СУПЕРСИММЕ́ТРИ́Я

Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации.

«В настоящее время мы не можем описать Вселенную»

Как мы знаем, стандартная модель описывает элементарные частицы, которые составляют вселенную, а также их взаимодействие. В настоящее время это одно из лучших описаний субатомного мира, в соответствии с церн, которое, однако, имеет ряд брешей. Она не может описать гравитацию, не объясняет существование темной материи и не может предсказать массу бозона хиггса. К стандартной модели создаются дополнения, но ученые непрерывно ищут расхождения внутри нее, которые могут указать в направлении новой физики. И теория суперсимметрии является одним из лучших кандидатов на замену см. К примеру, из частиц - суперпартнеров могла бы получиться темная материя", - говорит Уильям сатклифф, доктор философии имперского колледжа в Лондоне.

В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия.

Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными.

Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны. Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса. Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов.

Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света.

Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир.

Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность.

Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке.

В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели графики справа такая точка имеется. Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной. Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией.

Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она? Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования. А пока же наши знания о Вселенной недостаточны.

Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий. Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной. Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны сокращение от мембраны , фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт: 11-мерность 10 пространственных плюс 1 временное измерение ; двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность; браны — струны, с более чем 1 измерением. Следствия В результате вместо одного возникло 10500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн. Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей. Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров. Возможен даже переход между вселенными с разными законами физики. Однако вероятен вариант, когда квантовая теория гравитации сделает их существование невозможным. Многие физики считают, что голографический принцип, когда вся информация, содержащаяся в объеме пространства, соответствует информации, записанной на его поверхности, позволит глубже понять концепцию энергетических нитей. Некоторые полагают, что теория суперструн позволяет множественность измерений времени, следствием чего может быть путешествие через них. Кроме того, в рамках гипотезы существует альтернатива модели большого взрыва, согласно которой наша вселенная появилась в результате столкновения двух бран и проходит через повторяющиеся циклы создания и разрушения. Конечная судьба мироздания всегда занимала физиков, и окончательная версия теории струн поможет определить плотность материи и космологическую константу.

Похожие новости:

Оцените статью
Добавить комментарий