Новости применение искусственного интеллекта в медицине

Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Применение искусственного интеллекта в медицине. Журналисты приводят данные, согласно которым совокупный экономический эффект от использования искусственного интеллекта в медорганизациях достиг 13 млрд рублей еще в 2021 году. Искусственный интеллект (ИИ) сегодня является инновационной технологией, которая вызвала настоящую революцию в различных отраслях, и медицина не стала.

Искусственный интеллект в медицине и здравоохранении

Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы. Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом. Проблемы внедрения ИИ в здравоохранении: за и против Искусственный интеллект и интернет вещей в здравоохранении — очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки. Повышение эффективности диагностики ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов. Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время. Сокращение рутинных задач врачей Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы — спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т.

Уменьшение количества врачебных ошибок ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности. Инвестиции в ИИ в медицине сегодня чрезвычайно важны — они дают возможность развивать сферу, а в перспективе и полностью изменить весь облик здравоохранения в мире, сделать его более надежным, эффективным, комфортным и безопасным для человека. Однако в настоящее время не все идет гладко. У внедрения систем искусственного интеллекта в медицинскую сферу есть проблемы и недостатки, о которых нельзя забывать. Можно выделить несколько препятствий для ИИ в медицине. Проблемы используемых медицинских данных Для обучения ИИ используются уже имеющиеся медицинские карты пациентов, информация в которых может быть неполной, содержать всевозможные неточности и ошибки. Кроме того, в документах нет такой важной информации о больных, как особенности и условия их жизни, их привычки в том числе вредные и т.

И сегодня отсутствуют эффективные механизмы сбора этих данных. Естественно, если использовать для обучения машин информацию, заведомо содержащую неточности и даже ошибки, качество работы систем будет снижаться. Непрозрачный алгоритм принятия решений Системы искусственного интеллекта работают по принципу «черного ящика»: оператор не может посмотреть, почему программа приняла именно такое решение, а не какое-то другое. Практически невозможно определить, по каким причинам ИИ неверно решил задачу. Стоимость Создание и внедрение систем искусственного интеллекта требует серьезного финансирования. Высокая стоимость связана во многом с необходимостью обучать программу, настраивать ее под данные, накопленные в конкретном медицинском учреждении. Кроме того, она требует специального обслуживания, для которого потребуется квалифицированная и мотивированная команда. Безопасность Чтобы ИИ работал качественно и быстро, ему требуются серьезные вычислительные мощности, которых может просто не быть в обычном медучреждении.

Если же вынести компьютерную сеть за пределы одного учреждения, существенно увеличивается вероятность вмешательства в ее работу злоумышленников и хакеров. А любое проникновение в работу ИИ в медицинской сфере может стать причиной принятия системой неправильных решений, от которых напрямую зависит здоровье и жизни людей. Заключение Несмотря на серьезные сложности внедрения систем ИИ, перспективы их использования побуждают искать решения для преодоления любых преград. Над развитием данной области постоянно работают высококвалифицированные специалисты из разных уголков мира, талантливые исследователи, великолепные математики, врачи, представители фармацевтических компаний и т.

Мы встретились с директором по проектной деятельности ассоциации, научным сотрудником НИИ общественного здоровья имени Н. Семашко Андреем Алмазовым, чтобы узнать, что удается сделать для внедрения ИИ в медицинскую практику и что этому мешает. Об искусственном интеллекте в медицине на радио «Маяк» Искусственный интеллект чувствует микроизменения по всем фронтам и может сказать, что будет, например, инсульт, а врач увидит инсульт только тогда, когда он случится, — рассказал в беседе с ведущими Александром Пушным и Маргаритой Митрофановой Александр Гусев, руководитель разработки системы искусственного интеллекта Webiomed, руководитель GR-направления ассоциации «Национальная база медицинских знаний».

Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи. Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру». Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую. Чтобы не терять информацию об отдельных структурах, правильнее делать одноклеточный анализ. Из каждой однородной подгруппы клеток выделять «представителя» и анализировать его. Таким образом получаются генетические и транскриптомные профили каждого отдельного участка. Имея профили большого числа участков в этом кусочке ткани, можно строить биологические модели о генетических путях, механизмах регулирования клеток. Например, модель эволюции этой ткани во времени: что будет происходить с разными типами клеток через определенный период. И тогда мы сможем моделировать на компьютере взаимодействие каких-то веществ и тканей. Что будет, если мы добавим какое-то одно лекарство? А другое, третье или комбинацию препаратов? Мы прогнозируем, какие средства подействуют лучше и как они перекликаются. В первую очередь на астму и диабет.

Результаты Реализация проекта позволила создать рынок сервисов искусственного интеллекта в лучевой диагностике, где поддерживается конкурентная среда разработчиков ИИ-сервисов. В результате эксперимента разработаны и внедрены уникальные научные методологии, на основе которых подготовлено свыше 200 эталонных наборов данных, создана первая в Российской Федерации официальная библиотека наборов данных для сферы здравоохранения. На основе научных результатов эксперимента разработаны, утверждены и вступили в силу 11 национальных стандартов в сфере применения искусственного интеллекта в здравоохранении. В 2022 году проект масштабирован на другие регионы России. С 2023 года Москва первой в стране ввела специальный тариф в рамках ОМС на анализ результатов профилактических маммографических исследований с помощью систем искусственного интеллекта. Социально-экономическое значение Использование компьютерного зрения в медицине позволяет сократить время, затрачиваемое на диагностические процедуры, а также предоставляет медперсоналу информацию для постановки более точных диагнозов и назначения более эффективного лечения.

Нейросеть для медиков: искусственный интеллект научился ставить диагнозы

Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями.

Нейронные сети для пациентов

  • Искусственный интеллект для точной диагностики
  • Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
  • AI-платформа для анализа медицинских изображений
  • Собянин: ИИ превратится в базовую медицинскую технологию в Москве
  • Что такое искусственный интеллект

Искусственный интеллект в медицине

Необходимо вкладываться в эту сферу не только потому, что это престижное направление, и исследования по нему позволяют не отставать от уровня мирового здравоохранения. В первую очередь, ИИ нужен для оптимизации медицинской сферы нашей страны. Данную оптимизацию я вижу в снижении роли человеческого фактора в лечении пациентов, в разгрузке медперсонала от рутинной работы, в автоматизации и стандартизации определённых протоколов. У искусственного интеллекта обширная область применения. В качестве примера могу привести устройства, обеспечивающие автоматическую индивидуальную оптимизацию параметров электроимпульса с помощью биологической обратной связи.

Я принимала определённое участие в разработке и продвижении этих устройств, чьё назначение заключается в воздействии на нервную, эндокринную, дыхательную и иммунную системы человека одновременно. Чтобы получить одобрение Минздрава РФ , пришлось подготовить убедительную аргументацию о необходимости данной разработки, обосновать для чиновников ценность таких устройств. Эти приборы в итоге были одобрены, что позволило использовать их в борьбе с тяжёлыми патологиями и рядом иных острых заболеваний. Фактически, внедрение таких аппаратов ежедневно демонстрирует преимущества использования искусственного интеллекта в сфере здравоохранения, позволяя сокращать влияние человеческого фактора на диагностику и лечение, и, соответственно, снижать количество врачебных ошибок.

А повышение уровня качества обслуживания в медицине влияет и на улучшение показателей здоровья населения всей нашей страны.

Медицинские приложения на основе искусственного интеллекта Ada. Мобильное приложение для оценки состояния здоровья. Человек просто отвечает на вопросы, ИИ их анализирует, ищет информацию о возможной проблеме.

Затем выдает рекомендации о необходимых обследованиях и образе жизни. Есть много схожих сервисов, которые на основании анализа ответов могут указать на сахарный диабет и другие серьезные болезни. Это диалоговая платформа, на которой человек общается с виртуальным помощником. Здесь можно проверить симптомы, получить рекомендации по уходу за собой, оценить вероятность развития различных заболеваний.

Сервис будет полезен людям с хроническими заболеваниями для отслеживания состояния здоровья. После анализа приложение отправляет информацию лечащему врачу. Есть удаленный мониторинг коронавирусной инфекции. Приложение нацелено на то, чтобы построить будущее медицины при помощи ИИ.

Сервис работает более, чем в 70 странах, в клиентской базе более 790 учреждений здравоохранения. Платформа специализируется на диагностике онкологических патологий и наследственных заболеваний. На основании анализа ДНК можно получить информацию о предрасположенности к различным заболеваниям. Область применения этого сервиса — фармакогеномика.

Это подбор эффективного препарата и дозировки в лечении различных заболеваний на основе анализа генетического теста. Врачи при лечении чаще всего используют стандартные схемы медикаментозной терапии. ИИ помогает создать индивидуальный план с учетом индивидуальных особенностей пациента. Надежный виртуальный помощник для врачей и пациентов, мгновенно отвечает на все вопросы.

ИИ ежедневно собирает все новшества в области здравоохранения и оперирует только актуальными данными. Сервис помогает разработать алгоритм для эффективного лечения диабетической ретинопатии, спрогнозировать риск развития сердечно-сосудистых заболеваний. Приложение распознает человеческую речь, может интересоваться самочувствием, отвечать на любые вопросы, связанные со здоровьем.

Анализ медицинских изображений. Компьютерное зрение позволяет находить закономерности и отклонения от нормы в снимках различных органов на КТ, МРТ, рентгенографии, маммографии и т. Это существенно экономит время для врачей при постановке диагноза, а также повышает его точность, снижает вероятность ошибок. Например, некоторые сервисы, помимо анализа изображений, автоматически заполняют врачебное заключение. Если сервис выявляет патологию, то ещё помогает врачу составить маршрутизацию пациента — к каким специалистам дальше его необходимо направить. Прогноз течения заболевания.

ИИ-технологии помогают врачам обнаружить неизвестные корреляции и скрытые закономерности течения заболевания путем изучения больших массивов данных, после чего подбирается индивидуальный план лечения с наиболее подходящими препаратами. Кроме того, использование ИИ позволяет выявлять людей, подверженных риску заболеваний, с более высокой вероятностью предсказывать хронические заболевания у пациентов, чтобы принимать соответствующие профилактические меры и давать рекомендации пациентам. Ещё одно преимущество — повышение эффективности управления оказанием медпомощи. Анализ исторических данных, электронных медкарт и данные о потоках пациентов позволяют предотвращать скопление заражённых и здоровых людей в помещениях или нехватку коек в стационарах. Создание цифровых двойников пациентов. Виртуальные пациенты могут использоваться для изучения различных патологий, тестирования лекарств и методов лечения.

Конференция "Вычислительная биология и искусственный интеллект для персонализированной медицины — 2024" - яркое ежегодное событие для врачей, ученых, представителей IT-отрасли и всех специалистов, которых волнуют вопросы медицины будущего. Программа конференции подробно отразит все современные возможности применения информационных технологий в биомедицинских исследованиях и клинической деятельности. Ведущие спикеры обсудят последние достижения в области биоинформатики: платформы для обработки данных, секвенирование и мультиомиксные технологии, а также перспективы внедрения искусственного интеллекта для поддержки врачебных решений в терапии и диагностике.

Искусственный интеллект в медицине: главные тренды в мире

Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Несмотря на то, что искусственный интеллект сегодня является одной из основополагающих технологий в здравоохранении и персонализированной медицине, в профессиональной среде возникает вопрос: а так ли умен ИИ и какие риски связаны с его применением? Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года.

Искусственный интеллект в медицине

Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Практически все основные технологии искусственного интеллекта сегодня находят применение в реальной практике организаций здравоохранения, повышая качество медицинских услуг и тем самым увеличивая продолжительность и качество жизни граждан. «Открытие Центра искусственного интеллекта ознаменовало важный шаг движения в сторону пациента, движения в сторону той медицины, которая называется персонализированной. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб.

Искусственный интеллект в медицине и здравоохранении

Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики. Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века.

При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом. Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить.

В медицине большинство сервисов для обработки диагностических изображений ориентировано на лучевое исследование, говорит Анна Мещерякова, гендиректор компании «Платформа «Третье мнение»: «Уровень зрелости этого направления самый высокий: данные — цифровые, инфраструктура наиболее готова к внедрению ИИ. Поэтому большинство сервисов, которые мы в «Третьем мнении» вывели на рынок, — это сервисы для отделения лучевой диагностики». Недавно организация в одном из регионов завершила проект по ретроспективному анализу исследований грудной клетки, были проанализированы данные за 1,5 года.

Технологии помогают и младшему медперсоналу. Например, медсестры благодаря push-уведомлениям смогут до 50 раз быстрее реагировать на тревожные ситуации, связанные с возможным падением пациентов», - говорит Анна Мещерякова. Барьеры для внедрения ИИ Вопреки всем успехам, реального внедрения серьезных, глубоких систем поддержки принятия врачебных решений на федеральном уровне очень мало, подытожил руководитель экспертной группы «Цифровые технологии в медицине» при АНО «Цифровая экономика», гендиректор ассоциации «НБМЗ» и руководитель направления цифровой медицины компании «Инвитро» Борис Зингерман. По его мнению, сейчас ИИ охотнее всего доверяют сами пациенты. А у пациентов нет медобразования, и они рады любой помощи и подсказке от искусственного интеллекта», — отметил Борис Зингерман. Сложнее ситуация обстоит в здравоохранении в субъектах.

На первом этапе обновлен парк медоборудования, создан центральный архив медицинских изображений и проведено несколько технических интеграций с сервисами ИИ. Для контроля качества ИИ-решений в медицине не хватало специалистов, поэтому на призывы о помощи откликнулись эксперты Департамента здравоохранения Москвы. Согласно договоренностям со столичными экспертами, в ЯНАО подключаются сервисы, занимающие в Москве лидирующие позиции. Сейчас реализуется третий этап — вовлечение врачей-рентгенологов в работу с ИИ. Отрабатываются механизмы сбора обратной связи о работе сервисов на базе ИИ. Следующее, что мы сделаем, — продумаем, как мотивировать врачей на работу с ИИ-решениями», — объяснил Андрей Дорофеев.

Для выбора обоснованного подхода к этому вопросу он предлагает рассмотреть три различных уровня зрелости ИИ-систем: «Первый уровень — это новые идеи и разработки, требующие апробации на предмет востребованности рынком.

Средство массовой информации сетевое издание «Городской информационный канал m24. Учредитель и редакция - АО «Москва Медиа». Главный редактор сетевого издания И. Адрес редакции: 125124, РФ, г.

Два года назад начались клинические испытания ПО на основе технологий лучевая диагностика. В 2020-21 гг. Сервисы использовались в 102 медицинских организациях при проведении 13 видов исследований КТ, МРТ и другие. Было обработано 3,8 млн исследований, подготовлено 104 дата-сетов механизмов хранения информации, предоставляющих быстрый доступ к большим объемам данных.

Говорит главный внештатный специалист по лучевой и инструментальной диагностике, директор ГБУЗ «Научно-практический клинический центр диагностики и телемедицинских технологий ДЗМ» Сергей Морозов: «За время эксперимента мы увидели, что искусственный интеллект значительно снижает длительность подготовки описания результатов. Он не может заменить врача, но может в отдельных клинических сценариях ускорить работу рентгенолога, оптимизировать ресурсы за счет автоматизации двойных просмотров результатов скринингов. Поначалу врачи опасались, что ИИ заменит их, относились как к конкуренту, но потом настороженность все же сменилась слабопозитивным отношением». Очевидно, что искусственный интеллект может взять на себя лишь часть врачебных функций. Окончательный диагноз все равно ставит только врач. И тем более никакой искусственный интеллект не сможет конкурировать с опытом, мудростью и непосредственным общением доктора с пациентом, а ведь все это играет важную роль при постановке диагноза и выработке схемы лечения. Как начать доверять машинам? С какими проблемами сталкиваются сами разработчики и производители медицинского программного обеспечения? В ней содержится информация о тех исследованиях, которые проводятся в ходе обследования — например, флюорография, узи, МРТ, рентген.

Ключевой продукт — это система описания, рекомендации и статистики. В нее входит набор протоколов разной степени формализации, которые позволяют эффективно описывать те или иные нозологии, чтобы потом иметь возможность организовать общение врачей — диагностов и клиницистов, а также помочь пациенту понять, о чем говорится в заключении». Весной 2020 года компания обратилась к проблеме коронавируса и применила к этому заболеванию формализованный протокол. Получился продукт, который определяет в ходе исследования объем поражения легких и позволяет визуализировать поражения.

Похожие новости:

Оцените статью
Добавить комментарий