Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Примеры незатухающих колебаний Незатухающие колебания встречаются в различных физических системах и процессах.
§ 30. Незатухающие колебания. Автоколебательные системы
Витки пружины благодаря магнитному полю тока начинают при этом притягиваться друг к другу, пружина сжимается, и груз получает толчок кверху. Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова. Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери. Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. Автоколебания груза на пружине Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке.
Аналогичным путем можно получить автоколебания со звуковыми частотами, например возбудить незатухающие колебания камертона рис. Когда ножки камертона расходятся, замыкается контакт 1; через обмотку электромагнита 2 проходит ток, и электромагнит стягивает ножки камертона. Контакт при этом размыкается, и далее следует повторение всего цикла. Автоколебания камертона Чрезвычайно существенна для возникновения колебаний разность фаз между колебанием и силой, которую оно регулирует. Перенесем контакт 1 с внешней стороны ножки камертона на внутреннюю.
Амплитуда зависит от времени. Частота и период зависят от степени затухания колебаний. Основные параметры: 1. Скоростью затухания колебаний принято называть величину, которая прямо пропорциональна силе затухания колебаний.
Акустический резонанс играет большую роль и для нашего слуха. Благодаря нему наружное ухо усиливает звуки средней частоты, составляющие основную часть спектра речи, а также различает высоту звука и его тембр. Полезно знать Сегодня мы затронули понятие общественного и когнитивного резонанса, но не объяснили значение этих выражений. Общественный резонанс — событие, на которое общество дает яркий отклик. Когнитивный резонанс — полное совпадение во взглядах и мнениях. Многие слова и устойчивые выражения, которые мы используем в повседневной жизни, основаны на физических явлениях и законах. Резонанс, инерция, энергия, напряжение и многие другие термины встречаются нам ежедневно, но знаем ли мы, что они на самом деле означают? Приходите на онлайн-курсы физики школы Skysmart: на них вы научитесь не только мастерски обращаться с научной терминологией, но еще и станете настоящим экспертом в исследовании мира через призму физики! А заодно подготовитесь к экзаменам и повысите оценки в школе. Дарья Вишнякова.
Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю. Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения — общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие — дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие: Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии. Уравнение колебаний — решение дифференциального уравнения. Амплитуда затухающих колебаний зависит от времени. Частота и период зависят от степени затухания колебаний. Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний. Механические затухающие колебания Механическая система: пружинный маятник с учетом сил трения. Силы, действующие на маятник: Упругая сила.
Механические колебания | теория по физике 🧲 колебания и волны
Другим примером незатухающих колебаний являются электромагнитные колебания в контуре с постоянными параметрами. Однако незатухающие колебания возможны не только при периодическом внешнем воздействии, но и в некоторых других случаях — в так называемых автоколебательных и параметрических системах. Примером незатухающих колебаний может быть колебания маятника или электрическое колебание в резонансном контуре. незатухающие колебания, так как амплитуда и, следовательно, полная энергия колебаний не менялись. Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Колебания бывают незатухающими и затухающими.
Незатухающие колебания. Автоколебания
Цепь размыкается, и ножка камертона под действием силы тяжести опускается вниз. Цепь замыкается и далее всё повторяется. Электромеханические автоколебательные системы, подобные рассмотренным в технике применяются очень широко. Но есть и чисто механические колебательные устройства, например маятниковые часы. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2. Колесо с косыми зубьями 1 жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2.
К маятнику 3 приделана перекладина 4 анкер , на концах которой укреплены пластинки 5, изогнутые по окружности с центром на оси маятника 6. Анкер даёт возможность ходовому колесу повернуться только на один зуб за каждые половины периода маятника. Пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой пластинки 5, маятник не получает толчка, а лишь слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса "чиркает" по торцу пластинки 5, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, так как он сам в определённых положениях даёт возможность ходовому колесу подтолкнуть себя в нужном направлении.
Эти толчки и восполняют расход энергии на трение. Период колебаний почти совпадает с периодом собственных колебаний маятника, то есть зависит от его длины. Итак, при автоколебаниях система сама управляет действующей на неё силой и сама регулирует поступление энергии для создания незатухающих колебаний.
Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. Рисунок 2. Функциональная схема автоколебательной системы Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом рис. Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер якорек с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника.
В ручных часах гиря заменена пружиной, а маятник — балансиром — маховичком, скрепленным со спиральной пружиной.
Такие устройства называются автоколебательными системами. На рис. Груз висит на пружине, нижний конец которой погружается при колебаниях этого пружинного маятника в чашечку со ртутью.
Один полюс батареи присоединен к пружине наверху, а другой — к чашечке со ртутью. При опускании груза электрическая цепь замыкается и по пружине проходит ток. Витки пружины благодаря магнитному полю тока начинают при этом притягиваться друг к другу, пружина сжимается, и груз получает толчок кверху. Тогда контакт разрывается, витки перестают стягиваться, груз опять опускается вниз, и весь процесс повторяется снова.
Таким образом, колебание пружинного маятника, которое само по себе затухало бы, поддерживается периодическими толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдает порцию энергии, часть которой идет на подъем груза. Система сама управляет действующей на нее силой и регулирует поступление энергии из источника — батареи. Колебания не затухают именно потому, что за каждый период от батареи отбирается как раз столько энергии, сколько расходуется за то же время на трение и другие потери.
Что же касается периода этих незатухающих колебаний, то он практически совпадает с периодом собственных колебаний груза на пружине, т. Автоколебания груза на пружине Подобным же образом возникают незатухающие колебания молоточка в электрическом звонке, с той лишь разницей, что в нем периодические толчки создаются отдельным электромагнитом, притягивающим якорек, укрепленный на молоточке.
Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю. Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения — общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие — дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие: Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии. Уравнение колебаний — решение дифференциального уравнения. Амплитуда затухающих колебаний зависит от времени. Частота и период зависят от степени затухания колебаний. Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний.
Механические затухающие колебания Механическая система: пружинный маятник с учетом сил трения. Силы, действующие на маятник: Упругая сила. Сила сопротивления.
Механические колебания | теория по физике 🧲 колебания и волны
Уравнение колебаний — это решение дифференциального уравнения. Амплитуда зависит от времени. Частота и период зависят от степени затухания колебаний. Основные параметры: 1.
Уравнение затухающих колебаний есть решение такого дифференциального уравнения:. В приложении 1 показано получение решения дифференциального уравнения затухающих колебаний методом замены переменных. Частота затухающих колебаний: физический смысл имеет только вещественный корень, поэтому.
Период затухающих колебаний:. Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее:. Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Для механической системы пружинного маятника имеем: , , для пружинного маятника. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.
При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период. Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 3.
Но есть и чисто механические колебательные устройства, например маятниковые часы. Незатухающие колебания маятника 3, показанных на рисунке часов, происходят за счёт потенциальной энергии поднятой гири 2. Колесо с косыми зубьями 1 жестко скреплено с зубчатым барабаном, через который перекинута цепь с гирей 2. К маятнику 3 приделана перекладина 4 анкер , на концах которой укреплены пластинки 5, изогнутые по окружности с центром на оси маятника 6. Анкер даёт возможность ходовому колесу повернуться только на один зуб за каждые половины периода маятника. Пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой пластинки 5, маятник не получает толчка, а лишь слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса "чиркает" по торцу пластинки 5, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, так как он сам в определённых положениях даёт возможность ходовому колесу подтолкнуть себя в нужном направлении.
Эти толчки и восполняют расход энергии на трение. Период колебаний почти совпадает с периодом собственных колебаний маятника, то есть зависит от его длины. Итак, при автоколебаниях система сама управляет действующей на неё силой и сама регулирует поступление энергии для создания незатухающих колебаний. Характерная черта автоколебаний состоит в том, что их амплитуда определяется свойствами самой системы, а не начальным отклонением или толчком, как у свободных колебаний. Рулёва, к. Подписывайтесь на канал.
Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю. Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения — общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие — дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие: Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии.
Уравнение колебаний — решение дифференциального уравнения. Амплитуда затухающих колебаний зависит от времени. Частота и период зависят от степени затухания колебаний. Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний. Механические затухающие колебания Механическая система: пружинный маятник с учетом сил трения. Силы, действующие на маятник: Упругая сила. Сила сопротивления.
Характеристика затухающих колебаний, какие колебания называют затухающими
Рассмотрим динамику собственных незатухающих колебаний пружинного маятника. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Примеры незатухающих колебаний Незатухающие колебания широко применяются в различных областях науки и техники.
Характеристика затухающих колебаний, какие колебания называют затухающими
Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой. Свободные колебания могут быть незатухающими только при отсутствии силы трения. Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Незатухающими колебаниями могут быть только те, которые совершаются под действием периодической внешней силы (вынужденные колебания).
Урок 9: Гармонические, затухающие, вынужденные колебания. Резонанс (Колебошин С.В.)
- Свободные незатухающие колебания: понятие, описание, примеры
- Характеристика затухающих колебаний, какие колебания называют затухающими / Справочник :: Бингоскул
- Приведи пример вариантов незатухающих колебаний
- 3. Затухающие колебания. Колебания. Физика. Курс лекций
- Свободные незатухающие колебания
- Что такое автоколебательные системы
Гармонические колебания и их характеристики.
Еще одним примером незатухающих колебаний является колебания вокруг равновесного положения пружины. Однако незатухающие колебания возможны не только при периодическом внешнем воздействии, но и в некоторых других случаях — в так называемых автоколебательных и параметрических системах. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка.
Механические колебания | теория по физике 🧲 колебания и волны
Чтобы вернуться в исходное положение состояние 1 , нужно снова проделать путь в обратном направлении: сначала 3—2, затем 2—1. Груз немного смещают от положения равновесия вдоль оси пружины и отпускают из состояния покоя, после чего он начинает колебаться, двигаясь вдоль оси пружины, параллельно которой направлена ось Ox. В таблице приведены значения координаты груза х в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице.
Абсолютная погрешность измерения координаты равна 0,1 см, времени — 0,05 с. Алгоритм решения: Проверить истинность утверждения 1. Для этого необходимо установить зависимость ускорения тела, колеблющегося на пружине, от его координаты.
Проверить истинность утверждения 2. Для этого необходимо установить зависимость кинетической энергии тела, колеблющегося на пружине, от его координаты. Проверить истинность утверждения 3.
Для этого необходимо записать формулу, отображающую зависимость между силой, действующей на колеблющееся тело, и координатой этого тела. Затем найти модули силы для указанных значений времени и сравнить их. Проверить истинность утверждения 4.
Для этого необходимо дать определение периоду колебаний, установить период колебаний тела и сравнить его со значением, приведенным в утверждении 4. Проверить истинность утверждения 5. Для этого необходимо дать определение частоте колебаний, установить частоту колебаний тела и сравнить его со значением, приведенным в утверждении 5.
Записать ответ в виде последовательности цифр, не разделенных знаками препинания и пробелами.
Так как ток в соседних витках течёт в одну сторону, то витки катушки притягиваются друг к другу, пружина сжимается и груз получает толчок кверху. Электрическая цепь разрывается, витки пружины перестают притягиваться друг к другу, и груз под действием силы тяжести опускается вниз. Далее всё повторяется. Таким образом, колебания пружинного маятника, которые в отсутствие источника затухали бы, в рассмотренном примере поддерживаются толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдаёт порцию энергии, часть которой идёт на подъём груза. А в самой батарее энергия появляется за счёт химической реакции.
Система сама управляет действующей на неё силой и сама регулирует поступление энергии от источника. Колебания не затухают потому, что за каждый период батарея отдаёт столько энергии, сколько расходуется системой за то же время на трение и другие потери. Период таких колебаний практически совпадает с периодом собственных колебаний груза на пружине, то есть определяется жёсткостью пружины и массой груза. Подобным же образом поддерживаются незатухающие колебания молоточка в электрическом звонке, питающимся от сети через понижающий трансформатор. Здесь периодические толчки создаются электромагнитом, притягивающим якорёк, укреплённый на молоточке. Якорь притягивается, и боёк, связанный с ним, ударяет по чашечке звонка. При притягивании якоря между ним и винтом 3 образуется зазор, ток прерывается, электромагнит обесточивается, и якорь силой пружины 4 возвращается в исходное положение.
Цепь электромагнита при этом снова замыкается, и боёк ещё раз ударяет по чашечке.
Практическое применение незатухающих колебаний Незатухающие колебания широко используются в различных областях науки и техники. Рассмотрим некоторые примеры. Радиотехника В радиопередатчиках незатухающие электромагнитные колебания генерируются с помощью электронных генераторов.
Они используются для модуляции и передачи радиосигналов. Генераторы колебаний Существуют ламповые, транзисторные, кварцевые и другие типы генераторов для создания высокостабильных колебаний в радиотехнике. Передатчики В передатчиках колебания генератора модулируются информационным сигналом и излучаются антенной в виде радиоволн. Метрология Высокостабильные незатухающие колебания используются в квантовых эталонах частоты и времени.
Квантовые стандарты частоты В качестве эталонов применяются атомные часы на основе квантовых переходов в атомах. Эталоны времени Сверхстабильные генераторы с кварцевым резонатором обеспечивают точность хода эталонных часов. Медицина Незатухающие электрические колебания применяются в электрокардиографии для диагностики сердечной деятельности. Исследования незатухающих колебаний Изучение незатухающих колебаний имеет давнюю историю и продолжается по сей день.
В XIX веке Максвелл разработал теорию электромагнитных колебаний. Галилей, Гюйгенс, Ньютон заложили основы исследования механических колебаний. Максвелл, Герц экспериментально обнаружили и описали электромагнитные волны. В настоящее время ведутся работы по созданию сверхстабильных эталонов частоты, по применению незатухающих колебаний в нанотехнологиях.
Разрабатываются оптические эталоны частоты на основе лазеров и атомных переходов. Изучаются колебания наномеханических резонаторов, применение их в сенсорике. Дальнейшие исследования незатухающих колебаний позволят расширить возможности науки и техники. Колебания в окружающем мире Незатухающие колебания широко распространены в природе, быту, технике.
Давайте рассмотрим некоторые примеры: Колебания в живой природе. В организмах постоянно происходят колебательные процессы - пульс, дыхание, электрическая активность мозга. Ритмические сокращения сердечной мышцы обеспечивают кровообращение.
Чтобы эта сила появилась нужен какой-то внешний источник энергии. Устройства, которые сами могут поддерживать свои колебания, называются автоколебательными системами. Рассмотрим, например, как возникают автоколебания груза на пружине. Вся эта система подсоединяется к источнику постоянного напряжения батарее так, что при опускании груза электрическая цепь замыкается, и по пружине проходит ток. Так как ток в соседних витках течёт в одну сторону, то витки катушки притягиваются друг к другу, пружина сжимается и груз получает толчок кверху.
Электрическая цепь разрывается, витки пружины перестают притягиваться друг к другу, и груз под действием силы тяжести опускается вниз. Далее всё повторяется. Таким образом, колебания пружинного маятника, которые в отсутствие источника затухали бы, в рассмотренном примере поддерживаются толчками, обусловленными самим колебанием маятника. При каждом толчке батарея отдаёт порцию энергии, часть которой идёт на подъём груза. А в самой батарее энергия появляется за счёт химической реакции. Система сама управляет действующей на неё силой и сама регулирует поступление энергии от источника. Колебания не затухают потому, что за каждый период батарея отдаёт столько энергии, сколько расходуется системой за то же время на трение и другие потери. Период таких колебаний практически совпадает с периодом собственных колебаний груза на пружине, то есть определяется жёсткостью пружины и массой груза.
Подобным же образом поддерживаются незатухающие колебания молоточка в электрическом звонке, питающимся от сети через понижающий трансформатор.
Незатухающие колебания. Автоколебания
Незатухающими колебаниями могут быть только те, которые совершаются под действием периодической внешней силы (вынужденные колебания). Возбуждение незатухающих электрических колебаний возможно с помощью других методов, но все они подобны описанному. Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой.
Определение затухающих колебаний
- § 30. Незатухающие колебания. Автоколебательные системы
- Причины колебаний в разных системах
- § 27. Незатухающие электромагнитные колебания
- 3. Затухающие колебания. Колебания. Физика. Курс лекций
- Ликбез: почему периодические колебания затухают
- Урок 9: Гармонические, затухающие, вынужденные колебания. Резонанс (Колебошин С.В.)