Иконка канала Математические теоремы: между теорией и практикой. Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля.
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания
Адронный коллайдер подтвердил теорию суперсимметрии | Иконка канала Математические теоремы: между теорией и практикой. |
Супер ассиметричная модель вселенной попович | Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии | Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
Объяснение материи и массы Одна из основных задач современных исследований — поиск решения для реальных частиц. Теория струн начиналась как концепция, описывающая такие частицы, как адроны, различными высшими колебательными состояниями струны. В большинстве современных формулировок, материя, наблюдаемая в нашей вселенной, является результатом колебаний струн и бран с наименьшей энергией. Вибрации с большей порождают высокоэнергичные частицы, которые в настоящее время в нашем мире не существуют.
Масса этих элементарных частиц является проявлением того, как струны и браны завернуты в компактифицированных дополнительных измерениях. Например, в упрощенном случае, когда они свернуты в форме бублика, называемом математиками и физиками тором, струна может обернуть эту форму двумя способами: короткая петля через середину тора; длинная петля вокруг всей внешней окружности тора. Короткая петля будет легкой частицей, а большая — тяжелой.
При оборачивании струн вокруг торообразных компактифицированных измерений образуются новые элементы с различными массами. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Свернутые измерения здесь гораздо сложнее тора, но в принципе они работают также.
Возможно даже, хотя это трудно представить, что струна оборачивает тор в двух направлениях одновременно, результатом чего будет другая частица с другой массой. Браны тоже могут оборачивать дополнительные измерения, создавая еще больше возможностей. Определение пространства и времени Во многих версиях теория суперструн измерения сворачивает, делая их ненаблюдаемыми на современном уровне развития технологии.
В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий.
Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе.
Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий.
Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной. Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня.
Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта.
Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную. Теория суперструн для начинающих В основе гипотезы положены пять ключевых идей. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии. Она пытается совместить общую теорию относительности гравитации с квантовой физикой. Теория суперструн позволит объединить все фундаментальные силы вселенной. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной.
Струны и браны Когда теория возникла в 1970 годы, нити энергии в ней считались 1-мерными объектами — струнами. Слово «одномерный» говорит о том, что струна имеет только 1 измерение, длину, в отличие от, например, квадрата, который имеет длину и высоту. Эти суперструны теория делит на два вида — замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий. Взаимодействия основаны на способности струны соединять и разделять свои концы. Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны.
Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны. Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую. Они представляют совершенно разные области науки.
Квантовая физика изучает мельчайшие природные частицы, а ОТО, как правило, описывает природу в масштабах планет, галактик и вселенной в целом. Гипотезы, которые пытаются объединить их, называются теориями квантовой гравитации. Наиболее перспективной из них сегодня является струнная. Замкнутые нити соответствуют поведению силы тяжести. В частности, они обладают свойствами гравитона, частицы, переносящей гравитацию между объектами. Объединение сил Теория струн пытается объединить четыре силы — электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию — в одну. В нашем мире они проявляют себя как четыре различные явления, но струнные теоретики считают, что в ранней Вселенной, когда были невероятно высокие уровни энергии, все эти силы описываются струнами, взаимодействующими друг с другом.
Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.
Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза.
Использование метода суперсимметрии обеспечивает математически строгую альтернативу методу реплик , но только в невзаимодействующих системах, который пытается решить так называемую «проблему знаменателя» при усреднении по беспорядку. Подробнее о приложениях суперсимметрии в физике конденсированного состояния см. Ефетов 1997 [15].
Экспериментальная проверка[ править править код ] В 2011 году на Большом адронном коллайдере БАК была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории Суперсимметрии, а также верность описания ею физического мира. Как заявила 27 августа 2011 года профессор Ливерпульского университета Тара Ширс [en] , эксперименты не подтвердили основные положения теории [16] [17]. При этом Тара Шиарс уточнила, что не нашла подтверждения и упрощённая версия теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории. К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона [18]. Таким образом, вероятность этого крайне редкого события статистически достоверна и хорошо согласуется с предсказанием Стандартной модели. Результаты проверки электрического дипольного момента электрона 2013 также не подтвердили варианты суперсимметричных теорий [20].
«Вселенная удваивается»
В последние месяцы они проводили на БАК опыты с В-мезоном. В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория. Однако Тара Шиарс отказалась полностью отвергнуть теорию Суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
И ничего не было бы больше.
Хорошо, что науке предстоит ещё такое открывать, что мы пока и не представляем себе этого! LHC себя ещё покажет.
Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит к последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение недостатка энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц.
По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью ее исключать — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза.
По словам профессора Воробьева, о результатах экспериментов можно будет точно говорить в конце 2012 года Фото: hepd. Алексей Воробьев: В ходе эксперимента сталкиваются два протона больших энергий. В результате рождается много разных частиц. Среди них рождаются B-мезоны. И специфика высоких энергий такова, что их рождается достаточно много. Живут они очень мало —10-12 секунд, после тут же распадаются.
Суперсимметрия в свете данных LHC: что делать дальше?
Среди них рождаются B-мезоны. И специфика высоких энергий такова, что их рождается достаточно много. Живут они очень мало —10-12 секунд, после тут же распадаются. М-мезон — это аналог электрона, но тяжелее его в 200 раз. Правда, не всегда.
А простейший вариант теории суперсимметрии предсказывает ускорение этого процесса.
В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы основные теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика. Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение.
Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия.
Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы.
В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны. Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов.
Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса. Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую.
Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов. Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина.
Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином.
Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем.
Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц.
При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность.
Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд!
Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий.
Но на Теватроне, ускорителе в Fermilab, ныне отстранённом от работы, ничего подобного не нашли.
И в то время, как БАК тестирует всё более высокие энергии, не находя и следа суперсимметричных частиц, некоторые физики утверждают, что теория мертва. В настоящее время большинство рабочих версий суперсимметрии предсказывают настолько тяжёлых суперпартнёров, что они бы пересилили эффекты от своих лёгких близнецов, если бы не точно настроенные взаимоуничтожения воздействий между различными суперпартнёрами. Но тонкая подстройка, предназначенная для нейтрализации проблем теории и решения проблемы иерархии, не нравится многим. Некоторые теоретики ломятся дальше, и утверждают, что, несмотря на красоту изначальной теории, в природе может существовать уродливая комбинация частиц-суперпартнёров и капельки подстроек. В иных моделях суперпартнёры не тяжелее существующих частиц, но менее стабильны, из-за чего их труднее обнаружить.
Эти теории будут и далее проверяться на БАК после апгрейда. Если ничего нового не найдут — а о таком развитии событий говорят, как о «кошмарном сценарии» — физикам останутся всё те же пробелы, что путали им всю картину Вселенной три десятка лет назад, до того, как их аккуратно закрыла суперсимметрия. И при отсутствии коллайдера более высоких энергий, говорит Фальковский, эта область будет медленно деградировать. Грин более оптимистичен. И это происходит внутри области.
А люди продолжают работать над тем, что их очаровывает, и наука зигзагами приближается к истине».
Теоретики также обнаружили, что теория суперсимметрии может решить другие проблемы. Некоторые из самых легких суперсимметричных частиц могут оказаться темной материей, за которой астрофизики охотятся с 1930-х годов. Теория суперсимметрии может быть использована для объединения всех взаимодействующих сил во Вселенной, кроме гравитации — это был бы большой шаг к единой теории поля, объединяющей и объясняющей всю известную физику.
Пока что коллайдеры не дали подтверждения теории суперсимметрии. Частицы-суперпартнеры должны оказаться намного тяжелее обычных частиц. А в настоящее время БАК быстро накапливает данные при еще более высоких энергиях, сокращая "тяжелую область" для суперчастиц. К концу года он достигнет 1000 ГэВ, что потенциально исключит некоторые вариации теории суперсимметрии, которым отдавалось наибольшее предпочтение. Это создает серьезную проблему для теории суперсимметрии.
Суперсимметрия в свете данных LHC: что делать дальше?
Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга.
СУПЕРСИММЕТРИЯ
Суперсимметричные расширения Стандартной модели Основная статья: Минимальная суперсимметричная стандартная модель Включение суперсимметрии в Стандартную модель требует удвоения количества частиц, поскольку никакие частицы в Стандартной модели не могут быть суперпартнерами друг друга. С добавлением новых частиц появляется много возможных новых взаимодействий. Простейшей возможной суперсимметричной моделью, совместимой со Стандартной моделью, является минимальная суперсимметричная стандартная модель MSSM , которая может включать необходимые дополнительные новые частицы, которые могут быть суперпартнерами частиц в Стандартной модели. Отмена квадратичной перенормировки массы бозона Хиггса между диаграммами Фейнмана с фермионной петлей топ-кварка и скалярным стоп- скварком с головастиком в суперсимметричном расширении Стандартной модели Одна из первоначальных мотиваций минимальной суперсимметричной стандартной модели возникла из проблемы иерархии. Из-за квадратично расходящихся вкладов в квадрат массы Хиггса в Стандартной модели квантово-механические взаимодействия бозона Хиггса вызывают большую перенормировку массы Хиггса, и, если не происходит случайного сокращения, естественный размер массы Хиггса является наибольшим. Кроме того, электрослабая шкала получает огромные квантовые поправки планковского масштаба. Наблюдаемая иерархия между электрослабой шкалой и шкалой Планка должна быть достигнута исключительно точной настройкой.
Эта проблема известна как проблема иерархии. Суперсимметрия, близкая к электрослабой шкале , например, в минимальной суперсимметричной стандартной модели , решила бы проблему иерархии, которая присуща Стандартной модели. Это уменьшило бы размер квантовых поправок за счет автоматической отмены между фермионными и бозонными взаимодействиями Хиггса, а квантовые поправки планковского масштаба отменяли бы между партнерами и суперпартнерами из-за знака минус, связанного с фермионными петлями. Иерархия между электрослабой шкалой и шкалой Планка могла бы быть достигнута естественным образом, без особой тонкой настройки. Другая мотивация для минимальной суперсимметричной стандартной модели исходит из великого объединения , идеи о том, что калибровочные группы симметрии должны объединяться при высоких энергиях. В Стандартной модели, однако, слабые , сильные и электромагнитные связи датчиков не могут быть объединены при высокой энергии.
В частности, эволюция ренормгруппы трех калибровочных констант связи Стандартной модели несколько чувствительна к нынешнему содержанию частиц в теории. Эти константы связи не совсем совпадают на общей шкале энергий, если мы запустим ренормализационную группу, используя Стандартную модель. После включения минимальной SUSY в электрослабой шкале работа калибровочных связей изменяется, и совместная сходимость калибровочных констант связи прогнозируется примерно при 10 16 ГэВ. Модифицированный ход также обеспечивает естественный механизм радиационного нарушения электрослабой симметрии.
Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза.
Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она? Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной.
Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК. И кто знает, развитие каких новых областей человеческих знаний повлекут за собой предстоящие исследования. А пока же наши знания о Вселенной недостаточны.
Подчеркнем, что даже перечисление всех сколько-нибудь различающихся вариантов суперсимметричных теорий является совершенно неподъемной задачей. Например, в самой простой реализации идеи суперсимметрии — минимальном суперсимметричном расширении Стандартной модели MSSM — имеется 105 свободных параметров см. Даже если попытаться «просканировать» весь набор их возможных комбинаций в самом грубом приближении например, предположив, что каждый параметр может принимать либо нулевое, либо какое-то одно ненулевое значение , мы получим 2105 комбинаций. Ясно, что ни о каком перечислении всех моделей не может быть и речи.
К счастью, подавляющая часть всех таких вариантов сильно расходится с опытными данными. Но задача выбрать все те, которые согласуются, не проще. Выходом будет попытка сформулировать и тщательно проанализировать нескольких конкретных и очень ограниченных вариантов суперсимметричных теорий. Эти модели должны, с одной стороны, удерживать основные черты суперсимметрии и при этом не входить в явное противоречие с опытом, а с другой стороны, должны предоставить свободу лишь очень малому количеству параметров. Только в этом случае появляется разумный шанс просканировать всё пространство параметров, разбить его на области, различающиеся по физическим последствиям, провести подробные вычисления и сделать предсказания для эксперимента. Они характеризуются предположением об исключительной универсальности всех скалярных частиц и всех фермионов частиц до момента нарушения суперсимметрии и содержат всего 5 свободных параметров в довесок к параметрам Стандартной модели. Именно в рамках этих моделей делалось множество предсказаний для LHC, на основании которых затем разрабатывалась стратегия экспериментального поиска суперсимметрии.
NUHM модель с неуниверсальными хиггсами — чуть более свободная разновидность MSSM, в которой снято предположение о жесткой универсальности между хиггсовскими полями; 6 свободных параметров. Она обладает более сложным набором хиггсовских полей и в простейшем варианте содержит 7 свободных параметров. Подчеркнем, что вариация свободных параметры в каждой модели не просто слегка меняет предсказания для рождения и распада суперчастиц. Она может полностью перекроить всю картину процессов. Поэтому в рамках каждой модели всё равно остается довольно большой или в случае pMSSM — очень большой набор возможностей, который надо изучать индивидуально. Суть экспериментального поиска Поиск суперсимметрии на LHC.
Ожидает ли нас такая же революция, сопоставимая по масштабам с созданием квантовой физики? В каком-то смысле современная ситуация и то, что происходило в конце 19 века, очень похожи друг на друга. В то время мы достигли пределов классической физики, но еще не начали замечать квантовых эффектов. Всем казалось, что фундаментальная наука закончилась, и что остались лишь различные мелочи и прикладная физика.
Но потом появился Планк и его открытия, и ситуация резко изменилась. Можно ли ожидать какого-то эпохального открытия в экспериментальной физике или, что не менее важно и возможно, в космологии? Не стоит забывать, что космос — это гигантская лаборатория по изучению физики частиц на самых высоких энергиях. Вполне возможно, что гравитационные волны помогут нам заглянуть в самые ранние эпохи жизни Вселенной, когда она еще не была прозрачной для света. Может быть, наши коллеги найдут там что-то, что перевернет не только космологию, но и выведет физику частиц на новый уровень. Как показывают примеры темной материи и темной энергии, проблемы макро- и микромира неразрывно связаны между собой. Есть, конечно, и более пессимистический сценарий — не исключено и то, что мы просто достигли пределов человеческого знания и способности познавать мир. Кто-то из великих физиков, кажется, Леонард Сасскинд, любит говорить, что коту можно объяснять квантовую механику до посинения, но он никогда не поймет, как решать уравнение Шредингера. Мне вот кажется, что котик просто отлично понимает, что его покормят колбаской и без всякого уравнения Шредингера. Лично я, как простой советский человек, усердно конспектировавший "Материализм и эмпириокритицизм", верю в бесконечность познания и неисчерпаемость наших возможностей расширять пределы науки.
К сожалению, этого не произошло и не понятно, произойдет ли в будущем. Вероятность этого, на мой взгляд, крайне мала, но экспериментаторы скрипят зубами, но продолжают эти поиски. Что касается гравитационных волн от астрофизических черных дыр, ситуация тут сложнее, так как эти волны больше касаются классической физики, нежели квантовой гравитации. Могут ли они дать нам что-то принципиально новое в смысле обобщений теории гравитации, я не знаю. Их изучение было бы интересным, однако тут мы столкнемся с теми же ограничениями и проблемами, которые накладываются теорией струн и отсутствием надежных предсказаний. Схема ускорительного комплекса проекта NICA К примеру, если попытаться оценить космологическую постоянную Эйнштейна из соображений размерности — она обратно пропорциональна квадрату планковской длины, то у нас получится значение, на 120 порядков превышающее то, что мы наблюдаем в реальности. Это, как часто говорят, худшее предсказание теоретической физики за всю ее историю. Почему это так, и почему космологическая постоянная так мала, но не равна нулю, мы не знаем, и это еще одна из демонстраций того, что теоретическая физика высоких энергий находится в кризисе. Кстати, в этом году Кумрун Вафа, знаменитый физик-теоретик из Гарвардского университета, и его коллеги опубликовали работу, из которой вроде бы следует, что теория струн не совместима с существованием космологической модели с положительной космологической постоянной. К их числу относится и наша Вселенная.
Правда, там есть разные допущения.
"Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости. В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Напр., в теории С. происходит сокращение бесконечностей, которые присущи всем релятивистским теориям и представляют проблему, особенно в квантовой гравитации.
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии. Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает.
"Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей.
Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц.
Во-первых, современные модели предполагают, что первичные черные дыры попадают в интервал масс от десяти до ста солнечных. Во-вторых, сигнал от их слияния может быть обнаружен исключительно при помощи гравитационного взаимодействия. Суперсимметрия предполагает удвоение как минимум числа известных элементарных частиц за счет наличия суперпартнеров. Например, для фотона — фотино, кварка — скварк, хиггса — хиггсино и так далее.
Чтобы понять важность этих результатов, нужно вернуться к основам. Как мы знаем, стандартная модель описывает элементарные частицы, которые составляют вселенную, а также их взаимодействие. В настоящее время это одно из лучших описаний субатомного мира, в соответствии с церн, которое, однако, имеет ряд брешей. Она не может описать гравитацию, не объясняет существование темной материи и не может предсказать массу бозона хиггса. К стандартной модели создаются дополнения, но ученые непрерывно ищут расхождения внутри нее, которые могут указать в направлении новой физики. И теория суперсимметрии является одним из лучших кандидатов на замену см.
Стандартная модель базируется на трёх различных калибровочных группах. Значения констант этих групп различны на малых энергиях, и с увеличением энергии они меняются. На энергетическом уровне порядка 100 ГэВ две константы становятся одинаковыми явление электрослабого объединения. На энергетическом уровне 1016 ГэВ все три константы сходятся примерно к одному значению, но в Стандартной модели они не могут стать равными друг другу. То есть, строго говоря, в рамках Стандартной модели «великое объединение» электрослабого и сильного взаимодействия невозможно. Поправки за счёт новых полей МССМ меняют вид энергетической эволюции констант, так что они могут сойтись в одну точку.
Тёмная материя. За последние годы в астрофизике наблюдаются явления , указывающие на существование тёмной материи. В MSSM естественно возникает кандидат на объяснение этого феномена — нейтралино , нейтральная стабильная частица.
Вы точно человек?
Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает. Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот. Суперсимметрия предполагает удвоение (как минимум) числа известных элементарных частиц за счет наличия суперпартнеров. Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает. Многие думают, что даже если большинство теорий суперсимметрии не подтвердились, появятся новые, которые будут включать этот принцип, но в другой концепции. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК.