Новости красноярские ученые использовали наноалмазы

Коллектив ученых из Красноярского научного центра Сибирского отделения РАН (СО РАН) и Сибирского федерального университета разработал недорогой. Красноярские ученые использовали наноалмазы для выявления фенола в воде. Группа ученых из Красноярского научного центра СО РАН, Туниса, Индии и Саудовской Аравии синтезировали кристаллы на основе органики и азотной кислоты. Коллектив красноярских ученых, в состав которого вошли исследователи Красноярского научного центра СО РАН, после анализа научных работ ученых со всего мира по магнитным нанодискам выяснил, что новое поколение. По сообщению пресс-службы ФИЦ «Красноярский научный центр СО РАН», новый композиционный материал состоит из нановолокон оксида алюминия и детонационных наноалмазов.

Сообщите свою новость

  • Российские ученые научились делать наноалмазы в лабораторных условиях // Видео НТВ
  • Ученые из Красноярска создали материал из наноалмазов и нанотрубок
  • Способ разрушения раковых клеток в слабом магнитном поле разработали в Сибири
  • Ученые использовали наноалмазы для обнаружения загрязнений в воде

Ученые из Красноярска разработали способ разрушения раковых клеток наночастицами золота

Учёные из Новосибирска и Красноярска создали новый композиционный материал на основе углеродных нанотрубок и наноалмазов. Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков. Красноярские ученые разработали технологию управляемого синтеза магнитных нанопорошков. Сотрудники Красноярского института биофизики продемонстрировали, как алмазы можно использовать для выявления фенолов в воде.

Красноярские ученые научились определять токсичность наночастиц

Он состоит из нановолокон оксида алюминия и детонационных наноалмазов. Такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон — более высокая термическая и механическая стабильность, повышенная химическая и биологическая стойкость, простота очистки и более длительный срок службы. На поверхность изготовленного композита, который имеет белый цвет, добавляется водный образец с предварительно внесенными реагентами.

В лечении переломов ученые используют доработанные специалистами наночастицы и слабые магнитные поля, приводит ТАСС слова руководителя «Биомета», доктора биологических наук Анны Кичкайло.

Метод основан на способности некоторых частиц работать в человеческом организме подобно навигатору. Когда они добираются до нужных клеток тела, исследователи включают магнитное поле, и рецепторы клетки принимают сигнал о начале регенерации — процесса восстановления тканей.

Об этом сообщили в Красноярском научном центре Сибирского отделения Российской академии наук.

Созданное вещество проявляет высокую стабильность и реакционную способность. Учёные провели моделирование биологических свойств кристаллов и пришли к выводу, что они эффективно взаимодействуют с белками.

Предварительно осаждённый на поверхность кремния тонкий слой золота дает возможность регулировать форму и ориентацию растущих нанокристаллов. Атомы золота, захватывая окружающие их химические элементы, становятся центрами формирования кристаллов. При этом частицы драгоценного металла трансформируют взаимодействия молекул на гранях нанокристалла, тем самым изменяя принцип его роста.

Количество присоединенных атомов от поверхности подложки к вершине уменьшается, а на боковых гранях наоборот увеличивается. В результате объект не растет в высоту, а образует новые грани. Благодаря такому эффекту, на подложке возникают кристаллы в виде прямоугольных и треугольных нанопластин. Исследователи отмечают, что наноструктуры подобных форм синтезируются только на поверхности с нанесенным на нее золотом.

Новосибирские ученые скрестили алмаз и графен для получения нового материала

Новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов для обнаружения токсичных веществ (например, фенола) в производственных сточных водах разработал коллектив ученых из ФИЦ «Красноярский научный центр СО РАН». Ученые провели строгие квантовые расчеты и уже делятся с мировым научным сообществом первыми результатами исследования, сообщает корреспондент со ссылкой на Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. Домой Новости Ученые использовали наноалмазы для обнаружения загрязнений в воде.

Красноярские ученые разработали метод лечения переломов наночастицами

Биолюминесцентные тесты откроют дорогу нанометериалам в медицину Наночастицы золота с единственными в своем роде спектральными характеристиками в ближней инфракрасной области разработали красноярские ученые.
Красноярские ученые разработали метод лечения переломов наночастицами «Красноярские ученые разработали новый биоразлагаемый пластик на основе полистирола и органического соединения – альфа-ангеликалактона, он полностью разлагается в лесной почве за семь месяцев.

Красноярские ученые научились находить яды в воде с помощью наноалмазов

Ученые из Красноярска разработали способ разрушения раковых клеток наночастицами золота 30 января 2018 1 Красноярские ученые разработали способ разрушения раковых клеток с помощью наночастиц золота, сообщили в понедельник в пресс-службе Красноярского научного центра Сибирского отделения Российской академии наук. Отмечается, что здоровые ткани при этом остаются нетронутыми. Сообщается, что над проектом работал коллектив ученых из Красноярского научного центра, Красноярского медицинского университета, Центра ядерной медицины, Сибирского федерального университета и Университета Оттавы Канада.

Таким образом был получен композит с уникальными свойствами: под воздействием даже слабого электрического поля он может светиться люминесцентным голубым светом. Эксперты говорят, что раньше подобные материалы светились только под действием сильного магнитного поля. Новое же соединение требует гораздо меньше энергии, и может быть полезно в самых разных сферах, в том числе, в медицинской диагностике, в изготовлении светильников и дисплеев.

Полученный материал обладает рядом уникальных свойств, говорится в статье ученых, опубликованных в журнал Scientific Reports.

Можно сказать, что мы получили прообраз крошечного светильника — нанотрубка на кончике которой светится наноалмаз. Такие конструкции могут найти применение в самых разных сферах жизни — от новых типов дисплеев до медицинской диагностики», — поясняет один из авторов статьи, сотрудник Института неорганической химии СО РАН Новосибирск Юлия Федосеева.

Одна из часто возникающих проблем — токсичность наночастиц; закономерности проявления которой не всегда понятны. Из-за такой неопределенности и недостаточной изученности, применение углеродных наночастиц затруднено. У исследователей пока нет полной уверенности в безопасности таких медицинских препаратов. Красноярские биофизики предложили применять биолюминесцентные тесты для оценки токсичности и антиоксидантной активности углеродных наночастиц. Ученые проверили этот метод на фуллеренолах — водорастворимых производных фуллеренов. Они представляются перспективными для создания антибактериальных, противогрибковых, противовирусных, противораковых средств и компонентов композиционных биоматериалов. В своей работе исследователи не только определили, от каких структурных особенностей фуллеренолов зависят их свойства, но и разработали принципы подбора наноматериалов для синтеза медицинских препаратов. Для исследования свойств наноматериалов на клеточном и биохимическом уровнях красноярские ученые предлагают использовать два типа биотестов, созданных на основе клеток светящихся морских бактерий и выделенных из них ферментов.

Использование таких биотестов делает оценку токсичности и антиоксидантной активности крайне простой и быстрой. Если свечение в эксперименте уменьшается, то образец токсичен, так как он подавляет клеточные процессы и замедляет биохимические реакции, отвечающие за него.

В СО РАН хотят получить наноалмазы

Учеными красноярского института биофизики и новосибирского института неорганической химии Сибирского отделения РАН получен композитный материал на основе наноалмазов и углеродных нанотрубок. Ученые из Красноярского научного центра Сибирского отделения РАН предложили способ обнаружения фенолов в воде с помощью наноалмазов. Учёные СО РАН выявили способ определения загрязнения воды с помощью наноалмазов.

Красноярские учёные создали экологичный пластик

Материал разработан на основе наноалмазов и углеродных нанотрубок — возможно применение при создании дисплеев современного типа. Ученые добавляют, что новый светящийся материал можно использовать в различных отраслях: в медицине, электронике и других. Ученые из Красноярского государственного медицинского университета разработали метод победить онкологию при помощи слабого магнитного поля и наночастиц. Красноярские учёные в сотрудничестве с коллегами из Индии, Туниса и Саудовской Аравии достигли прогресса в области медицинских исследований.

Сибирские ученые создали материал из наноалмазов

Такой «гибрид» уникален тем, что способен светиться даже при минимальном воздействии электрического поля. Данное свойство предоставляет инженерам возможность создавать на основе таких материалов новые типы дисплеев. Научные сотрудники институтов неорганической химии им.

Специалисты отмечают, что такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон. Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы. В результате деятельности многих отраслей промышленности в поверхностные водоемы попадает большое количество химических соединений, практически неразлагаемых в природе и являющихся токсичными. Одно из таких — фенол и его производные. В связи с этим существует необходимость в мониторинге уровня загрязнения промышленных сточных вод, позволяющего легко и эффективно проводить анализ воды «на месте». Это помогало бы экологическим службам и общественному контролю быстрее оценивать экологическое состояние природных вод. Процедура колориметрического анализа воды на содержание фенола с использованием полученного нами композита происходит следующим образом. На поверхность изготовленного композита, который имеет белый цвет, добавляется водный образец с предварительно внесенными реагентами.

По ее рассказу, в разработке методика, при которой к магнитным наночастицам присоединяются молекулы, работающие в организме человека как навигатор и заточенные на поиск определенных механорецепторов на клетках. Когда доработанные наночастицы достигают нужных клеток, включается слабое переменное магнитное поле, и рецепторы клетки начинают принимать сигнал о начале регенерации от наночастиц. Как пояснила ученый, пациенту просто надо будет делать укол с лекарством, в котором доработанные наночастицы.

Такой вариант действий я предлагаю молодым коллегам и горд за своих учеников, их желание трудиться и открывать новое вселяет надежду на позитивное будущее нашей отечественной науки. С чего начиналась ваша карьера учёного? По диплому я — врач-лечебник. Но хорошо, что я достаточно быстро понял: практическая медицина — не моё. И со второго курса серьёзно занялся биохимией. В жизни мне везло на встречи с замечательными людьми, которые многому меня научили и в человеческом, и профессиональном плане.

Надо сказать, что врачом я так и не работал — в год окончания института мне предложили аспирантуру на этой кафедре. Но я очень рад, что учился в мединституте. Этот вуз даёт многое в плане формирования психологии человека. Вероятно, это происходит потому, что ты постоянно сталкиваешься с радостью и горем, болью и избавлением от неё, жизнью и смертью. Всё это меняет мировоззрение человека в лучшую сторону, начинаешь по-иному воспринимать и рассматривать многие аспекты жизни. Наверное, именно по этой причине достаточно много выпускников красноярского мединститута стали хорошими писателями. Это слово произношу с большой буквы. Я счастлив, что имею честь называться его учеником. Он всегда поддерживал и поддерживает все наши начинания, даёт импульсы для их развития, способствует движению вперёд.

Несмотря на возраст и колоссальную загруженность, самым активным образом участвует и в обсуждениях наших планов, и в анализе результатов исследований. Интерес к наноалмазной тематике с его стороны очевиден. Именно благодаря разговору Иосифа Гительзона с Анатолием Ставером мы стали изучать эти наночастицы. Анатолий Михайлович сетовал на то, что при производстве наноалмазов изготовители испытывают какой-то физический дискомфорт. Забегая вперёд, скажу, что это было связано не с наноалмазами, а с технической стороной процесса их производства. Так наноалмазы появились в нашем институте, всем желающим предложили исследовать их свойства. Тогда достаточных представлений о свойствах этого материала и том, как с ними работать, ни у кого не было. Поскольку ярких эффектов в экспериментах с данными наночастицами никто не получил, всё постепенно затихло. Результат эксперимента настолько нас ошеломил, что потребовался год, чтобы осмыслить выявленный эффект.

В случае с наноалмазами повезло: когда мы взглянули на этот материал как на адсорбент, решили нашу исследовательскую задачу эффективно и быстро и получили нетривиальный результат. А через год встретились вновь, с этого момента и начались систематические и разносторонние исследования свойств наночастиц и возможностей их применения в биологии и медицине. Расскажу ещё о нескольких направлениях наших исследований. Одно из них очень модное сегодня во всём мире. Это создание систем адресной доставки веществ, применяемых в медицине. Цель благая — создать целенаправленный лекарственный препарат, чтобы он прицельно действовал в организме на определённый орган или очаг патологии. Таким образом, повышается эффективность вводимого препарата — можно локально задать его высокую концентрацию в требуемом очаге патологии и при этом избежать массы негативных побочных эффектов. Как выглядит такая система доставки? Она состоит из трёх элементов: носителя, который доставляет препарат, самого лекарства и молекулы, которая будет направлять весь этот комплекс в нужное место.

Мы создали такую систему на основе наноалмазов, которые использовали в качестве носителя. В экспериментах in vitro в пробирке мы доказали, что сконструированная система устойчива и проявляет свою функцию. Работает ли эта система in vivo? Многие учёные мира проводят такие исследования в пробирках, в том числе и с наноалмазами. Но что происходит с системой и прежде всего с носителем в организме?

В СО РАН хотят получить наноалмазы

«Сделать Енисей теплее»: красноярские ученые решают проблему «черного неба». Наука Вещества 29.10.2021, 19:35 Многоразовый композит из нановолокон и наноалмазов поможет выявить токсины в воде Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов. Смотрите свежие новости на сегодня в Любимом городе | Красноярские ученые научились определять токсичность наночастиц. Главная → Новости → Техника/Технологии → Красноярские ученые разработали эффективный композит для определения фенола в промышленных сточных водах. В результате красноярские ученые не только получили новый материал, но и открыли новое явление – сегрегацию меди. Наука Вещества 29.10.2021, 19:35 Многоразовый композит из нановолокон и наноалмазов поможет выявить токсины в воде Красноярские ученые разработали новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов.

Правила комментирования

  • Ученые из Красноярска создали материал из наноалмазов и нанотрубок
  • Газета «Суть времени»
  • Красноярские ученые научились изготавливать наноцеллюлозу
  • Telegram: Contact @nzzhit
  • Красноярские ученые придумали устройство для создания искусственной вечной мерзлоты

Красноярские ученые использовали наноалмазы для выявления фенола в воде

Как говорят сами инженеры, новейший материал, люминесцирующий голубым оттенком в слабом электрическом поле, будет очень даже востребован во многих отраслях мирового производства. Он обладает уникальными свойствами и может быть использован как светильник.

Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой. Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров.

Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН. Работа частично поддержана Российским фондом фундаментальных исследований проект 18—29—19078.

Огромным преимуществом такого метода будет адресное уничтожение опухоли без повреждения здоровых тканей», — отметил доцент кафедры общей физики СФУ Роман Руденко. Однако есть и сложность — эти частицы обладают собственным магнитным моментом и собираются в крупные образования, что недопустимо во время операции. Чтобы решить эту проблему, ученые предложили способ управления магнитным моментом при помощи механических напряжений в самом нанодиске. Нанодиск представляет собой сердечник из никеля, «обёрнутый» в безопасное для человека гипоаллергенное золотое покрытие.

Из-за такой неопределённости и недостаточной изученности применение углеродных наночастиц затруднено. У исследователей пока нет полной уверенности в безопасности таких медицинских препаратов. Красноярские биофизики предложили применять биолюминесцентные тесты для оценки токсичности и антиоксидантной активности углеродных наночастиц.

Учёные проверили этот метод на фуллеренолах -- водорастворимых производных фуллеренов. Они представляются перспективными для создания антибактериальных, противогрибковых, противовирусных, противораковых средств и компонентов композиционных биоматериалов. В своей работе исследователи не только определили, от каких структурных особенностей фуллеренолов зависят их свойства, но и разработали принципы подбора наноматериалов для синтеза медицинских препаратов. Для исследования свойств наноматериалов на клеточном и биохимическом уровнях красноярские учёные предлагают использовать два типа биотестов, созданных на основе клеток светящихся морских бактерий и выделенных из них ферментов. Использование таких тестов делает оценку токсичности и антиоксидантной активности крайне простой и быстрой. Если свечение в эксперименте уменьшается, то образец токсичен, так как он подавляет клеточные процессы и замедляет биохимические реакции, отвечающие за него.

Похожие новости:

Оцените статью
Добавить комментарий