Новости гаргантюа черная дыра

Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии.

Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом?

Тайны черных дыр: 6 занимательных вопросов астрофизикам Посмотрите идеальное GIF-изображение по теме "Gargantua Black Black Hole", которое украсит любой чат. Находите лучшую анимацию в Tenor и делитесь ею с друзьями.
Что такое Гаргантюа? • AB-NEWS Гаргантюа черная дыра.
Почему черная дыра называется Гаргантюа – Telegraph Гаргантюа — это сверхмассивная черная дыра, ставшая популярной в массовой культуре после фильма Интерстеллар, именно в неё затянуло Купера к концу фильма. Я постарался графически обыграть маршруты, будто это лучи света вокруг горизонта событий черной дыры.
Гаргантюа: самая большая Солнечная система во Вселенной | Звездный исследователь | Дзен Сверхмассивная чёрная дыра или плохо сфотографированный глазированный пончик Krispy Kreme?
Найден новый тип черной дыры, скрывающейся на «космическом заднем дворе» Земли Кстати, общепризнанный в кругах многих астрономов, тот факт, что изображение чёрной дыры "Гаргантюа" из к/a "Интерстеллар" наиболее точно и достоверно передаёт внешний вид свермассивной чд в галактике М87 (точнее её тени).

«Интерстеллар» с точки зрения науки

Примените обои. Для этого выберите файл в списке и нажмите кнопку "ОК". Или добавьте работу на лицензионную версию Валпапер Энджин , подписавшись на оригинальную копию в мастерской Steam Workshop идентификатор указан в файле project. Некоторым эквалайзерам для корректной работы требуется один из дополнительных модулей: Audio Visualizer , Simplistic Audio Visualizer или Customizable Module Visualizer - установите их как обычные обои, методом распаковки в папку программы.

Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей. Попробуйте сами и увидите, что огонь вас не будет обжигать. Гаурав Ханн и его коллега Лиор Бурко занимаются вопросами физики черных дыр более двадцати лет. В 2016 году Кэролайн Маллари, одна из аспиранток Ханна, вдохновленная блокбастером режиссера Кристофера Нолана «Интерстеллар» решила научным методом проверить, действительно ли главный герой фильма смог бы выжить при падении в гигантскую вращающуюся черную дыру Гаргантюа, обладающую массой в 100 миллионов раз превосходящую солнечную.

Сам фильм, напомним, был поставлен по книге нобелевского лауреата по астрофизике Кипа Торна. Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. Выдуманная черная дыра Гаргантюа из фильма «Интерстеллар» Даже прическу не помнет? Компьютерная модель показала, что при любых условиях объект падающий во вращающуюся черную дыру не будет испытывать бесконечно больших эффектов деформации при прохождении сквозь так называемый внутренний горизонт сингулярности — область черной дыры, избежать которой не удастся в любом случае. Более того, при определенных обстоятельствах воздействие этих эффектов будет настолько мало, что объект сможет без проблем пройти сквозь эту сингулярность, а в некоторых случаях и вовсе не заметить никакого воздействия со стороны.

И это было весело. И к моему удивлению, побочным продуктом это привело скромно к новым открытиям. Эти уравнения рассчитывают траектории световых лучей, начинающихся от некоторого источника света, к примеру, от далекой звезды, и движущихся сквозь искривленное пространство Гаргантюа к камере. Из этих лучей света мои уравнения затем рассчитывают видимые камерой изображения, учитывая не только источники света и искажение пространства и времени Гаргантюа, но и движение камеры вокруг Гаргантюа. Получив эти уравнения, я сам опробовал их с помощью дружелюбного программного обеспечения под названием Mathematica. Я сравнивал изображения, создаваемые моим компьютерным кодом Mathematica, с изображениями Алена Riazuelo, и когда они согласовались, я возликовал. Затем я написал подробные описания своих уравнений и отправил их Оливеру в Лондон, вместе с моим кодом Mathematica. Мой код был очень медленным и имел низкое разрешение. Задачей Оливера было перевести мои уравнения в компьютерный код, который мог бы создать необходимые для фильма изображения IMAX сверхвысокого качества. Мы с Оливером делали это пошагово. Мы начали с невращающейся черной дыры и неподвижной камеры. Затем мы добавили вращение черной дыры. Затем добавили движение камеры: сперва движение по круговой орбите, а затем падение в черную дыру. А затем мы переключились на камеру, вращающуюся вокруг кротовой норы. В этом месте Оливер поразил меня как громом среди ясного неба: чтобы смоделировать самые утонченные эффекты, ему понадобятся не только уравнения, описывающие траектории световых лучей, но еще и уравнения, описывающие, как поперечное сечение пучка света меняет размер и форму, проходя через кротовую нору. Я более или менее знал, как это сделать, но уравнения были ужасно запутанны, и я боялся наделать ошибок. Так что я поискал техническую литературу, и обранужил, что в 1977 году Serge Pineault и Rob Rouber из Университета Торонто получили необходимые уравнения в почти нужной мне форме. После трехнедельной борьбы с собственной глупостью я привел их уравнения точно в нужную форму, выразил их в Mathematica и расписал Оливеру, который включил их в собственный компьютерный код. В конце концов, его код смог создать качественные изображения, необходимые для фильма. В Double Negative компьютерный код Оливера был только началом. Он вручил его художественной команде под руководством Евгении фон Танзельманн, которая добавила аккреционный диск Глава 9 и создала фоновую галактику со звездами и туманностями, которые будут искажаться линзой Гаргантюа. Затем ее команда добавила Эндуранс, Рэйнжеры и посадочные модули и анимацию камеры изменяющиеся движение, направление, поле зрения и т. Продолжение см. Между тем, я ломал голову над высококачественными видео, присланными мне Оливером и Евгенией, напряженно пытаясь понять, почему изображения выглядят так, как выглядят, а звездные поля струятся так, как струятся. Для меня эти видео подобны экспериментальным данным: они вскрывают такие вещи, которые я бы никогда не выяснил сам, без этих моделей - например, то, что я описал в предыдущем разделе рисунки 8. Мы собираемся опубликовать техническую статью-другую с описанием того нового, что мы узнали. Внешний Вид Гравитационных Пращей Хотя Крис решил не показывать ни одной гравитационной пращи в Интерстелларе, я задался вопросом, как бы они выглядели для Купера, когда он вел Рэйнжер к планете Миллера. Так что я воспользовался своими уравнениями и Mathematica для моделирования изображений. У моих изображений разрешение намного ниже, чем у изображений Оливера и Евгении из-за медленности моего кода. Это праща, описанная на рисунке 7. Рис 8. ЧДСМ захватывает лучи света от далеких звезд, направленные к Гаргантюа, прокручивает их вокруг себя и выбрасывает к камере. Это объясняет бублик из звездного света, окружающий тень ЧДСМ. По мере того, как для движущейся по праще камеры ЧДСМ уходит вправо, она оставляет за собой первичную тень Гаргантюа средняя картинка на рисунке 8. Эти два изображения совершенно аналогичны первичному и вторичному изображению звезды, преломленной гравитационной линзой черной дыры; но теперь линза ЧДСМ преломляет тень Гаргантюа. На нижней картинке размер вторичной тени сокращается по мере того, как ЧДСМ движется дальше. К этому моменту гравитационная праща почти завершена, и камера на борту Рэйнжера устремляется вниз, к планете Миллера.

Согласно новому исследованию, они представляют собой ранее неизвестную категорию загадочных массивных объектов. Международная группа астрономов обнаружила черные дыры, используя данные миссии Gaia Европейского космического агентства ЕКА в сочетании с наземными телескопами со всего мира. Gaia BH1 находится всего в 1 560 световых годах от Солнечной системы по направлению к созвездию Змееносца, практически на «заднем дворе» Земли, пишут ученые. Она почти в три раза ближе, чем предыдущий рекордсмен. Gaia BH2 находится примерно в 3 800 световых годах от Земли, в созвездии Центавра. Оба объекта примерно в 9-10 раз массивнее Солнца и находятся в галактике Млечный Путь.

Гаргантюа интерстеллар [82 фото]

Кадр из фильма. Источник: kinopoisk. Но мы в 2023-м до сих пор не наблюдаем ничего похожего возле Сатурна. И очень странно, что, судя по словам героев, такому интересному космическому объекту было уделено мало внимания — за все годы с ее открытия по гравитационным волнам от черной дыры туда отправилась всего одна экспедиция, да и то колонизаторская. И почему профессор так уверенно говорит о том, что кротовая нора ведет именно в другую галактику в нашей Вселенной? Есть модели «червоточин», которые позволяют отправиться в другую Вселенную, а отличить отдаленную часть нашего мира от чужого будет непросто. Марс все-таки ближе, а Сатурн — намного дальше В одном из эпизодов Купер просит напарника-робота озвучить маршрут путешествия. Робот отвечает, что путь до Марса займет восемь месяцев, а до Сатурна всего 14 месяцев. В действительности до Марса можно добраться всего за шесть месяцев при идеальном раскладе по расчетам NASA , а вот эффективность химических ракетных двигателей не позволяет быстро летать до Сатурна — быстрее трех лет и двух месяцев туда не добраться этот рекорд поставил аппарат Кассини, совершивший для этого пять гравитационных маневров — изменений траектории и скорости полета за счет гравитационных полей космических объектов.

Людей в этом ограничивает длительность полета, набор скорости при помощи гравитационных маневров занимает гораздо больше времени. Источник: kinomania. И вот при подлете к «червоточине» знания Купера о ней испаряются.

Но есть второй вариант удержания кротовых нор: нужно использовать гравитационные силы из пятого измерения. Если четырёхмерный объект пронзает наше трёхмерное пространство, он создаёт в нём очень странные силы, которые ни на что не похожи. Вот их и использовать для удержания кротовой норы. Гаргантюа снаружи Такой массы достаточно, чтобы приливные силы на планете Миллер не разорвали её пополам. Изображение дыры: Гаргантюа приплюснута слева, потому что она вращается слева направо относительно камеры и у света, двигающегося в направлении вращения, больше шансов не быть засосанным за горизонт событий. У каждой звезды за чёрной дырой есть два изображения на картинке: обычное, которое далеко от дыры, дано светом, немного согнутым гравитацией.

И второе, внутри сферы Эйнштейна , такой сферы, которая всё очень сильно преломляет, потому что близко к дыре. Там ещё несколько особенностей, связанных с вращением дыры, но я это с трудом объясню, потому что оптика не лучшая моя сторона. Чтобы аккреционный диск не зажарил всех заживо всеми возможными лучами, его сделал температурой всего пару тысяч градусов, как Солнце, он излучает свет и совсем чуть-чуть гамма и рентгеновских лучей. Именно из-за слабости диска из Гаргантюа не вырываются плазменные пучки из южного и северного полюсов, как из квазара. Такое возможно, если дыра не «кушала» другие планеты в течение долгого времени. То, что на картинках светится - это и есть аккреционный газовый диск. А выглядит он как хрен пойми что, потому что, благодаря гравитационному линзированию , над и под чёрной дырой виден кусок диска за этой самой дырой. Очень близко к горизонту событий Гаргантюа есть две критические орбиты, образованные равновесием силы гравитации и центробежной силы. По одной из них движется планета Манна, по другой - Эндюранс в конце фильма.

Пространство в Интерстелларе состоит из трёх трёхмерных бран в четырёхмерном пространстве анти-де Ситтера. Над и под нашей браной находятся ограничивающие браны, они нужны для того, чтобы гиперпространство искривлялось между слоями и не нарушались человеческие законы распространения сил, в частности гравитации. Так, в общем, можно сделать пятой измерение развёрнутым, а не скрученным в трубочку. Гиперпространство искривляется между этими бранами и расстояние, измеренное в верхней или нижней бране будет очень сильно короче, чем в нашей бране Расстояние между этими бранами должно быть 1,5 сантиметров - этого достаточно для того, чтобы расстояние по верхней бране между Землёй и Гаргантюа было равно 1АЕ, и в нашей бране соблюдались законы Ньютона о гравитации. Как это сделать? Это не показывается в фильме , но Кип предполагает, что вокруг Гаргантюа должны вращаться ещё как минимум две маленькие чёрные дыры, размером с Землю. Только попав в гравитацию таких дыр, можно так сильно сбросить скорость и не убить команду корабля. При этом в фильме Купер говорит, что ему нужно сделать менёвр вокруг нейронной звезды, а не чёрной дыры я, честно, не помню этой фразы. Волны на планете Миллер вызваны «покачиванием» планеты туда-сюда, относительно оси, перпендикулярной Гаргантюа.

Типа, цунами. Планета Миллер должна располагаться между аккреционным диском и Гаргантюа. Но Нолан решил не палить концовку, и поставил планету сами знаете как. Греется планета от аккреционного диска. На поверхности - обычный лёд. Когда планета Манна подлетает ближе к Гаргантюа и её диску, диоксид углерода испаряется - получаются облака. Подлетая к чёрной дыре Как Купер поднял падающий Эндюранс? Вытащил его достаточно высоко, чтобы притяжение Гаргантюа притянуло его и Купера на критическую орбиту. Не забывайте, что когда Эндюранс падает на планету Манна, планета находится очень близко к Гаргантюа.

Критическая орбита, по которой Купер проводит корабль вокруг Гаргантюа - это поле, в котором центробежная сила, которая выталкивает корабль с орбиты и сила гравитации, которая тянет корабль внутрь дыры, совпадают. На этой орбите можно вечно крутиться вокруг Гаргантюа, но с одним условием: нельзя сдвигаться с орбиты ни на шаг, так как корабль либо отбросит от Гаргантюа, либо он упадёт в чёрную дыру. Эта орбита нестабильна. Стоит сказать, что орбита планеты Миллер точно такая же, но стабильная, с неё сложно слезть. Наука Недавно вышедший на экраны визуально-захватывающий фильм "Интрестеллар" основывается на реальных научных понятиях , таких как вращающиеся черные дыры, кротовые норы и расширение времени. Но если вы не знакомы с этими понятиями, то возможно, слегка запутаетесь во время просмотра. В фильме команда космических исследователей отправляется во внегалактическое путешествие сквозь кротовую нору. На другой стороне они попадают в иную Солнечную систему с вращающейся черной дырой вместо звезды. Они находятся в гонке с пространством и временем, чтобы выполнить свою миссию.

Такое космическое путешествие может показаться слегка запутанным, но оно основывается на основных принципах физики. Вот основные 5 понятий физики , которые нужно знать, чтобы понять "Интерстеллар": Искусственная гравитация Самой большой проблемой, с которой сталкиваемся мы, люди, при длительных космических путешествиях, является невесомость. Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать. С этой проблемой сталкиваются и герои в фильме "Интерстеллар". Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях. Одним из способов сделать это - раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля. Это отталкивание похоже на гравитацию, только в обратном направлении. Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой.

Во вращающемся космическом корабле стены для вас становятся полом. Вращающаяся черная дыра в космосе Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Этот процесс искажения называется "увлечение инерциальных систем отсчёта" или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию. Космический корабль "Эндюранс" направляется к Гаргантюа - вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.

Его отличает очень быстрое вращение: некоторые делают оборот вокруг оси за доли секунды. Из-за этого излучение от таких звезд исходит, как свет от маяка, и наблюдателями на Земле считывается как мерцание отдельных импульсов.

Несмотря на то, что пульсаров нет в радиусе примерно 25 парсеков от ядра галактики, до недавнего времени это ученых не слишком смущало: многие просто считали, что пока нет техники, способной их обнаружить, ведь как и все нейтронные звезды, пульсары по размерам сравнимы с небольшим городом на Земле, хоть и обладают массой больше, чем у Солнца. По одной из уже существующих версий, в космосе есть «неработающие» пульсары, которые лишились возможности вращаться. Они, как считается, образуются в двойных звездных системах. Если одна, более массивная, звезда в процессе сверхновой отталкивает более мелкого компаньона и остается одна, она со временем теряет материал, замедляется и в конце концов не излучает сигнал, по которому ее можно было бы обнаружить. Но разве могут все системы в центре галактики быть двойными и все - пойти по одному пути развития?

Но это еще не все. Мы не видим черную дыру под прямым углом и это причина еще одного из значительных отличий. Черная дыра M87 имеет более яркие акценты в левой нижней части.

Это косвенное доказательство, что скорее всего черная дыра вращается. Материя вокруг черной дыры тоже вращается, при этом пространство-время само по себе будет обернуто вокруг черной дыры. Это значит, что материал, двигающийся в нашем направлении, выглядит ярче, тогда как та материя, что удаляется от нас, выглядит тусклее. В "Интерстеллар" этой разницы в яркости нет, так как человеческий глаз, скорее всего, не смог бы выделить разницу на двух сторонах черной дыры из-за общей яркости. Кроме того в фильме Кристофера Нолана присутствуют художественные элементы, вроде бликов. Еще одно значительное отличие — диск реальной черной дыры оказался значительно "толще", чем в кино, при этом он пропускает больше света, тогда как в "Интерстеллар" диск был значительно плотнее.

Черная дыра Гаргантюа

Найден новый тип черной дыры, скрывающейся на «космическом заднем дворе» Земли Новости черных дыр. Сверхмассивные черные дыры в центре масс галактик.
Сверхмассивная чёрная дыра — Википедия это одно из самых загадочных явлений вселенной. Она представляет собой область космического пространства с крайне высокой плотностью и силой притяжения, из которой ничто, включая свет, не может выбраться.
Interstellar Gargantua "Space Engine" | Пикабу Названия нейтронной звезды и черной дыры, скорее всего, взяты из «Жизни Гаргантюа и Пантагрюэля», пентологии романов, написанных в XVI веке Франсуа Рабле и повествующих о приключениях двух гигантов: Гаргантюа и его сына Пантагрюэля.
Черная дыра из фильма «Интерстеллар» Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры.
Энергия из черных дыр – выдумка или реальность? Живые обои Черная дыра Гаргантюа / скачать на рабочий стол.

Око Саурона или пончик? В интернете обсуждают фото чёрной дыры

Поздравления. ДТП. Новости. Сериалы. Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков. Кстати, общепризнанный в кругах многих астрономов, тот факт, что изображение чёрной дыры "Гаргантюа" из к/a "Интерстеллар" наиболее точно и достоверно передаёт внешний вид свермассивной чд в галактике М87 (точнее её тени). 8 апреля 2022 в 13:54. $ASTR-US. это настоящая черная дыра, сверхмассивная чёрная дыра Гаргантюа.

Самая яркая галактика Вселенной оказалась "каннибалом", выяснили в НАСА

В такой чёрной дыре, называемой «экстремальной», гравитационное поле у горизонта событий исчезнет, потому что внутреннее влияние гравитации будет компенсироваться за счет огромных отталкивающих центробежных сил. Тем не менее, вполне возможно, что большинство чёрных дыр во Вселенной имеет момент количества движения, довольно близкий к предельному. Например, типичная чёрная дыра звёздной массы около 3 солнечных , считающаяся движущим механизмом в двойных рентгеновских источниках, должна вращаться на 5000 оборотах в секунду. Предположительно, чёрная дыра Гаргантюа, показанная в "Интерстелларе" как раз имеет момент количества движения на 10 в -10 степени близкий к предельному Jmax. Даже если это теоретически возможно, данная конфигурация всё равно выглядит нереалистичной с физической точки зрения. Потому что чем быстрее вращается чёрная дыра, тем тяжелее увлечь за собой вещество, вращающееся в том же направлении под воздействием центробежных сил, в то время как вещество, вращающееся в противоположном, легко «всасывается» в чёрную дыру, замедляя вращение.

Вследствие этого слишком быстро вращающаяся чёрная дыра будет иметь тенденцию к замедлению до равновесной скорости, меньшей, чем у Гаргантюа по релятивистским общим расчетам, чёрные дыры должны вращаться не быстрее, чем 0,998 Jmax. Однако преимуществом очень быстро вращающихся чёрных дыр является то, что планеты могут вращаться в непосредственной близости от горизонта событий, не падая под него.

Обычные черные дыры образуются как нейтронные звезды — в результате сверхновых. А первичные, полагают ученые, соткались из сверхплотной материи в первые секунды существования Вселенной. Вероятно, размер их разнится от массы булавки до примерно 100 000 масс Солнца. Возможно, обнаружить их смогут новые телескопы, которые сейчас на Земле готовят к запуску. И вот именно такую черную дыру, довольно небольшой массы, по мнению группы Кайоццо могла поглотить звезда, каким-то образом вступив с ней во взаимодействие. Гравитационного притяжения нейтронной звезды для этого хватило бы при условии, что дыра будет меньше нее по массе.

Однако проверить эту гипотезу пока нельзя.

На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей. Попробуйте сами и увидите, что огонь вас не будет обжигать. Гаурав Ханн и его коллега Лиор Бурко занимаются вопросами физики черных дыр более двадцати лет. В 2016 году Кэролайн Маллари, одна из аспиранток Ханна, вдохновленная блокбастером режиссера Кристофера Нолана «Интерстеллар» решила научным методом проверить, действительно ли главный герой фильма смог бы выжить при падении в гигантскую вращающуюся черную дыру Гаргантюа, обладающую массой в 100 миллионов раз превосходящую солнечную. Сам фильм, напомним, был поставлен по книге нобелевского лауреата по астрофизике Кипа Торна. Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. Выдуманная черная дыра Гаргантюа из фильма «Интерстеллар» Даже прическу не помнет?

Компьютерная модель показала, что при любых условиях объект падающий во вращающуюся черную дыру не будет испытывать бесконечно больших эффектов деформации при прохождении сквозь так называемый внутренний горизонт сингулярности — область черной дыры, избежать которой не удастся в любом случае. Более того, при определенных обстоятельствах воздействие этих эффектов будет настолько мало, что объект сможет без проблем пройти сквозь эту сингулярность, а в некоторых случаях и вовсе не заметить никакого воздействия со стороны. Маллари также обнаружила особенность, которая в полной мере не привлекала к себе внимания раньше: эффекты сингулярности в контексте вращающейся черной дыры приведут к стремительному увеличению циклов растягивания и сжатия объекта, падающего в ее центр.

Даже если это теоретически возможно, данная конфигурация всё равно выглядит нереалистичной с физической точки зрения. Потому что чем быстрее вращается чёрная дыра, тем тяжелее увлечь за собой вещество, вращающееся в том же направлении под воздействием центробежных сил, в то время как вещество, вращающееся в противоположном, легко «всасывается» в чёрную дыру, замедляя вращение. Вследствие этого слишком быстро вращающаяся чёрная дыра будет иметь тенденцию к замедлению до равновесной скорости, меньшей, чем у Гаргантюа по релятивистским общим расчетам, чёрные дыры должны вращаться не быстрее, чем 0,998 Jmax.

Однако преимуществом очень быстро вращающихся чёрных дыр является то, что планеты могут вращаться в непосредственной близости от горизонта событий, не падая под него. Это является ключевым моментом в фильме, а также позволяет очень сильное замедление времени. Для чёрной дыры с массой, равной 100 миллионам солнечных масс, это расстояние должно быть около 900 миллионов километров, чуть больше, чем расстояние от Юпитера до Солнца. Но для чёрной дыры Керра, вращающейся очень близко к предельному Jmax, устойчивая внутренняя круговая орбита может быть также близко, как сам горизонт событий, всего 100 миллионов километров. Это объясняет почему в «Интерстелларе» планета Миллер может вращаться над самым горизонтом событий и не падать.

FAQ по Гаргантюа: реальна ли черная дыра в Интерстеллар?

Искувственно смодулированная Кипом Торном СМЧД (сверхмассивная черная дыра («Гаргантюа») специально для киноленты Кристофера Нолана «Интерстеллар». Сверхмассивная чёрная дыра или плохо сфотографированный глазированный пончик Krispy Kreme? Черная дыра Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий. Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли. Новости черных дыр. Сверхмассивные черные дыры в центре масс галактик.

Путешествие среди чёрных дыр

Черная дыра Интерстеллар 4k. Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века! Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т.е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Для большей корректности рядом со сверхмассивной черной дырой Гаргантюа должна располагаться черная дыра поменьше, которая и поможет им совершить маневр. Фото: Ton 618 черная дыра.

Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе

Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий. Парадоксальные факты Галактика относится к разряду молодых и новых звездных скоплений. Об этом свидетельствует не только ее возраст, параметры и положение на известной человеку карте космоса, но и мощность, которой обладает ее сверхмассивная черная дыра.

Однако, как оказалось, «смешные» параметры могут иметь не только молодые Множество квазаров, которые обладают невероятной мощностью и гравитацией, удивляют своими свойствами: Обычный воздух зачастую имеет большую плотность, чем сверхмассивные черные дыры. Попадая на горизонт событий, тело не будет испытывать приливных сил. Дело в том, что центр сингулярности находится достаточно глубоко, и дабы достичь его, придется проделать долгий путь, даже не подозревая, что обратной дороги уже не будет. Гиганты нашей Вселенной Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности.

Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет. Опасное соседство Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями - расстояние между ними составляет примерно 3,5 миллиарда световых лет. Астрономы не исключают и той версии, что в ближайшем будущем эти два космических тела столкнутся, образовав сложную звездную структуру. По одной из версий, именно из-за сближения с подобным гравитационным гигантом движение планетарных систем в нашей галактике постоянно ускоряется, а звезды становятся горячее и активнее.

Сверхмассивные черные дыры на самом деле белые В самом начале статьи был затронут весьма щекотливый вопрос: цвет, в котором перед нами постают самый мощные квазары, сложно назвать черным. Невооруженным глазом даже на самой простенькой фотографии любой галактики видно, что ее центр - это огромная белая точка. Почему же тогда мы считаем, что это сверхмассивная черная дыра? Фото, сделанные через телескопы, демонстрируют нам огромное скопление звезд, которые притягивает к себе ядро. Планеты и астероиды, которые вращаются рядом, из-за непосредственной близости отражают, тем самым преумножая весь присутствующий рядом свет. Так как квазары не затягивают с молниеносной скоростью все соседние объекты, а лишь удерживают их в своем гравитационном радиусе, они не пропадают, а начинают еще больше пылать, ведь их температура стремительно растет.

Что же касается обычных черных дыр, которые существуют в открытом космосе, то их название полностью оправдано. Размеры относительно невелики, но при этом сила гравитации колоссальна. Они попросту «съедают» свет, не выпуская из своих берегов ни единого кванта. Кинематограф и сверхмассивная черная дыра Гаргантюа - этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь. Но в первоначальном сценарии планировали создать три черных дыры, две из которых носили бы названия Гаргантюа и Пантагрюэль, взятые из сатирического романа После внесенных изменений осталась лишь одна «кроличья нора», для обозначения которой было выбрано первое наименование.

Стоит заметить, что в фильме черная дыра изображена максимально реалистично. Так сказать, дизайном ее внешнего вида занимался ученый Кип Торн, который базировался на изученных свойствах данных космических тел. Как мы узнали о черных дырах? Если бы не теория относительности, которая была предложена Альбертом Эйнштейном в начале ХХ века, никто бы, наверное, даже не обратил внимания на эти загадочные объекты. Сверхмассивная черная дыра расценивалась бы как обычное скопление звезд в центре галактики, а рядовые, маленькие, вовсе бы осталась незамеченными. Но сегодня, благодаря теоретическим расчетам и наблюдениям, которые подтверждают их правильность, мы можем наблюдать такой феномен, как искривление пространства-времени.

Современные ученые говорят, что найти «кроличью нору» не так уж и сложно. Вокруг такого объекта материя ведет себя неестественно, она не только сжимается, но порой и светится. Вокруг черной точки образуется яркий ореол, который виден в телескоп. Во многом природа черных дыр помогает нам постичь историю становления Вселенной. В их центре находится точка сингулярности, подобная той, из которой ранее развился весь окружающий нас мир. Доподлинно неизвестно, что может случиться с человеком, который пересечет горизонт событий.

Раздавит ли его гравитация, или же он окажется в совершенно ином месте? Единственное, что можно утверждать с полной уверенностью, - гаргантюа замедляет время, и в какой-то момент стрелка часов окончательно и бесповоротно останавливается. В фильме радиус кротовой норы - 1 километр, длина желоба - 10 метров, радиус линзирования на 50 метров больше норы. Кротовая нора нестабильна и очень хочет закрыться и превратиться в две чёрные дыры. Чем длиннее кротовая нора, тем больше в ней будет видно размазанных копий объектов за норой, потому что у света больше путей попадания в глаз под разным углом можно зайти в нору и выйти в одну точку. Чтобы держать кротовую нору открытой, нужно очень много экзотического вещества с отрицательной массой, чтобы оно выталкивало из норы всё на противоположной стороне.

Такое вещество, теоретически, может существовать, но найти его в достаточном количестве, чтобы держать нору - нереально. Но есть второй вариант удержания кротовых нор: нужно использовать гравитационные силы из пятого измерения. Если четырёхмерный объект пронзает наше трёхмерное пространство, он создаёт в нём очень странные силы, которые ни на что не похожи. Вот их и использовать для удержания кротовой норы. Гаргантюа снаружи Такой массы достаточно, чтобы приливные силы на планете Миллер не разорвали её пополам. Изображение дыры: Гаргантюа приплюснута слева, потому что она вращается слева направо относительно камеры и у света, двигающегося в направлении вращения, больше шансов не быть засосанным за горизонт событий.

У каждой звезды за чёрной дырой есть два изображения на картинке: обычное, которое далеко от дыры, дано светом, немного согнутым гравитацией. И второе, внутри сферы Эйнштейна , такой сферы, которая всё очень сильно преломляет, потому что близко к дыре. Там ещё несколько особенностей, связанных с вращением дыры, но я это с трудом объясню, потому что оптика не лучшая моя сторона.

Чешские ученые подсчитали, что землеподобная планета, вращающаяся вокруг черной дыры, из-за разницы температур между гравитационным объектом и реликтовым излучением может извлекать около 900 ватт полезной мощности. Этого достаточно для поддержания жизни, но мало для ее зарождения. Как отмечает Ави Леб из Гарвардского университета, ранее температура реликтового излучения была выше, чем сейчас. Например, спустя 15 миллионов лет после Большого взрыва она равнялась 300 кельвинам 27 градусам Цельсия. Этого достаточно для наличия на гипотетической планете жидкой воды и обеспечения ее 130 гигаваттами полезной мощности. Материалы по теме: 12 января 2016 Последняя величина в миллион раз меньше мощности, которой Солнце обеспечивает Землю. Этого достаточно для поддержания существования сложной жизни на планете, хотя маловероятно, что она успела бы развиться за такой короткий промежуток времени. Для проверки своих расчетов чешские ученые обратились к Миллеру из «Интерстеллара». В картине планета Миллер вращается вокруг сверхмассивной черной дыры Гаргантюа массой 100 миллионов солнц, удаленной от Земли на 10 миллиардов световых лет. Радиус дыры сравним с радиусом орбиты Земли вокруг Солнца, а окружающий ее аккреционный диск простирался бы далеко за орбиту Марса.

Конечно, фильм, претендующий на звание лучшего научного кино, вызвал мощный резонанс в обществе — нашлась большая толпа критиков, осуждающих науку Интерстеллара, а обсуждения и споры на форумах насчитывают десятки тысяч сообщений. Действительно, космические полеты через Кротовую нору, позволяющие преодолевать расстояния в миллиарды световых лет за считанные минуты, полеты возле Черной дыры со скоростями, близкими к скорости света, гигантские волны на необычной планете, чудовищное замедление времени, перемещение в пяти измерениях, вне времени и пространства — все это выходит за рамки привычного представления об окружающем мире и больше походит на фантастику. Но весь фильм построен на научных исследованиях астрофизика Кипа Торна — крупнейшего в мире специалиста в области Черных дыр, Кротовых нор, гравитации и квантовой физики, и снят под его руководством. Несмотря на то, что для придания фильму зрелищности и преподнесения зрителю сложнейших теорий в приятной и понятной форме, приходилось прибегать к некоторым условностям и допущениям, оспаривать научную составляющую Интерстеллара — все равно, что спорить с самим Кипом Торном. Многие моменты фильма подробно объяснены в его книге «Наука Интерстеллара», которую он выпустил вскоре после съемок фильма. Рассмотрим ключевые спорные моменты и постараемся их описать простыми словами: Замедление времени Из теории общей относительности Эйнштейна следует, что гравитация деформирует пространство и время. Поэтому вблизи горизонта событий сверхмассивной Черной дыры Гаргантюа, время замедляется настолько сильно, что когда экипаж Рейнджера высаживается на планету Миллер, один час, проведенный там равен 7 годам, проведенным на Земле. А так как космическая станция Эндюранс в это время оставалась на значительном расстоянии от горизонта событий, то на ней время текло почти так же медленно, как на Земле. Поэтому при возвращении с планеты, спустя 3 часа, оказалось, что Ромилли, оставшийся на станции, постарел на 23 года. Гигантские волны планеты Миллер На планете Миллер, наверно, было бы возможно зарождение жизни, если бы не гигантские волны, с которыми столкнулись Купер и его команда. Возникают они, опять же, из-за близости к горизонту событий Черной дыры. На планету действует огромная приливная сила, которая вытягивает планету вдоль силовых линий, а также создает мощный прилив со стороны Гаргантюа. Таким образом, на дальней стороне планеты, куда высадился экипаж, получается настолько низкий уровень воды, что по нему герои фильма могут ходить пешком. Но из-за того, что планета быстро вращается, а ее ось не совпадает с силовыми линиями Черной дыры, возникают волны, которые и настигают команду. Также волны могут быть вызваны цунами вследствие тектонических сдвигов. Преодоление гравитации В Интерстелларе несколько раз приходится преодолевать гравитацию планет и Черной дыры, и очень остро стоит вопрос экономии топлива. События происходят в недалеком будущем, и, не смотря на то, что космические программы были свернуты, некоторые технологии получили развитие.

Например, от него зависит, будет ли наша Вселенная расширяться вечно или в конце концов сожмется в точку. Глобальное скалярное поле - один из вероятнейших кандидатов на роль "темной энергии", о которой так много пишут в последнее время. Черные дыры появляются в этой связи весьма неожиданным образом. Можно показать, что необходимость их сосуществования с глобальным скалярным полем накладывает взаимные ограничения на свойства черных дыр. В частности, наличие черных дыр накладывает ограничение на верхний предел эффективной космологической постоянной параметра ГСП, ответственного за расширение Вселенной , тогда как ГСП ограничивает нижний предел их масс а значит, энтропии и обратной температуры T-1 некой положительной величиной. Иными словами, черные дыры, будучи "локальными" 5 и, по меркам Вселенной, крошечными объектами, тем не менее самим фактом своего существования влияют на ее динамику и другие глобальные характеристики опосредованно, через глобальное скалярное поле. Эпилог Эйнштейн однажды сказал, что человеческий разум, однажды "расширенный" гениальной идеей, уже никогда не сможет сжаться до первоначального состояния 6. Это прозвучит немного парадоксально, но исследование предельно сжатого состояния материи было, есть и долгое время будет одним из главных путей и стимулов расширения границ человеческого интеллекта и познания фундаментальных законов мироздания. Ответом было: "Назовите это энтропией - тогда в дискуссиях вы получите солидное преимущество - ибо никто не знает, что такое энтропия в принципе". Так родилось понятие "энтропии по Шеннону" англ. Shannon entropy , ныне широко используемое в теории информации. Ну что ж, уровни незнания могут быть разными - от полного невежества до глубокого понимания всей сложности проблемы. Попытаемся несколько улучшить наш уровень незнания энтропии. Статистическая энтропия, введенная Людвигом Больцманом Ludwig Boltzmann в 1877 году, - это, грубо говоря, мера количества возможных состояний системы. Предположим, мы имеем две системы, состоящие из ящиков и одного шарика в каждой из них. Первая система "ящики плюс шарик" имеет только 1 ящик, вторая - 100 ящиков. Вопрос - в каком ящике находится шарик в каждой системе? Ясно, что в первой системе он может быть только в одном ящике. Помните формулу "Энтропия есть логарифм числа возможных состояний"? Тогда энтропия первой системы равна log1, то есть нулю, что отражает факт полной определенности кстати, это одна из причин, почему в определении энтропии был использован логарифм. Что касается второй системы, то здесь мы имеем неопределенность: шарик может находиться в любом из 100 ящиков. В этом случае энтропия равна log100, то есть не равна нулю. Ясно, что, чем больше ящиков в системе, тем больше ее энтропия. Поэтому и говорят часто об энтропии как о мере неопределенности, ибо наши шансы "зафиксировать" шарик в конкретном ящике уменьшаются по мере увеличения их числа. Мы могли бы заменить шарики электронами, а ящики - вакансиями в твердом теле или даже какими-то абстрактными категориями , как, например, в теории информации , а понятие энтропии по-прежнему было бы применимо и полезно. Ранее считалось, что термодинамическая энтропия не может быть применима к черным дырам, но Бекенштейн и Хокинг показали, что это не так, при должном определении понятий T и S см. Его автор, Андрей, обратил внимание на несколько парадоксальных, по его мнению, аспектов физики ЧД: "Во всех книгах про черные дыры […] сказано, что время падения кого-либо чего-либо в черную дыру бесконечно в системе отсчета, связанной с удаленным наблюдателем. А время испарения черной дыры в этой же системе отсчета конечно, то есть тот, кто будет туда падать, не успеет этого сделать, потому что черная дыра уже испарится. Это прекрасная иллюстрация главной дилеммы научно-популярной литературы - пытаясь упростить изложение, авторы книг вынуждены поступаться уровнем математической строгости. Поэтому фраза, на которой Андрей базирует свои умозаключения, "время падения кого-либо чего-либо в черную дыру бесконечно в системе отсчета, связанной с удаленным наблюдателем", вообще говоря, неверна. На самом деле физически корректная формулировка выглядит так: "время падения кого-либо чего-либо в статическую черную дыру бесконечно в системе отсчета, связанной с удаленным статическим наблюдателем". Иными словами, ее применимость ограничена идеализированным случаем, когда характеристики дыры неизменны во времени то есть заведомо не тогда, когда она растет или испаряется , а любое падающее тело предполагается пробным, достаточно малым, чтобы пренебречь изменениями дыры, вызванными его падением. В тех же физических ситуациях, о которых говорит Андрей, как сама дыра, так и пространство -время в ее окрестности не могут считаться статическими. Вследствие этого статических по отношению к дыре наблюдателей как таковых просто не существует. Все наблюдатели движутся и все равноправны, а "время падения кого-либо чего-либо в черную дыру", измеренное по их часам, либо конечно в их системах отсчета, либо не определено например, когда наблюдатель находится вне светового конуса падающего на дыру тела. Вот таков краткий вариант ответа. Чтобы понять такие вещи на более глубоком уровне, необходим серьезный математический аппарат изложенный, например, в книге Хокинга и Эллиса : диаграммы Картера-Пенроуза, конформные отображения, топология многообразий и многое другое. Системы единиц В системах единиц физических измерений часть единиц принимаются за основные, а все остальные становятся производными от них. Так, например, в СИ основные единицы механики - метр, килограмм и секунда. А единица силы, ньютон, имеющая размерность кг. Размер основных единиц выбирается произвольно; их выбор определяет величину коэффициентов в уравнениях. Во многих областях физики удобнее пользоваться так называемыми естественными системами единиц. Система названа в честь немецкого физика Макса Планка, предложившего ее в 1899 году. Она используется в космологии и особенно удобна для описания процессов, в которых одновременно наблюдаются и квантовые, и гравитационные эффекты, например в теории черных дыр и теории ранней Вселенной. Поэтому и говорят, что тело находится в пределах светового конуса, или светоподобной гиперповерхности. Литература Грищук Л.

Горизонт событий

Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. Новости развлекательной игровой тематики и индустрии кино. Владелец сайта предпочёл скрыть описание страницы. Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра.

Похожие новости:

Оцените статью
Добавить комментарий