Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе.
Феномен жизни во фрактальной Вселенной
На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag.
Соответствующий латинский глагол frangere означает «разрывать, прерывать»: создавать нерегулярные фрагменты. Это, следовательно, имеет подходящее для нас! Сочетание «фрактальное множество» fractal set будет определена строго, но сочетание «природный фрактал» nature fractal будет подано свободно — для определения природных примеров, которые полезно репрезентировать с помощью фрактальных множеств. Например, броуновская кривая — это фрактальное множество, а физическое броуновское движение — это природный фрактал. К ним можно отнести следующие: множество Кантора — нигде не плотное несчётное совершённое множество.
Стоппард «Розенкранц и Гильденстерн мертвы» сцена с представлением перед королём. В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому: Х. Борхес «В кругу развалин».
Еще одна кроссплатформенная в том числе с мобильной версией программа, основанная на Java с открытым исходным кодом, для обработки изображений. Она известна в основном своим сложным генератором пламенных фракталов. Mandelbulber Mandelbulb3D.
Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании. По ссылке вы найдете множество других программ. Заключение Исследование фракталов началось в 1975 году.
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
Папоротник — один из основных примеров фракталов в природе. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек.
Случайность как художник: учёные обнаружили первую фрактальную молекулу
Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе. Кристаллы - Лед, морозные узоры на окнах это тоже фракталы. Горы - Горные расселины, береговые линии хоть и произвольны по линиям, но так же фрактальны.
Однако как только первая частичка подклеилась в какое-то место, площадь поверхности в этой области сразу увеличивается - а значит, шанс, что следующая частичка приклеиться к этой поверхности, значительно выше. Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области. В результате процесса получается древовидная структура, обладающая фрактальными свойствами. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен как описанный выше зачастую приводит к фрактальным структурам. Если же мы говорим не просто о природе, а о живой природе - то здесь также начинают участвовать эволюционные механизмы. Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например.
Эта революция в наших представлениях о Вселенной по масштабам никак не меньше, чем изменение модели аристотелевой конечной Вселенной на бесконечную Вселенную Бруно-Ньютона. Эта новейшая революция в космологии еще не завершена, а горизонты Новой Бесконечной Вселенной теряются в загадочной дымке. Нам трудно представить вселенные с другими фундаментальными законами физики, с другой топологией, с другим тем более нецелым числом измерений пространства и тем более времени! Но «Вселенная в целом вовсе не обязана обладать теми же свойствами, что и видимая нами ее часть» Р. Это и чреватая новыми революционными неожиданностями бурная история «всем известных», но, похоже, так никем пока толком не понятых «черных дыр». Это и проблема, от характера будущего решения которой зависит ответ на вопрос: что — или кто!
А ведь наука физика до сих пор еще так и не разобралась даже с такими старыми от того века , мрачными, но по сути простыми проблемами, как возможность или невозможность так называемой тепловой смерти Вселенной. За всеми прошлыми и настоящими революционными переворотами в научной картине мира, за подчас вековыми мучительными и туманными проблемами, а отчасти — и сияющими перспективами, остается недооцененным еще одно весьма достойное внимания кардинальное преобразование в астрономической картине мира. Речь идет о развертывающемся в последние пару десятков лет совершенно новом и весьма неожиданном аспекте Мира. Вселенная оказалась насквозь «нецеломерной», фрактальной, она повсюду состоит из фрактальных систем, в ней протекают процессы иерархически структурированные, с «самоподобием» на всех этажах своего устройства. Для нас — это откровение не меньшего масштаба, чем открытие чрезвычайной нестационарности Вселенной на самых различных ее уровнях 2 — от мира планеты Земля до комет и астероидов, от рождающихся и взрывающихся звезд и бурно эволюционирующих звездных комплексов объединений молодых звезд — до квазаров, сияющих подобно сотне галактик, и до всей нашей Вселенной, в немыслимом темпе раздувающейся до «почти бесконечных» размеров. Дело в том, что именно в последние полтора-два десятка лет мы с удивлением осознали, что живем в Мире, где нас со всех сторон окружают объекты и системы дробной размерности [ 2 ].
Это крайне непривычно. И в жизни, и в науке мы до сих пор встречали, как нам казалось, лишь объекты очень небольшого набора целочисленной, притом невысокой, размерности: точки размерность 0 ,"линии 1 , поверхности 2 , тела 3. Минимальное количественное расширение этого набора в физике произошло хотя и давно, но все же уже в этом веке, когда Г. Минковский в 1908 г. Позже, в 20-х гг. Калуца, О.
Клейн, Ю. Румер и др. В развитие этой линии уже относительно недавно в теории возникли 10- и 11-мерные физические пространства, а затем дело дошло и до варианта 506 измерений! Впрочем, в подчеркиваемом формально-математическом смысле, физики уже во второй половине прошлого века, во времена Больцмана и Гиббса, оперировали с фазовыми математическими пространствами размерности порядка 1023 число Авогадро. Математики же, люди перед Природой куда менее ответственные, чем физики или астрономы, гораздо раньше тех же физиков обжились в многомерных пространствах, а с легкой руки великого математика Давида Гильберта, — и в «бесконечномерных». Однако, в смысле целочисленности и дискретности, сколь угодно большое натуральное число N тождественно 1 или даже 0.
И вот мы узнаем, что живем во Вселенной, на каждом шагу, на всех уровнях масштабов заполненной объектами, структурами, системами дробной размерности! Перечислим хотя бы некоторые направления «фрактальных прорывов» в современной науке. Модель динамического хаоса тоже, кстати, фрагмент новой грани научной картины мира и турбулентность в воде, атмосфере и в Космосе 4 ; модели эрозии почвы и сейсмических явлений, организация полимеров и коллоидов, фликкер-шум и химические реакции, флуктуации температуры и плотности, морфология планет и спутников, облаков и горных хребтов; «блуждание пьяницы» и вероятность выживания, модель Изинга в теории кристаллов и «странный аттрактор»; солнечные пятна и «скрытая» масса галактик; структура речных систем и береговая линия моря; электропробой диэлектриков и растрескивание при разрушении; «дьявольская лестница» и теория конечных автоматов; фрагментация протогалактической среды и пыль у звезд типа R Северной Короны; множественное рождение частиц и совокупность ресничек на стенках кишечника; кластеризация во Вселенной и динамика экситонов; переменные звезды и структура рентгеновского источника Геркулес Х-1... Автор сам не очень понимает некоторые из этих терминов — так широка проблема. Фрактальный рост. Отложение цинка при электролизе Рис.
Фрактальная структура Фигура Лихтенберга при электрическом разряде Как видим, действительно «природа очень любит фрактальные формы» [ 3 ]. Мандельброт [ 4 ]. Но чтобы увидеть это, должен был найтись такой Мандельброт или другой «мальчик», заметивший, что король-то голый! А до этого мы — вслед за нашими интеллектуальными и научными лидерами — столетиями в упор не видели самого очевидного. Когда же, вслед за «пионером», прозревают остальные, картина мира резко изменяется, перестраивается, и ранее невозможное оказывается очевидным. Эсхер Эшер.
На математическом языке ее так называемая размерность Хаусдорфа—Безиковича тогда больше привычной топологической. Заметим, кстати, что размерность линии, превосходящая 1, при этом не обязательно будет дробной размерность плоской броуновской траектории равна 2. Видимо, мыслима и размерность линии в трехмерном объеме, превосходящая двойку. Вообще же разнообразие здесь велико, и в ряде случаев размерность «предельного объекта» может быть оценена лишь приближенно численно как итог компьютерного моделирования предельного процесса. В некоторых же объектах она элегантно выражается аналитически. Так, размерность Хаусдорфа—Безиковича знаменитого канторова множества «остаток» от процедуры: из отрезка вырезаем среднюю треть, из оставшихся двух отрезков — тоже, и т.
Математический смысл фрактальности довольно абстрактен, и здесь, пожалуй, не стоит пытаться определить фрактал во всей его математической строгости и сложности. Однако геометрический смысл фрактальности весьма нагляден и прост. Это, схематизируя, бесконечная — вверх и вниз — пирамида единообразно на один и тот же множитель изменяющихся ступеней. Такая лестница масштабов может быть и не откровенно иерархическо-геометрической, а скрытой во временном поведении системы. Например, совокупность броуновских частиц в каждый момент представляется предельно хаотичной. Но траектория броуновского движения каждой частицы в идеале если не подойти слишком близко к характерной величине размера атомов и расстояний между ними выглядит совершенно одинаково при любом масштабе «увеличении микроскопа».
Масштабная инвариантность, или самоподобие, фрактальной структуры является ее характернейшим свойством. Она может проявляться бесконечно разнообразно. Любопытно, что именно через это свойство фракталы не называя их так, естественно , значительно раньше их первооткрывателя Мандельброта увидел талантливый голландский художник с острым взглядом — М. Эсхер 1902—1972 иногда, в более ранней и менее точной транскрипции — Эшер. Физический смысл объекта-фрактала также довольно нагляден. Это структура пространственно-иерархического типа, со все меньшим при удалении от некоторого центра , но убывающим строго закономерно, единообразно, заполнением объема 6.
Выразительный пример — крона «зимнего дерева», без листьев. На эволюционно-биологическом уровне аналог — эволюционное древо жизни Земли, а в еще более общем плане — Мировое Древо ряда религиозных космологии. Открытие фракталов Смотрите, как повсюду окружают нас непонятные факты, как лезут в глаза, кричат в уши, но мы не видим и не слышим, какие большие открытия таятся в их смутных очертаниях. Ефремов Осознание фрактальности мира, как почти все крупнейшие обобщения в науке, началось с весьма частного вопроса — с мысленного опыта американского математика Бенуа Мандельброта: длина участка береговой линии между двумя городами оказалась зависящей от того, как ее измерять, то есть от «длины линейки». Можно сказать, что это заранее очевидно и тривиально. Но те, кто так рассуждали и на этом останавливались в бесконечном множестве «аналогичных случаев» до Мандельброта, и не заметили, не открыли фрактальность Вселенной!
Мандельброт, между тем, вышел за рамки старой научной картины мира, в которой не было места для фракталов.
Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Эта структура представляет собой треугольный узор, который состоит из меньших треугольников. До сих пор ученые не встречали подобные формы, которые сохраняли бы свое самоподобие в больших масштабах. Исследователи получили изображение белковой молекулы с помощью электронного микроскопа.
Математика в природе: самые красивые закономерности в окружающем мире
Ширина этих ручьев также чрезвычайно шаблонна. Кривые, как установили эксперты, всегда в шесть раз больше ширины русла. Такое самоподобие характерно для фракталов и является причиной того, что реки во всем мире выглядят одинаково. Если вы внимательно посмотрите на прожилки листьев, то заметите, насколько они самоподобны.
Самые мелкие из них похожи на главную срединную жилку, а срединная жилка похожа на ствол дерева с его ветвями. Это справедливо только для сетчатого жилкования паутинистые, а не параллельные жилки. В природе пузырьки, которые образуются при разбивании океанских волн или падении капель дождя, образуют самоподобный узор с тонкими пленками жидкости, разделяющими газовые карманы разных размеров.
Большие пузырьки перемежаются с маленькими, маленькие — с еще более маленькими, и так далее. Вне природы эти фрактальные узоры можно увидеть в мыльной ванне или во время мытья посуды в раковине.
Ветви деревьев имеют сложную структуру, которая может быть разделена на множество более мелких ветвей, каждая из которых является копией всего дерева. Эта структура позволяет деревьям эффективно собирать солнечный свет и питательные вещества из почвы. Еще одним примером фракталов в природе является грозовая туча. Грозовые тучи имеют сложную структуру, которая может быть разделена на множество более мелких туч, каждая из которых является копией всей тучи. Эта структура позволяет грозовым тучам эффективно переносить воду из одного места в другое. Фракталы - это не просто геометрические фигуры, они имеют множество интересных свойств и приложений в науке и технологии. Например, фракталы используются в компьютерной графике и анимации для создания реалистичных текстур и эффектов.
Они также используются в медицине для анализа сложных структур, таких как легкие или кровеносные сосуды. Фракталы имеют свойство самоподобия, что означает, что они выглядят одинаково на разных масштабах.
Это и есть принцип фрактальности на биржевых графиках — малое подобно большому, и наоборот. Для нас, трейдеров в этом есть неоспоримое преимущество. Ведь научившись торговать на одном таймфрейме, мы можем масштабировать нашу торговлю: Если хотим меньше тратить времени и реже торговать — тогда можно увеличивать таймфрейм. Если хотим больше торговать, и для этого у нас есть больше времени — тогда можно уменьшать таймфрейм. Хотя, конечно, у каждого таймфрейма есть свои особенности, но общий характер рыночных движений сохраняется благодаря фрактальности.
Фракталом в трейдинге принято называть локальный экстремум, состоящий из нескольких баров. Стрелками на графике показаны фракталы, которые являются экстремумами — то есть, локальными минимумами или максимумами на текущем графике. Билл Уильямс определяет, что: для образования верхнего фрактала бар должен иметь самый высокий максимум по сравнению с 2-мя барами слева и 2-мя барами справа; для образования нижнего фрактала бар должен иметь самый низкий минимум по сравнению с 2-мя барами слева и 2-мя барами справа. Как следствие, фракталы не могут появиться на самом правом краю графика. Для его образования, нужно, как минимум, 5 баров. С целью построения стратегии торговли, основанной на фракталах, Билл Уильямс вводит также правила сигнального и стартового фракталов.
Переосмысление эволюции: возникновение фрактальной структуры как нейтрального признака ставит под сомнение принцип адаптационизма, согласно которому все биологические структуры должны иметь эволюционное преимущество. Случайность и нейтральные мутации могут быть не менее важными факторами эволюционного процесса. Биомиметика и нанотехнологии: фрактальные структуры обладают уникальными физическими и химическими свойствами, такими как высокая площадь поверхности, фрактальная размерность и самоподобие. Изучение молекулярного фрактала цитратсинтазы может открыть новые пути для создания биомиметических материалов с улучшенными характеристиками, например, для катализа, доставки лекарств или сенсорики. Открытие молекулярного фрактала в цианобактерии — это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. Этот феномен открывает перед нами новые горизонты исследований и вдохновляет на поиск других "случайных шедевров" в микромире, которые могут изменить наше представление о жизни и её эволюции.
Физики нашли фракталы в лазерах
В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев.
Фракталы. Чудеса природы. Поиски новых размерностей
Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам.
Математика в природе: самые красивые закономерности в окружающем мире
Фракталы в природе. Мир вокруг нас. Ч.2 | Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. |
Обнаружен первый в мире молекулярный фрактал - Русская семерка | (с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. |
Фракталы в природе
Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Часто говорят, что мать-природа чертовски хороший дизайнер, а фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи вместе. Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. Примеры объектов в природе, которые приближённо являются Ф., дают кроны деревьев, кораллы, береговые линии, снежинки. Фракталы существуют не только в макро мире, но и на поверхности Земли.
Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
Автор, Demoscene Passivist, говорит, что для создания демо с процедурно генерируемыми фрактальными ландшафтами потребовалось около двух месяцев. А вот один из лучших проектов с фрактальными эффектами в демосцене. К сожалению, качество демонстрационного видео крайне плохое из-за давности лет , но демо можно скачать и запустить на компьютере. Для создания подобных или других фрактальных миров особых ухищрений не требуется. Есть несколько отличных программ, с помощью которых вы сможете самостоятельно изучать особенности фрактальной вселенной.
XaoS Open Source Project. Бесплатный, открытый, кроссплатформенный инструмент для масштабирования и изучения множества Мандельброта и десятков других фракталов.
С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах. С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования.
Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза. Фракталы — бесконечное почти повторение Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Сам Фрактал — это самоподобная повторяющаяся форма, что означает, что одна и та же основная форма появляется снова и снова.
Другими словами, если вы увеличите или уменьшите масштаб, везде будет видна одна и та же. Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник. Листья папоротников являются типичным примером самоповторяющегося ряда.
Кстати, бесконечная повторяемость невозможна в природе, поэтому все фрактальные закономерности — это только аппроксимации приближения. Например, листья папоротников и некоторых зонтичных растений например, тмин являются самоподобными до второго, третьего или четвертого уровня. Схожие с папоротником паттерны встречаются также у многих растений брокколи, капуста сорта Романеско, кроны деревьев и листья растений, плод ананаса , животных мшанки, кораллы, гидроидные, морские звезды, морские ежи. Также фрактальные паттерны имеют место в структуре разветвления кровеносных сосудов и бронхов животных и человека.
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций например, функция Больцано, функция Вейерштрасса, множество Кантора. Термин «фрактал» введен Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Множество Мандельброта — классический образец фрактала Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.
Законы, управляющие созданием фракталов, похоже, встречаются во всем мире природы.
Ананасы растут по фрактальным законам, а кристаллы льда формируются фрактальными формами, такими же, как в дельтах рек и венах вашего тела. Часто говорят, что Мать-Природа - чертовски хороший дизайнер, и фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи. Фракталы сверхэффективны и позволяют растениям максимально эффективно использовать солнечный свет и сердечно-сосудистую систему.
Поэтому история открытия фракталов — в значительной степени биография Бенуа Мандельброта, хотя частные случаи фракталов множества Жюлиа, снежинка Коха и функция Вейерштрасса были известны и раньше. Но только Мандельброт увидел что-то общее в этих примерах и дал им описание. Бенуа Мандельброт.
Фото: Yale University, www. В начале 60-х годов Мандельброт занимался экономикой, изучал динамику цен на хлопок. В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом. Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www.
В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности. Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www.
Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем.
Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла.
14 Удивительные фракталы, обнаруженные в природе
Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». Посмотрите потрясающие примеры фракталов в природе. Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями.
Бесконечность фракталов. Как устроен мир вокруг нас
Фракталы в природе исследование | Посмотрите потрясающие примеры фракталов в природе. |
Фракталы в природе презентация - 97 фото | Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. |
Фрактал. 5 вопросов | Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. |
Фракталы в природе | Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. |